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Abstract. The use of the Internet raises serious behavioural issues regarding, for 
example, security and the interaction among agents that may travel across links. 
Model-building such interactive systems is one of the biggest current challenges in 
computer science. A general model, action calculi, has been introduced by Robin 
Milner to unify the various emerging disciplines of interactive behaviour. In this 
paper action calculi is used as an abstraction of interactive systems and information 
flow security properties of such systems are studied. At first an information flow 
analysis for static action calculi is presented to predict how data will flow both along 
and inside actions and its correctness is proved; Next basing on the result of the 
analysis information security properties of both static and dynamic action calculi are 
discussed; Finally a general relationship are established between the static notation 
of information flow security and the dynamic one. 

1   Introduction 

The use of the Internet raises serious behavioural issues regarding, for example, security and the 
interaction among agents that may travel across links. Model-building such interactive systems is 
one of the biggest current challenges in computer science. Action calculi have been introduced by 
Milner[6, 8] as a framework for representing models of interactive computation. It is indicated in 
[6, 8, 10, 11] that action calculi show the advantage in uniting different models of interactive 
systems in a common setting[6, 8, 10, 11], and such unification is necessary for studying general 
properties such as security properties of these systems[5].  

Information flow security is concerned with controlling the flow of information within a sytem. 
Program analysis such as information flow analysis aims at verifying properties of a program that 
hold in all execution, which recently has been used for validating security and safety issues for 
concurrent and interactive systems[16]. In this paper, we use action calculi as an abstract of 
interactive systems, and study its information security properties basing on information flow 
analysis. The molecular forms of action calculi give normal form for the algebraic terms and 
suggest a modular style of programming and system description. Therefore, we propose a formal 
information flow analysis for the molecular forms of static action calculi, which statically shows 
how data will flow both along and inside molecules. In order to facilitate the formulation of the 
analysis, we make trivial extension to the syntax of action calculi in that giving every action and 
molecule a unique name. Following the idea of [1, 2], we state simple security property for static 
action calculi, that is: the secrecy of data is preserved if an action a never read an untrustworthy 
name to it or an action a never write to other actions the untrustworthy name. Finally we 
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introduce security property for dynamic action calculi, and establish the general relationship 
between the static notation and dynamic one.  

The rest of the article is organized as follows. Section 2 briefly reviews the basic concepts and 
definition of action calculi. Section 3 presents formalization of information flow analysis of static 
action calculi and proof of the correctness of the analysis. Security properties basing on the 
analysis above and a general relationship between the static notation and dynamic one are 
established. Finally related work and conclusion are addressed in section 5. 

2   Preliminaries 

In this section we briefly review the definition of action calculi following [6,7, 8]. A trivial 
extension is made by adding unique identifier to every action and every molecule. 

In this paper we focus on action calculi in molecular forms. An action calculus is determined 
by a signature K = (P, K) together with a set of control rules. K consists of a set P of basic types, 
called primes and denoted by p, q, …, and a set K of constants, called controls. Each control in K 
has an associated arity ((m1, n1), …, (mr, nr)) → (m, n), where the m’s and n’s are finite 
sequences of primes, called tensor arities; we write ε for empty sequence, ⊗ for concatenation 
using infix notation, and write M for the set of tensor arities. 
Definition 1 (Molecules and molecular forms) Let  be a signature. The molecular forms over  
are syntactic objects; they consist of the actions a defined as follows, in terms of molecules µ: 

 a ::=  A[( x ) µ1 … µr < u >]   ( x  : m.; u  : n ; a : m→n) 
 µ ::=  M[< v > K b  ( y  )]  ( v  : k ; y  : l ; K b  : k →l) 
where A and M are identifiers of action and molecule respectively, the sequence µ1, …, µr is 
called the body of a, K is a control, ( x ) and ( y ) are called imported names (which must be 
distinct) denoted as imp(a/µ), < u > and < v > are called exported names denoted as exp(a/µ). 
Definition 2 (subaction) The subactions of an action a comprise a itself and the subactions of 
each action in a molecule of a. 

For simplicity, we will use identifier to represent corresponding action or molecule. 
In action a the imported names x  are binding, and the names y  of the molecule are also 

binding. The scope of each binding extends to its right, to the end of the smallest subaction 
containing it. Molecules are binding operators. In the above molecule µ, the names < v > occur 
free; they are the means by which it is bound into an action. In the above action a, any name-
vector in round brackets – either at the head of a or at the right end of a molecule in µ - is binding, 
and its scope extends rightwards to the end of a. 
Definition 3 (Operations over molecular forms) The operations idk, ⋅, ⊗, abx, <x> and ω are 
defined over molecular forms. The detailed definitions are in [6, 7, 8]. 
Definition 4 (Action calculi: static) A static action calculi comprises a signature ,  together with 
a set of actions in the molecular forms over , and a set of operations defined as above. We call 
this static action calculus over , and denote it by ACs( ). 
Definition 5 (Control operations) Each control K, is defined as a control operation upon 
molecular forms as follows: 
 K(a)   =  An[( x ) < x > Ka ( y ) < y >]    ( x , y  not free in a) 
Definition 6 (Control rule) A control rule over a signature  takes the form 
 t[ a ]     t’ [ a ] 
where t and t’ are terms built from metavariables a  using controls together with the operations in 
definition 4. 
Definition 7 (Action calculi: dynamics) A dynamic action calculus comprises a signature  and a 
set of R of control rules over, together with the static action calculi ACs( ) equipped with the 
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smallest reaction relation   which satisfies the rules R (for all replacements of metavariables a by 
actions). We call this the dynamic action calculus over  and R, and denote it by AC( , R). 

3   Information Flow Analysis 

3.1 Notations and definitions 

A path is an ordered list of identifiers for actions or molecules. An occurrence path for an action 
a or a molecule m or a name x in an action a’ or a molecule m’ is a path consisting of all the 
identifiers for those actions or molecules along which the action/molecule/name could be 
reached, which is denoted as Path(a/m/x, a’/m’). 

We also define path environment, abstract binding environment and abstract bound 
environment as following: 

- σ is the path environment that associates imported names with the occurrence path of that 
name in the corresponding molecular forms; Current path environment contains those names 
that are scope effective in current action or molecule together with corresponding paths; For 
a name x and its path p, σ[x→p] represents updating σ by modifying the path of x as p; 

- ρ is the abstract binding environment that associate a  given export name x and its occurrence 
path p with the occurrence path of the binding name. This means that ρ(x,p) returns the 
occurrence path of the imported name x which is binding the exported name x occurring on 
the path p; For a name x and its path p , ρ[(x,p)→p’] means adding ρ with a new binding 
(imported name x of path p’ binds exported name of path p);  

- κ is the abstract bound environment that associates a given import name x and its occurrence 
path p with the set of occurrence paths of the exported names bound by corresponding x. 
More precisely, for a given export name x and its occurrence path p, κ(x,p) returns the paths 
of all the name bound by x; For a name x and its path p , κ [(x,p)→P’] means adding κ with a 
new bound (imported name x of path p binds a set of exported names of every path in P’). 

Path environment, binding environment and bound environment together are called abstract 
environment. 

We define an operation ∨ for unifying abstract binding and bound environment: 
                                       ρ 1(x, p) ,       if  ρ 1(x, p) ≠ () 
 ρ 1∨ρ2 (x, p) =   ρ 2(x, p) ,       if  ρ 2(x, p) ≠ () 
                                       ()           ,       otherwise 

κ1∨ κ2 (x, p) = κ1(x, p) ∪ κ2 (x, p) 

3.2 Strategy of Information Flow Analysis 

Information flow analysis for action calculi is presented and its correctness is proved.  
The aim of information flow analysis for static action calculi is to determine which imported 
names in a certain action or molecule will bind which exported names. This result will be used to 
check the information flow along internal actions so as to prove whether such information flow is 
secure under security policy. The result of static analysis of the syntactic molecular forms include: 

a) the binding imported name for any exported name; 
b) all bounded exported names for any binding imported name x;  
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A function performing information flow analysis is defined. For given molecular form of an 
action or a molecule with its path, the function accepts current abstract environment and 
computes new abstract environment. 

The definition of the function is as follows: 
[m]pσρκ=  (σ’, ρ’, κ’), where m is the molecular form of an action or a molecule, p is the path 

for m,  (σ’, ρ’, κ’) is the current abstract environment, and (σ’, ρ’, κ’) is the new abstract 
environment. 

The function is defined on an action in the form of id[( x )< y >] and id[( x ) [µ1 …µr]< y >], a 
molecule in the form of id[< u > K ( v )]and id[< u > Ka ( v )]. The analyzing process is based on 
nesting scope rules for static action calculi. The detailed function definition and explanation are 
as follows. 

 id[( x )< y >]  pσρκ=  
let σ’ = σ[xi→p] ( i = 1, …, m) 

                in  let  ρ0 = Φ, κ0 = Φ 
            in  let  for i = 1 to n do 
                       { if  yi∈x  then { ρi = ρi-1 [(yi,p)→p]; κi=κi-1[(yi,p)→{p}];} 

        else if σ’(yi)≠{}   then {ρi= ρi-1 [(yi,p)→σ’(yi)]; 
                                κi=κi-1[(yi,p)→κi-1(yi,p)∪{p}];} 

                             else { ρi = ρi-1 [(yi,p)→()]; κi = κi-1} 
in ( σ’, ρ ∨ ρn , κ ∨ κn) 

For simple actions with empty body, first we would update path environment with every 
imported name and its path as current path p, then for every exported name, we will check if 
there is corresponding name in binding environment, if so a new binding should be added to 
binding environment and put the path of this exported name into the set of bound path of the 
binding name, otherwise the exported name is  a free name, so we would add an empty path as 
the path of its binding and make bound environment unchanged. 

id[( x ) [µ1 …µr]< y >] pσρκ =   
let σ0=  σ[xi→p] ( i = 1, …, m) 
  in  let  ρ0 = Φ, κ0 = Φ 

                 in  let  for i = 1 to r do 
                                   (pi, σi, ρi , κi) =  µi (cons(p,id(µi)), σi-1, ρi-1 , κi-1) 
                         in  let  ρ0 = ρr, κ0 = κr 

for j = 1 to n do  
                   if σr(yj) ≠{}  then {ρj= ρj-1 [(yi,p)→σ’(yj)]; 

                                κj=κj-1[(yi,p)→κj-1(yj,p) ∪{p}];} 
                             else { ρj = ρj-1 [(yj,p)→()]; κj = κj-1;} 

                                       in  ( σr, ρ ∨ ρn, κ ∨  κn) 
For actions with its body as a nonempty sequence of molecules, first we would also update 

path environment with every imported name and its path as current path p; then in order to apply 
for the binding mechanism of molecules, for every molecule we will sequentially compute their 
result abstract environment with former result abstract environment as input. Finally we will 
compute on the exported names of the action. Here we use cons(p, id(µi)) represent the 
concatenating current path with current molecule identifier to get the path for this molecule. 

Analyzing molecule also includes two computation forms: 
 id[< u > K ( v )] pσρκ=   
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let  ρ0 = Φ, κ0 = Φ 
for j = 1 to n do  
 if σ(uj) ≠{}  then {ρj= ρj-1 [(ui,p)→σ’(uj)]; κj=κj-1[(ui,p)→{p}];} 
 else { ρj = ρj-1 [(uj,p)→()]; κj = κj-1;}  σ’=  σ[vi→p] ( i = 1, …, m) 

               in  ( σ’, ρ ∨ ρn, κ ∨ κn) 
For molecules with constant control, first we would also update binding environment and 

bound environment by computing on their exported names with respect to input abstract 
environment, then update path environment with every imported name and its path as current 
path p. 

id[< u > Ka ( v )] pσρκ=   
  let  ρ0 = Φ, κ0 = Φ 

for j = 1 to k do  
   if σ(yj) ≠{} then {ρj= ρj-1 [(ui,p)→σ’(yj)]; κj=κj-1[(ui,p)→{p}];} 

else { ρj = ρj-1 [(uj,p)→()]; κj = κj-1;} 
                  in  let  (σ1, ρ1, κ1) = a1  (cons(p,id(a1)), σ’, Φ, Φ) 
                                      …… 
                         (σn, ρn, κn) = an  (cons(p, id(an)), σ’, Φ, Φ) 
                        in  let  σ’=  σ[vi→p] ( i = 1, …, l) 

in  (σ’, ρk ∨ ρ1∨…∨ρn , κ k∨ κ1∨…∨κn)  
For molecules with nonzero rank control, first we would also update binding environment and 

bound environment by computing on their exported names with respect to input abstract 
environment. Then since the scopes of the action parameters of a molecule are independent, we 
will update their result abstraction environment in parallel with the same input abstract 
environment. Next path environment will be obtained by updating original input path 
environment with every imported name and its path as current path p because the imported names 
in action parameters will not be effective outside the molecule. Finally the resulting binding 
environment and bound environment are the combination of all the binding environment and 
bound environment obtained from the computations of those action parameters. 

3.3 Correctness 

The correctness of the function is demonstrated by showing that the function can compute correct 
abstract environment for any molecular forms.  

Here with four prepositions we get one lemma which will show that with the above function 
we can get correct abstract environment for any molecular forms.  
Proposition 1 Assume that id[( x )< y >] is a subaction of an action a, p is its path in a, σ is the 
right set of names and their paths that is effective for id, if id[( x )< y >] pσρκ= (σ’, ρ’ , κ’)  then 
we have : 

(1) yi is bound by an imported name of path p’ in a iff  ρ’(p, yi) = p’ ; 
(2) xi is binding an exported name of path p’  in a  iff   p’∈κ’(p, xi). 

Proof: From the definition of id[( x )< y >] we can see that: 
(1) σ’ is just obtained by updating σ with current new effective imported names x; since σ is 

right, therefore σ’ is right too;  
(2) with new computed σ’ we can compute (ρn, κn) by adding exported names y; since σ’ is 

right, therefore from the computation process of (ρn, κn) we can say that (ρn, κn) is correct 
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for id, therefore adding (ρn, κn) to original (ρ, κ) will produce a correct one  (ρ’ , κ’)so far 
including id; 

On the other hand, if there is ρ’(p, yi) = p’ and p’ ∈κ’(p, xi), since the path is unique for id, 
therefore they can only be computed by [id[( x )< y >]], and since σ’ is effective, therefore, yi is 
bound by an imported name of path p’ in a and xi is binding an exported name of path p’  in a. 

Proposition 2 Assume that id[( x ) [µ1 …µr] < y >] is one subaction of an action a, p is its path 
in a, σ is the right set of names and their paths that is effective for id, if [id[( x ) [µ1 …µr] 

< y >]]pσρκ= (σ’, ρ’ , κ’) , and if [µi](cons(p,id(µi)), σi-1, ρi-1 , κi-1) are correct, then we 
have : 

(1) yi is bound by an imported name of path p’ in a iff  ρ’(p, yi) = p’ ; 
(2) xi is binding an exported name of path p’  in a  iff   p’ ∈ κ’(p, xi). 

Proof: From the definition of ╓ id[( x ) [µ1 …µr]< y >]╖we can see that: 
(1) σ’ is just obtained by updating σ with current new effective imported names x; since σ is 

right, therefore σ’ is right too; 
(2) we can sequentially compute binding and bound environment for every molecule, and we 

know that [µi](cons(p,id(µi)), σi-1, ρi-1 , κi-1) are correct; then for exported names of id, 
the computation is processed with the result of all the molecules, which is also correct. 
Therefore, adding the correct result of molecules and that of the exported names of id to 
original (ρ, κ) will produce a correct one so far including id; On the other hand, if there is 
ρ’(p, yi) = p’ and p’ ∈κ’(p, xi), since the path is unique for id, therefore they can only be 
computed by [id[( x ) [µ1 …µr] < y >]], and since path environment is effective, therefore, 
yi is bound by an imported name of path p’ in a and xi is binding an exported name of path 
p’  in a. 

Proposition 3 Assume that id[< u > K ( v )] is a molecule of one subaction of an action a, p is its 
path in a, σ is the right set of names and their paths that is effective for id, if id[< u > K 
( v )] pσρκ= (σ’, ρ’ , κ’)  then we have : 

(1) ui is bound by an imported name of path p’ in a iff  ρ’(p, ui) = p’ ; 
(2) vi is binding an exported name of path p’  in a  iff   p’ ∈κ’(p, vi). 

Proof: The proof is similar to preposition 1. 
Proposition 4 Assume that id[< u > Ka ( v )] is a molecule of one subaction of an action a, p is its 
path in a, σ is the right set of names and their paths that is effective for id, if id[< u > Ka 
( v )] pσρκ= (σ’, ρ’ , κ’) , and if ai (cons(p,id(a1)), σ’, Φ, Φ)  are correct, then we have : 

(1) ui is bound by an imported name of path p’ in a iff  ρ’(p, ui) = p’ ; 
(2) vi is binding an exported name of path p’  in a  iff   p’ ∈κ’(p, vi). 

Proof: The proof is similar to preposition 2. 
Lemma 1 For an action a whose identifier is ida, we assume that the initial abstract environment 
is { σ0 = [x→()];   ρ0 = [(p, x)→()];  κ0 = [(p, x)→{}] }, for any name x occurring in a, and the 
initial path p is (ida). If  a pσ0ρ0κ0=  (σ, ρ, κ), then we have: 

(1) an exported name x of path p1 is bound by the imported name of path p2 in a  iff  ρ(p1, x) = 
p2 ; 

(2) an imported name x of path  p1 is binding an exported name of path p2 in a  iff   p2∈κ(p1, 
x). 

Proof:  
(1) for any action, the initial abstract given here as input is no doubt correct; 
(2) since the number of subactions of an action is finite number, therefore, the [a]pσ0ρ0κ0 will 

surely terminate; 
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(3) for any action a, from the definition of the analyzing function, computation of [a]pσ0ρ0κ0 
will be processed recursively until meeting the constant action or a molecule with constant 
control, from the preposition 1, 2, 3, 4 we can prove that since in every step  the path and 
the path environment are correct, therefore in every step we result in exact binding 
environment and bound environment, so in the termination we have the exact binding 
environment and bound environment for that action, which satisfy (1) and (2). 

4 Security Properties 

In this section we will present the security policies for both static and dynamic action calculi in 
terms of corresponding security properties, and then establish the relationship between the static 
notation and dynamic one. 

We use the result of the above formal flow analysis to establish security properties mainly 
integrating the idea of [1, 3], which is to ensure that an action preserve the secrecy of data.  

Similar to [3], we partition names with its paths defined in an action a into trustworthy T(a) 
and untrustworthy U(a). We say that the secrecy of data is preserved if an action a never read an 
untrustworthy name to it and an action a never write to other actions the untrustworthy name, 
which can be represented by following formal definition. 
Definition 8 A subaction a in action b with occurrence path p is defended, iff (σ, ρ, 
κ)= b p0σ0ρ0κ0 , and there is no such (x, px)∈ U(a) that p∈κ(x, px), and ∀x∈exp(a), (x, 
ρ(x,p))∈T(a). 
Definition 9 A subaction a in action b with occurrence path p has no leakage iff (σ, ρ, 
κ)= b p0σ0ρ0κ0 , and there is no such c of path p’ in b, Path(c, a)∩ Path(b, a) ≠ Φ, that ∀x∈(U (c) 
∩ names(c)), σ(x, p’) = p, and ∀x∈imp(a), p’’∈κ (x, p), (x, p’’)∈T(d), where Path(d, a)=p’’. 
Definition 10 An action a preserves secrecy of data iff all the subactions of a are defended and 
have no leakage. 

The definitions above are static security notations for action calculi. Next we would like to 
present dynamic secrecy notation for action calculi. Since the dynamics need to be defined when 
you are defining a concrete action calculus, the concrete form of the reactive rule are undefined, 
therefore, we can only give a general result. 
Definition 11 An action a is protected iff whenever a   b, and c is communicating y to d via x in 
this reaction, we have x∈T(c) and x∈T(d), y∈T(d), where x is a name, c and d are subaction of a, 
Lemma 2 If an action a preserves secrecy of data then it is protected. 
Proof: From the definition 8, 9 and 10, if an action a preserves secrecy of data, then we have that 
every subaction b of a are defended and have no leakage, which means:  

∀x∈exp(c), (x, ρ(x, p))∈T(c). 
∀x∈exp(d), (x, ρ(x, p))∈T(d). 
∀x∈imp(a), p’’∈κ (x, p), (x, p’’)∈T(d) , where Path(d, a)=p’’ 
where (σ, ρ, κ)= b p0σ0ρ0κ0. 

x is a name, if a   b, c, d are subaction of a, and c is communicating y to d via x in this reaction, 
then  we have: 

(1) x must be exported names of  c and d; 
(2) y must be imported name of c and exported name of d satisfying that y in c is binding y in 

d; 
therefore, we can conclude that x∈T(c) and x∈T(d), y∈T(d). So according to definition 11 we 
can say that a is protected. 
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5 Related Work and Conclusion 

Applying static analysis of formal models in studying security properties of concurrent systems is 
an active and interesting research topic in formal methods in recent years[1,2].There is a large 
body of research on information flow control aiming at specifying, verifying and analyzing 
security. 

Secure information flow in programming language received its recent reincarnation. Many 
researchers have investigated the problem including [12,13,14,15,16], which all use concrete 
calculi or programming languages as research target, while this paper use action calculi, an 
abstract model for a class of calculi. 

Recently, the use of type systems for information flow is also developed[3, 9, 16]. 
In [1, 2, 3, 4 ] data flow or control flow analysis for pi calculus, safe ambients, CML have been 

presented,  and some encouraging results in proving security property are established. 
The idea of using information flow analysis techniques for studying the security properties of 

action calculi arises from that of pi calculus and ambient[1, 2, 3]. We propose information flow 
analysis for static action calculi, and use it for the validation of rather simple security properties 
of interactive systems. More complicated security properties will be studied in the future.  
Because action calculi is a framework for a class of models for interactive system, these work can 
open a way to study the generality of these properties by comparing the results with those of each 
concrete model for interactive system. 
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