
Checking Component-based Embedded Software
Designs for Scenario-based Timing

Specifications?

Hu Jun, Yu Xiaofeng, Zhang Yan, Zhang Tian, Li Xuandong
and Zheng Guoliang

State Key Laboratory of Novel Software Technology
Department of Computer Science and Technology

Nanjing University, Nanjing
Jiangsu, P.R.China 210093

hujun@seg.nju.edu.cn

Abstract. In this paper, for real-time embedded software we consider
the problem of checking component-based designs for scenario-based tim-
ing specifications. By adding time intervals on the actions, we extend
the interface automata for modelling real-time systems. The component-
based designs are modelled by real-time interface automaton networks,
which includes a set of real-time interface automata synchronized by
shared actions, and the scenario-based timing specifications are specified
by UML sequence diagrams with a set of boolean expressions. Based on
analyzing the compatible integer state space of a real-time interface au-
tomaton network and its compatible reachability graph, we develop an
algorithm to check the consistency between real-time component-based
designs and the scenario-based timing specifications.

Keywords: embedded software designs, real-time systems, model check-
ing, interface automata, UML sequence diagrams.

1 Introduction

For most embedded systems, the system correctness not only depends on func-
tionality but also timeliness. And in recent years, a prevalent trend in the embed-
ded computing area is that systems are more and more dominated by software.
The software determines the functionality and quality of systems, hence presents
lots of challenges to current software techniques. Using component-based design
methodology in embedded software domain have been considered as an effective
way for handling complexity, increasing system quality. One of the major goals
in developing such systems is the validation that whether the component-based
designs satisfy the specified timing specifications.

?
Supported by the National Natural Science Foundation of China (No.60425204, No.60233020,

and No.60273036), the National Grand Fundamental Research 973 Program of China
(No.2002CB312001), and by Jiangsu Province Research Foundation (No.BK2004080).

In this paper, for real-time embedded software we consider the problem of
checking the consistency of component-based designs for scenario-based timing
specifications. Firstly the scenario-based timing specifications are specified by
UML sequence diagrams[1] with a set of timming constraints. Then the inter-
face automata[2] are used as a formal model to describe the dynamic behavior
of software components, which is suitable for component-based verification. By
introducing time intervals into interface automata, we make an extension for
modelling real-time systems. And the component-based designs are modelled
by real-time interface automaton networks, which includes a set of real-time
interface automata synchronized by shared actions. Through analyzing the com-
patible integer state space of a real-time interface automaton network and its
compatible reachability graph, finally we develop an algorithm for the timing
behavior consistency checking problem.

2 UML Sequence Diagrams with Timing Constraints

In component-based system designs, the UML sequence diagrams can be used
to describe the component interactions. It focus on the temporal order of the
message flow. And sending a message, receiving a message, creating or deleting a
component instance are all considered as events. According to [3], the semantics
of each sequence diagram can be treated as a visual order sequence, which shows
a partially ordered set of events displayed in the notation. Therefore, we can
formalize the timing sequence diagrams and its behavior as follows:

Definition 1. A timing sequence diagram is a tuple D = (C, E,M, F, W, S)
where

– C is a finite set of components;
– E is a finite set of events;
– M is a finite set of messages. For any message g ∈ M , let g! and g? represent

the sending and the receiving for g respectively. For any e ∈ E, it is corre-
sponding to the sending or receiving for a message g, denoted by φ(e) = g!
or φ(e) = g?;

– F : E 7→ C is labelling function which maps each event e ∈ E to a component
F (e) ∈ C;

– W is a finite set whose elements are of the form (e, e′) where e and e′ are in
E and e 6= e′, which represents a visual order displayed in D;

– S is a set of boolean expressions on event names, which represents the timing
constraints enforced on D. ut

Without loss of generality, let any timing constraint expression be of the form
c0(te0 − te0′) + c1(te1 − te1′) + . . . + cn(ten

− ten
′) ∼ b, where te0 , te0′ , te1 , te1′ ,

. . ., ten
, ten

′ present the time of the event occurrence respectively and c0, c1, . . .,
cn, b are real numbers (b 6= ∞), ∼∈ {≤, <}.
Definition 2. For any D = (C, E,M, F, W, S), an event sequence e0ˆe1ˆ . . . ˆem

is a trace of D iff the following conditions hold:

2

– all events in E occur in the sequence, and each event occurs only once, i.e.
{e0, e1, . . . , em} = E and ei 6= ej for any i, j (i 6= j, 0 ≤ i, j ≤ m); and

– e0, e1, . . . , em satisfy the visual order defined by W , i.e. for any ei and ej , if
(ei, ej) ∈ W , then 0 ≤ i < j ≤ m. ut

We use timed event sequences, with the form of (e0, τ0)ˆ(e1, τ1)ˆ . . . ˆ(em, τm),
to represent the behavior of real-time systems, in which each event ei occurs with
a relative time stamp τi. It means that e0 takes place τ0 time units after the
system starts, then e1 takes place τ1 time units after e0 takes place, so on and
so forth, at last em takes place τm time units after em−1 takes place.

Definition 3. A timed event sequence σ = (e0, τ0)ˆ(e1, τ1)ˆ . . . ˆ(em, τm) is a
behavior of a timing sequence diagram D = (C, E,M, F, W, S) iff e0ˆe1ˆ . . . ˆem

is a trace of D, and τ0, τ1, . . . , τm satisfy the timing constraints described by S,
i.e. for any boolean expression

∑n
i=0 ci(tfi

− tfi
′) ∼ b in S, there is

∑n
i=0 ci∆i ∼ b

where for each i (0 ≤ i ≤ n), if fi = ej and f ′i = ek, then ∆i =
∑j

u=k+1 τu

(j > k)or ∆i = −∑k
u=j+1 τu (j < k). ut

3 Real-time Interface Automata and Component-based
Designs

3.1 Real-time interface automata

Interface automaton[2] is a light-weight formal language to describe the temporal
aspects of software component interfaces. Specifically, it’s designed to capture
effectively both input assumptions and output guarantees about the order of
the interactions between component and its environment. To further describe
real-time properties, we need to extend the interface automata with timeliness.
In the following, a real-time interface automaton (RIA) model is introduced, in
which for any transition there is a time interval constraint.

Definition 4. A RIA is a tuple P = (VP , vInit
P , AP , IP , ΓP) where:

– VP is a finite set of states, each state v ∈ VP ;
– vInit

P ∈ VP is the initial state;
– AP is the set of all actions, which includes AI

P , AO
P and AH

P , the mutually
disjoint set of input, output and internal actions respectively.

– IP is a finite set of time intervals; each interval has the form of [x, y] where
x, y are nonnegative integer numbers (x ≤ y, y may be ∞);

– ΓP ⊆ VP ×AP × IP × VP is a set of transitions. ut

An action a ∈ AP is enabled at state v ∈ VP if there is a transition (v, a, [x, y], v′) ∈
ΓP . An interface automaton is non-input-enabled ; that is, it’s not require that
AI

P (v) = AI
P for all states v ∈ VP .

We use a timed state sequence of the form v0
a0,τ0−→ v1

a1,τ1−→ . . .
am−1,τm−1−→

vm
am,τm−→ vm+1 to describe a behavior of a RIA, which means that the system

3

is starting at state v0, after τi time units changing to v1 through the transition
ignited by the action a0 and staying there for τ1 time units, and so on. As the
same we have mentioned before, each τi(0 ≤ m) is a nonnegative integer number
representing the relative time stamp.

Definition 5. For a real-time interface automaton P = (VP , vInit
P , AP , IP , ΓP),

a timed state sequence v0
a0,τ0−→ v1

a1,τ1−→ . . .
an−1,τn−1−→ vn

an,τn−→ vn+1 is a behavior
of P iff v0 = vInit

P , and for each i(0 ≤ i ≤ n), there is (vi, ai, [xi, yi], vi+1) ∈ ΓP ,
xi ≤ τi ≤ yi. ut

3.2 Real-time interface automaton networks

We use real-time interface automaton networks (RIAN) to model the component-
based designs for a real-time embedded software. It consists of a set of real-time
interface automaton which represent the dynamic behaviors of software compo-
nents. Since an input action of one interface automaton may concide with an
output action of the other one, these two interface automata will synchronize on
such shared actions, asynchronously interleaving on other actions. Those syn-
chronized actions between any two interface automata (Pi, Pj) are denoted by
shared(Pi, Pj) = APi

∩APj
= (AO

Pi
∩AI

Pj
)∪ (AI

Pi
∩AO

Pj
). More details about the

composition of interface automata can be refereed to [2].
For solving the verification problem, we give the formalism of a RIAN as

follows, including the states , actions and transitions.

Definition 6. Let N = (K, Z) be a RIAN where K = {P1, P2, . . . , Pn} , each
Pi = (VPi

, vInit
Pi

, APi
, IPi

, ΓPi
), and Z = {shared(Pi, Pj) | 1 ≤ i, j ≤ n, i 6= j} is a

set of all shared actions. The states and actions are defined as below:

– an untimed state v of N is in VP1 × VP2 × . . . × VPn
, that is, v = (v1, v2,

. . . , vn)(vi ∈ VPi
, 1 ≤ i ≤ n). The initial untimed state of N is vInit

N =
(vInit

P1
, vInit

P2
, . . . , vInit

Pn
);

– a state u of N is a pair u = (v, c) where v = (v1, v2, . . . , vn) is an untimed
state of N and c : {vi|1 ≤ i ≤ n} 7→ {R+} ∪ {0} is called the clock function
which maps each vi to a nonnegative real number that indicates for the Pi

how long the system has been staying at vi. The initial state of N is uInit
N =

(vInit
N , cInit) where vInit

N is the initial untimed state of N and cInit(vInit
Pi

) = 0
for any i(1 ≤ i ≤ n). The set of states of N is denoted by UN ;

– the set of actions of N is AN = AI
N ∪ AO

N ∪ AH
N , where the set of in-

put actions is AI
N =

(⋃
1≤i≤n AI

Pi

)
/Z, the set of output actions is AO

N =(⋃
1≤i≤n AO

Pi

)
/Z, and the set of internal actions is AH

N =
(⋃

1≤i≤n AH
Pi

)
∪ Z.

– the set of time intervals of N is IN =
⋃

1≤i≤n IPi
. ut

Definition 7. Let N = (K, Z) be a RIAN where K = {P1, P2, . . . , Pn} and
Pi = (VPi , v

Init
Pi

, APi , IPi , ΓPi)(1 ≤ i ≤ n), and u = (v, c) and u′ = (v′, c′) be
its states where v = (v1, v2, . . . , vn) and v′ = (v′1, v

′
2, . . . , v

′
n). Then the system

can change from the state u to u′ by an transition within a delay d(denoted by

u
a,d−→ u′), if one of the following conditions holds:

4

– for an action a /∈ Z, there is a transition (vk, a, [xk, yk], v′k) ∈ ΓPk
(1 ≤ k ≤ n)

satisfying xk ≤ c(vk) + d ≤ yk and c′(v′k) = 0. At the same time vi = v′i and
c′(vi) = c(vi) + d for any i (i 6= k, 1 ≤ i ≤ n); or

– for an action a ∈ shared(Pi, Pj)(1 ≤ i, j ≤ n, i 6= j), there are transitions
(vi, a!, [xi, yi], v′i) ∈ ΓPi (a! denote a is an output action) and (vj , a?, [xj , yj], v′j) ∈
ΓPj

(a? denote a is an input action) satisfying xi ≤ c(vi) + d ≤ yi, xj ≤
c(vj) + d ≤ yj , c′(v′i) = 0 and c′(v′j) = 0. At the same time, vk = v′k and
c′(vk) = c(vk) + d for any k(k 6= i, j, 1 ≤ k ≤ n).

Then a behavior of N is a timed state sequence: u0
a0,d0−→ u1

a1,d1−→ . . .
an−1,dn−1−→

un
an,dn−→ un+1 where u0 is the initial state of N . ut

4 Checking Real-time Component-based Designs for
Scenario-based Specifications

Now, for a real-time embedded software the component-based designs are mod-
elled by a real-time interface automaton network, and the scenario-based timing
specifications are specified by the sequence diagrams with timing constraints.
The problem we concern is to check if the real-time interface automata interact
according to the scernio specified by the timing sequence diagrams.

Firstly, we need to give the relation between a behavior of the RIAN and
a trace of the timing sequence diagram. Let N = (K, Z) be a RIAN, and % =

u0
a0,d0−→ u1

a1,d1−→ . . .
an−1,dn−1−→ un

an,dn−→ un+1 be a behavior of N . Then the
corresponding timed action sequence of % is (a0, d0)ˆ(a1, d1)ˆ . . . ˆ(an, dn), and
those timed internal action (ai, di) (which satisfies ai ∈ Z) can be replaced by
a pair of timed input and output actions (ai!, di)ˆ(ai?, 0), as a result we can
get an timed action sequence which only contains input and output actions.
In fact, each input(resp. output) action a can be considered as an input(resp.
output) event e, thus a corresponding timed event sequence, with a form of
(e0, τ0)ˆ(e1, τ1)ˆ . . . ˆ(er, τr)(r ≥ n), is obtained which is called the trail of %.
On the other hand, notice that any message appeared in a sequence diagram
actually should be one of the shared actions in N , and each event such as sending
message or receiving message should be one of the output or input actions of
the corresponding component’s RIA. However, in the formal definition of the
sequence diagram D = (C, E′,M, F, W, S) an event e′ ∈ E′ just represents an
event name and the event content is denoted by φ(e′). Thus if we want to compare
the events between the trail of % and the trace of D, it need to compare e with
φ(e′).

Let % be a behavior of N , σ be the trail of %, and σ1 be a subsequence of
σ of the form (e0, τ0)ˆ(e1, τ1)ˆ . . . ˆ(em, τm). For a trace of D with the form of
f0ˆf1ˆ . . . ˆfn, if there are ek0 , ek1 , . . . , ekn satisfying that (1) 0 = k0 < k1 <
. . . < kn = m, (2)φ(fi) = eki

for any i (0 ≤ i ≤ n), and (3)for any i (0 ≤ i ≤ n),
for any j 6= kp (0 ≤ j ≤ m, 0 ≤ p ≤ n), φ(f ′i) 6= ej , then the subsequence σ1

is considered as a projection of σ over D. In fact, σ1 shows that an scenario

5

described by D occurs exactly in behavior % of N . Based on above discussion,
we give the formal description of the timing consistency verification problem as
below:

Definition 8. Let N be a RIAN, and D = (C, E,M, F, W, S) be a timing se-
quence diagram. N satisfies D iff the following conditions hold:

– the scenario described by D occurs in a behavior of N ; and
– for any behavior of N , the projection of its trail over D, which have a form

of (ek, τk)ˆ(ek+1, τk+1)ˆ . . . ˆ(er, τr), satisfies the timing constraints of D, i.e.
for any boolean expression

∑n
i=0 ci(tfi

− tfi
′) ∼ b in S, there is

∑n
i=0 ci∆i ∼

b, where for each i (0 ≤ i ≤ n) if φ(fi) = eg and φ(f ′i) = eh(k ≤ g, h ≤ r),
then ∆i =

∑g
u=h+1 τu (g > h)or ∆i = −∑h

u=g+1 τu (g < h). ut
It’s clearly that the state space of RIAN is infinite, so the key point is to find a
way for verification in a finite manner.

4.1 Constructing an integer reachability graph

We introduce the integer behavior as follows. Let % = u0
a0,d0−→ u1

a1,d1−→ . . .
an−1,dn−1−→

un
an,dn−→ un+1 is a behavior of a RIAN. If di is an integer for any i (0 ≤ i ≤ n),

the % is called an integer behavior . It follows that any state ((v1, v2, . . . , vm), c)
occurring in an integer behavior satisfies c(vj) is an integer for any j (1 ≤ j ≤ m),
which is called integer state.

Theorem 1. Let N be a RIAN, and D = (C, E,M, F, W, S) be a timing se-
quence diagram. N satisfies D iff the scenario described by D occurs in an
integer behavior of N , and for any integer behavior of N , the projection of its
trail over D satisfies the timing constraints of D. ut
Then, for above checking problem, we only need to consider the integer behaviors
of the RIAN.

To deal with the infinite case in some time intervals, we represent a time bound
of N by K = max{Xmax,Ymax}, where Xmax = max{xi|[xi,∞) ∈ IN (0 ≤ i ≤
|IN |)} and Ymax = max{yi|[xi, yi] ∈ IN (xi ≤ yi, yi 6= ∞), 0 ≤ i ≤ |IN |}. Then let
u = (v, c) and u′ = (v′, c′) be the integer states of N where v = (v1, v2, . . . , vn)
and v′ = (v′1, v

′
2, . . . , v

′
n). and define a time-zone relation Rt over UN as below:

Rt =
{

< u, u′ >

∣∣∣∣
v = v′ and for each vi(1 ≤ i ≤ n), either
c(vi) = c′(vi) or c(vi) > K ∧ c′(vi) > K

}
.

Rt is an equivalent relation over UN , and the number of the equivalent class is
finite. We use [u] to represent the equivalent class, that is,[u] = {u′|uRtu

′}, and
denote by [N] the finite space which comprise of the equivalent classes under Rt.

Theorem 2. Let N be a RIAN, and u1 and u2 are the integer states such that
u1Rtu2. Then there is an integer state u′1 such that u1

a,d−→ u′1 iff there is an

integer state u′2 such that u2
a,d−→ u′2 and u′1Rtu

′
2. ut

6

It shows that the set of integer behaviors of [N] are consistent with those of N .
Based on the time-zone equivalent relation, we can construct a reachability

graph G = {VG, LG} for a RIAN N as follows, where VG is a set of nodes and
LG is a set of edges:

1. for the initial state uInit
N of N , [uInit

N] is in the set VG, which is called the
initial node;

2. let [u] be in the set VG, and K be the time bound of N . For an event a,

for an integer d (0 ≤ d ≤ K + 1), if u
a,d−→ u′ then [u′] is in VG, and the

edge [u]
a,d−→ [u′] is in the set LG. When a ∈ AI

N (resp. AO
N , AH

N), the edge

[u]
a,d−→ [u′] is called input (resp. output, internal) edge. We use LI

G,LO
G and

LH
G to represent the set of input, output and internal edges respectively.

Let ρ = l0ˆl1ˆ . . . ˆln(li : [ui]
a,d−→ [ui+1] ∈ LG, 0 ≤ i ≤ n) be a path of G

which is an edge sequence starting from the initial node. From its corresponding
timed action sequence (a0, d0)ˆ(a1, d1)ˆ . . . ˆ(an−1, dn−1), we can replace those
(ai, di) satisfying that ai is a shared action with a pair of input and output
actions (ai!, di)ˆ(ai?, 0), as the same way mentioned before. Then we can also
get a timed event sequence, with a form of (e0, τ0)ˆ(e1, τ1)ˆ . . . ˆ(es, τs)(s ≥
n − 1), which is called the trail of path ρ. Any edge sequence liˆli+1ˆ . . . ˆli+k

(0 ≤ i ≤ n − 1 − k)is called a subpath of ρ. We denote the trail of a subpath
liˆli+1ˆ . . . ˆlj by σ(li, lj)(i ≤ j), the tail of path ρ by σρ or σ(l0, ln). Thus each
label on the edges either contains an input(output) event or a pair of input and
output events. It denotes by ψ(lk) the event pair corresponding to lk.

4.2 Eliminating the illegal states

Since the interface automaton is non-input-enabled, there will be some illegal
states during the composition of two interface automata. The illegal state rep-
resents that one automaton in RIAN may produce an output event that is an
input event of another automaton, but is not accepted by the latter one on that
state. The formal definition is given below:

Definition 9. Let N = (K, Z) be a RIAN where K = {P1, P2, . . . , Pn} and
Pi = (VPi , v

Init
Pi

, APi , IPi , ΓPi)(1 ≤ i ≤ n),the set of illegal states is shown as:

illegal(N) =





((v1, v2, ., vn), c) ∈ N

∣∣∣∣∣∣∣∣∣∣

∃(vi, vj)(i 6= j, 1 ≤ i, j ≤ n),
∃a ∈ shared(Pi, Pj),


a ∈ AO
Pi

(vi) ∧ a /∈ AI
Pj

(vj)
∨

a ∈ AO
Pj

(vj) ∧ a /∈ AI
Pi

(vi)







ut

Based on the theorem 2 and the above definition, the following claim can be
established: if u is an integer state satisfying u ∈ illegal(N), then all the integer
states in the time-zone equivalent class [u] are illegal. In this case, [u] is called
an illegal time-zone equivalent class. And we use illegal(G) to represent those

7

nodes of reachability graph G which corresponds to the set of illegal time-zone
equivalent classes of [N].

Based on the reachability graph G, using the same algorithm framework in
[2], we can get a set of compatible time-zone equivalent classes of [N] (denoted
by Π[N]). The basic idea of the algorithm is described briefly as follows. Firstly,
an operator OHpre : 2VG 7→ 2VG is defined as: for all sets Λ ⊆ VG, OHpre(Λ) =

{µ ∈ VG|∃(µ a,d−→ ν) ∈ LO
G∪LH

G ; ν ∈ Λ}. Then the maximum fixpoint of operator
OHpre can be computed over reachability graph G by assigning Λ an initial value
illegal (G).

If the set Π[N] is empty, from the optimistic view of interface automata, it
indicates that there are no helpful environments existing which can prevent the
RIAN from entering those illegal states in the running time. In this case, the
result of the verification problem is false. If the Π[N] is nonempty, it implies
that there are some kinds of helpful environments making the RIAN to work
normally; then we only need to concern about the behaviors of the compatible
time-zone equivalent class space, which is denoted by com([N]). That is, for the
verification problem, checking the integer behaviors in com([N]) is enough.

Theorem 3. Let N be a RIAN. N satisfies a timing sequence diagram D iff:

– there is an integer behavior in the com([N]), which contains an occurrence
of the scenario described by D; and

– for any integer behavior of com([N]), the projection of its trail over D sat-
isfies the timing constraints in D. ut

Corresponding to com([N]), we use the com(G) to represent the compatible
reachability graph, which only contains the nodes comprised of Π[N]. Obviously
any path in com(G) represents an integer behavior of com([N]). However, during
the construction of G there is a constraint enforced on d(0 ≤ d ≤ K + 1), and
it leads to a result that an integer behavior in com([N]) may not correspond to
a path in com(G). So, for any path ρ of com(G) and its tail σρ with a form of
(e0, τ0)ˆ(e1, τ1)ˆ . . . ˆ (em, τm), we construct a set of θ(σρ) as below:

θ(σρ) =
{

(e0, τ
′
0)ˆ(e1, τ

′
1)ˆ . . . ˆ(em, τ ′m)

∣∣∣∣
for any i(0 ≤ i ≤ m), if τi = K + 1,
then τ ′i ∈ [K + 1,∞), else τ ′i = τi.

}
.

Now it is clear that every timed event sequence in θ(σρ) is the tail of an integer
behavior of com([N]), and for any timed event sequence σ′ which is the trail of an
integer behavior of com([N]), there is a path ρ′ in com(G) such that σ′ ∈ θ(σρ′).
So we can solve the problem of checking a RIAN for a timing sequence diagram
D by checking every path in com(G).

4.3 Checking the consistency

Even in the compatible integer state space, the number of paths in com(G)
may be infinite and the length of a path in com(G) may be also infinite, so we
have to solve the problem basing on a finite set of finite paths in com(G). For

8

that purpose, a projection path is introduced as follows. For a sequence diagram
D = (C, E,M, F, W, S), a path ρ = l0ˆl1ˆ . . . ˆln with a trail σ(l0, ln) is called a
projection path if it satisfies the following conditions: (1) the trail σ(li, ln)(0 ≤
i ≤ n) is a projection of σ(l0, ln) over D,(2) for any j, k(0 < j < k < i),
lj 6= lk; and (3)for any neighbor j, k(i ≤ j < k ≤ n, ψ(lj) ∈ E, ψ(lk) ∈ E),
lg 6= lh (j < g < h < k). If the timed event sequence σ(li, ln) satisfies the
boolean timing expressions in D, we say that the projection path satisfies D. It
is clearly that the length of a projection path in com(G) is finite and the number
of projection paths in com(G) is also finite.

And we further consider the loops in the com(G). For a subpath ρ1 =

ljˆlj+1ˆ . . . ˆlk, where li : [ui]
ai,di−→ [ui+1](j ≤ i ≤ k). If lj = lk then we say

that ρ1 is a loop, and dj+1 + dj+2 + . . . + dk is the elapsed time on ρ1, denoted
by T (ρ1). If for any p, q(j ≤ p < q < k), there is lp 6= lq, then we say that ρ1 is
a simple loop. For a D = (C, E,M, F, W, S), if any e ∈ E does not occur in the
trail σ(lj , lk) of ρ1, we say that ρ1 is a flat loop for D.

Let ρ = l0ˆl1ˆ . . . ˆlm be a projection path in com(G), if there is a flat loop

ρ′(T (ρ′) > 0) for D which contains the edge li : [ui]
ai,di−→ [ui+1] (0 ≤ i ≤ m)

and di occurs in ∆p(0 ≤ p ≤ n, cp∆p ≥ 0) (see Definition 8), then the path ρ is
considered as a flaw projection path for D. The edge li is called a flaw point in
ρ. Notice that from a flaw projection path, we can always construct a path in
com(G) which does not satisfy the timing constraints in D.

Theorem 4. Let N be a RIAN, and G be its integer reachability graph. For a
timing sequence diagram D, N satisfies D iff:

– there is a projection path in com(G);
– any projection path in com(G) satisfies D; and
– there is not any flaw projection path for D in com(G). ut

Based on the above theorem, we can develop an algorithm for the verification
problem, which is depicted in Fig.1. The algorithm consists of two phases which
are implemented by depth first search. The first search is to get all simple flat
loops for D which are used for checking if there is a flaw point in a projection
path. The second one is to find out all the projection paths in com(G) and
to check them for D. Since there is only a finite number of projection paths in
com(G) and the algorithm is based on depth first search method, the complexity
of the algorithm is proportional to number and length of projection paths in
com(G).

5 Conclusion

Based on the solution in this paper, we are developing a prototype tool. For
future work, we will do more case studies in practical use, and consider the
resource and energy analysis in the embedded real-time software systems.

9

currentpath := 〈[u0]〉; loopset := ∅;
repeat
node := the last node of currentpath;
if node has no new successive node then delete the last node of currentpath
else begin node := a new successive node of node;

if node is such that there is a simple flat loop for D in the path
of currentpathˆnode

then put the loop into loopset
else append node to currentpath;

end
until currentpath = 〈〉;
currentpath := 〈[u0]〉; is projection path:=false;
repeat
node := the last node of currentpath;
if node has no new successive node then delete the last node of currentpath
else begin node := a new successive node of node;

if node satisfies that the path currentpathˆnode is a projection path
then begin check if the projection path satisfies D;

if no, return false;
is projection path :=true;
check if the projection path is a flaw projection path for D;
if yes, return false;

end
if node satisfies that currentpathˆnode is a prefix of projection path
then append node to currentpath;

end
until currentpath = 〈〉;
if is projection path then return true else return false.

Fig. 1. Algorithm to check a RIAN for a timing sequence diagram D

References

1. G. Booch, J. Rumbaugh and I. Jacobson. The Unified Modeling Language User
Guide, Addison-Wesley, 1999.

2. L. de Alfaro and T. A. Henzinger. Interface Automata. In Proc. of ESEC/FSE 01,
Austria, 2001

3. Doron A. Peled. Software Reliability Methods. pp300-305, Springer, 2001.
4. J. Seemann, J. WvG. Extension of UML Sequence Diagrams for Real-Time Sys-

tems. In Proc. International UML Workshop, LNCS 1618, pp240-252, 1998.
5. Rajeev Alur and Mihalis Yannakakis. Model Checking of Message Sequence Charts.

In Proc. the 10th International Conference on Concurrency Theory, LNCS 1664,
pp114-129, 1999.

6. Thomas Firley, Michaela Huhn, Karsten Diethers, et al. Timed Sequence Diagrams
and Tool-Based Analysis - A Case Study. In Proc. of the Second International
Conference on UML (UML99), LNCS 1732, pp.645-660, 1999.

7. L. de Alfaro, T. A. Henzinger, and M. Stoelinga. Timed Interfaces. In Proc. of
EMSOFT 2002, LNCS 2491,pp108-122, 2002.

8. Alexandre David, M. Oliver, and Wang Yi. Formal Verification of UML Statecharts
with Real-Time Extensions. In: FASE2002, LNCS 2306, 2002, pp.218-232.

9. Hu Jun, Yu Xiaofeng, Zhang Yan, et al. Scenario-Based Verification for
Component-Based Embedded Software Designs. In Proc. of ICPP 2005
Workshops,pp.240-247,June 2005, IEEE Computer Society Press.

10

