
 1

INFORMATION FLOW SECURITY FOR INTERACTIVE SYSTEMS1

Jin Ying1, Liu Lei1, Zheng Xiao-juan2
1 Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education of P.R.China,

Computer Science & Technology College, Jilin University, Changchun, 130012, P.R.China
2Software College, Northeast Normal University, Changchun, 130117, P.R.China

Corresponding author: Liu Lei, liulei@mail.jlu.edu.cn

Abstract. The use of the Internet raises serious behavioural issues regarding, for
example, security and the interaction among agents that may travel across links.
Model-building such interactive systems is one of the biggest current challenges in
computer science. A general model, action calculi, has been introduced by Robin
Milner to unify the various emerging disciplines of interactive behaviour. In this
paper action calculi is used as an abstraction of interactive systems and information
flow security properties of such systems are studied. At first an information flow
analysis for static action calculi is presented to predict how data will flow both along
and inside actions and its correctness is proved; Next basing on the result of the
analysis information security properties of both static and dynamic action calculi are
discussed; Finally a general relationship are established between the static notation
of information flow security and the dynamic one.

1 Introduction

The use of the Internet raises serious behavioural issues regarding, for example, security and the
interaction among agents that may travel across links. Model-building such interactive systems is
one of the biggest current challenges in computer science. Action calculi have been introduced by
Milner[6, 8] as a framework for representing models of interactive computation. It is indicated in
[6, 8, 10, 11] that action calculi show the advantage in uniting different models of interactive
systems in a common setting[6, 8, 10, 11], and such unification is necessary for studying general
properties such as security properties of these systems[5].

Information flow security is concerned with controlling the flow of information within a sytem.
Program analysis such as information flow analysis aims at verifying properties of a program that
hold in all execution, which recently has been used for validating security and safety issues for
concurrent and interactive systems[16]. In this paper, we use action calculi as an abstract of
interactive systems, and study its information security properties basing on information flow
analysis. The molecular forms of action calculi give normal form for the algebraic terms and
suggest a modular style of programming and system description. Therefore, we propose a formal
information flow analysis for the molecular forms of static action calculi, which statically shows
how data will flow both along and inside molecules. In order to facilitate the formulation of the
analysis, we make trivial extension to the syntax of action calculi in that giving every action and
molecule a unique name. Following the idea of [1, 2], we state simple security property for static
action calculi, that is: the secrecy of data is preserved if an action a never read an untrustworthy
name to it or an action a never write to other actions the untrustworthy name. Finally we

1 This paper is sponsored by Jilin Province Science and Technology Development Plan Project (No. 20050527).

 2

introduce security property for dynamic action calculi, and establish the general relationship
between the static notation and dynamic one.

The rest of the article is organized as follows. Section 2 briefly reviews the basic concepts and
definition of action calculi. Section 3 presents formalization of information flow analysis of static
action calculi and proof of the correctness of the analysis. Security properties basing on the
analysis above and a general relationship between the static notation and dynamic one are
established. Finally related work and conclusion are addressed in section 5.

2 Preliminaries

In this section we briefly review the definition of action calculi following [6,7, 8]. A trivial
extension is made by adding unique identifier to every action and every molecule.

In this paper we focus on action calculi in molecular forms. An action calculus is determined
by a signature K = (P, K) together with a set of control rules. K consists of a set P of basic types,
called primes and denoted by p, q, …, and a set K of constants, called controls. Each control in K
has an associated arity ((m1, n1), …, (mr, nr)) → (m, n), where the m’s and n’s are finite
sequences of primes, called tensor arities; we write ε for empty sequence, ⊗ for concatenation
using infix notation, and write M for the set of tensor arities.
Definition 1 (Molecules and molecular forms) Let be a signature. The molecular forms over
are syntactic objects; they consist of the actions a defined as follows, in terms of molecules µ:

 a ::= A[(x) µ1 … µr < u >] (x : m.; u : n ; a : m→n)
 µ ::= M[< v > K b (y)] (v : k ; y : l ; K b : k →l)
where A and M are identifiers of action and molecule respectively, the sequence µ1, …, µr is
called the body of a, K is a control, (x) and (y) are called imported names (which must be
distinct) denoted as imp(a/µ), < u > and < v > are called exported names denoted as exp(a/µ).
Definition 2 (subaction) The subactions of an action a comprise a itself and the subactions of
each action in a molecule of a.

For simplicity, we will use identifier to represent corresponding action or molecule.
In action a the imported names x are binding, and the names y of the molecule are also

binding. The scope of each binding extends to its right, to the end of the smallest subaction
containing it. Molecules are binding operators. In the above molecule µ, the names < v > occur
free; they are the means by which it is bound into an action. In the above action a, any name-
vector in round brackets – either at the head of a or at the right end of a molecule in µ - is binding,
and its scope extends rightwards to the end of a.
Definition 3 (Operations over molecular forms) The operations idk, ⋅, ⊗, abx, <x> and ω are
defined over molecular forms. The detailed definitions are in [6, 7, 8].
Definition 4 (Action calculi: static) A static action calculi comprises a signature , together with
a set of actions in the molecular forms over , and a set of operations defined as above. We call
this static action calculus over , and denote it by ACs().
Definition 5 (Control operations) Each control K, is defined as a control operation upon
molecular forms as follows:
 K(a) = An[(x) < x > Ka (y) < y >] (x , y not free in a)
Definition 6 (Control rule) A control rule over a signature takes the form
 t[a] t’ [a]
where t and t’ are terms built from metavariables a using controls together with the operations in
definition 4.
Definition 7 (Action calculi: dynamics) A dynamic action calculus comprises a signature and a
set of R of control rules over, together with the static action calculi ACs() equipped with the

def

 3

smallest reaction relation which satisfies the rules R (for all replacements of metavariables a by
actions). We call this the dynamic action calculus over and R, and denote it by AC(, R).

3 Information Flow Analysis

3.1 Notations and definitions

A path is an ordered list of identifiers for actions or molecules. An occurrence path for an action
a or a molecule m or a name x in an action a’ or a molecule m’ is a path consisting of all the
identifiers for those actions or molecules along which the action/molecule/name could be
reached, which is denoted as Path(a/m/x, a’/m’).

We also define path environment, abstract binding environment and abstract bound
environment as following:

- σ is the path environment that associates imported names with the occurrence path of that
name in the corresponding molecular forms; Current path environment contains those names
that are scope effective in current action or molecule together with corresponding paths; For
a name x and its path p, σ[x→p] represents updating σ by modifying the path of x as p;

- ρ is the abstract binding environment that associate a given export name x and its occurrence
path p with the occurrence path of the binding name. This means that ρ(x,p) returns the
occurrence path of the imported name x which is binding the exported name x occurring on
the path p; For a name x and its path p , ρ[(x,p)→p’] means adding ρ with a new binding
(imported name x of path p’ binds exported name of path p);

- κ is the abstract bound environment that associates a given import name x and its occurrence
path p with the set of occurrence paths of the exported names bound by corresponding x.
More precisely, for a given export name x and its occurrence path p, κ(x,p) returns the paths
of all the name bound by x; For a name x and its path p , κ [(x,p)→P’] means adding κ with a
new bound (imported name x of path p binds a set of exported names of every path in P’).

Path environment, binding environment and bound environment together are called abstract
environment.

We define an operation ∨ for unifying abstract binding and bound environment:
 ρ 1(x, p) , if ρ 1(x, p) ≠ ()
 ρ 1∨ρ2 (x, p) = ρ 2(x, p) , if ρ 2(x, p) ≠ ()
 () , otherwise

κ1∨ κ2 (x, p) = κ1(x, p) ∪ κ2 (x, p)

3.2 Strategy of Information Flow Analysis

Information flow analysis for action calculi is presented and its correctness is proved.
The aim of information flow analysis for static action calculi is to determine which imported
names in a certain action or molecule will bind which exported names. This result will be used to
check the information flow along internal actions so as to prove whether such information flow is
secure under security policy. The result of static analysis of the syntactic molecular forms include:

a) the binding imported name for any exported name;
b) all bounded exported names for any binding imported name x;

 4

A function performing information flow analysis is defined. For given molecular form of an
action or a molecule with its path, the function accepts current abstract environment and
computes new abstract environment.

The definition of the function is as follows:
[m]pσρκ= (σ’, ρ’, κ’), where m is the molecular form of an action or a molecule, p is the path

for m, (σ’, ρ’, κ’) is the current abstract environment, and (σ’, ρ’, κ’) is the new abstract
environment.

The function is defined on an action in the form of id[(x)< y >] and id[(x) [µ1 …µr]< y >], a
molecule in the form of id[< u > K (v)]and id[< u > Ka (v)]. The analyzing process is based on
nesting scope rules for static action calculi. The detailed function definition and explanation are
as follows.

 id[(x)< y >] pσρκ=
let σ’ = σ[xi→p] (i = 1, …, m)

 in let ρ0 = Φ, κ0 = Φ
 in let for i = 1 to n do
 { if yi∈x then { ρi = ρi-1 [(yi,p)→p]; κi=κi-1[(yi,p)→{p}];}

 else if σ’(yi)≠{} then {ρi= ρi-1 [(yi,p)→σ’(yi)];
 κi=κi-1[(yi,p)→κi-1(yi,p)∪{p}];}

 else { ρi = ρi-1 [(yi,p)→()]; κi = κi-1}
in (σ’, ρ ∨ ρn , κ ∨ κn)

For simple actions with empty body, first we would update path environment with every
imported name and its path as current path p, then for every exported name, we will check if
there is corresponding name in binding environment, if so a new binding should be added to
binding environment and put the path of this exported name into the set of bound path of the
binding name, otherwise the exported name is a free name, so we would add an empty path as
the path of its binding and make bound environment unchanged.

id[(x) [µ1 …µr]< y >] pσρκ =
let σ0= σ[xi→p] (i = 1, …, m)
 in let ρ0 = Φ, κ0 = Φ

 in let for i = 1 to r do
 (pi, σi, ρi , κi) = µi (cons(p,id(µi)), σi-1, ρi-1 , κi-1)
 in let ρ0 = ρr, κ0 = κr

for j = 1 to n do
 if σr(yj) ≠{} then {ρj= ρj-1 [(yi,p)→σ’(yj)];

 κj=κj-1[(yi,p)→κj-1(yj,p) ∪{p}];}
 else { ρj = ρj-1 [(yj,p)→()]; κj = κj-1;}

 in (σr, ρ ∨ ρn, κ ∨ κn)
For actions with its body as a nonempty sequence of molecules, first we would also update

path environment with every imported name and its path as current path p; then in order to apply
for the binding mechanism of molecules, for every molecule we will sequentially compute their
result abstract environment with former result abstract environment as input. Finally we will
compute on the exported names of the action. Here we use cons(p, id(µi)) represent the
concatenating current path with current molecule identifier to get the path for this molecule.

Analyzing molecule also includes two computation forms:
 id[< u > K (v)] pσρκ=

 5

let ρ0 = Φ, κ0 = Φ
for j = 1 to n do
 if σ(uj) ≠{} then {ρj= ρj-1 [(ui,p)→σ’(uj)]; κj=κj-1[(ui,p)→{p}];}
 else { ρj = ρj-1 [(uj,p)→()]; κj = κj-1;} σ’= σ[vi→p] (i = 1, …, m)

 in (σ’, ρ ∨ ρn, κ ∨ κn)
For molecules with constant control, first we would also update binding environment and

bound environment by computing on their exported names with respect to input abstract
environment, then update path environment with every imported name and its path as current
path p.

id[< u > Ka (v)] pσρκ=
 let ρ0 = Φ, κ0 = Φ

for j = 1 to k do
 if σ(yj) ≠{} then {ρj= ρj-1 [(ui,p)→σ’(yj)]; κj=κj-1[(ui,p)→{p}];}

else { ρj = ρj-1 [(uj,p)→()]; κj = κj-1;}
 in let (σ1, ρ1, κ1) = a1 (cons(p,id(a1)), σ’, Φ, Φ)
 ……
 (σn, ρn, κn) = an (cons(p, id(an)), σ’, Φ, Φ)
 in let σ’= σ[vi→p] (i = 1, …, l)

in (σ’, ρk ∨ ρ1∨…∨ρn , κ k∨ κ1∨…∨κn)
For molecules with nonzero rank control, first we would also update binding environment and

bound environment by computing on their exported names with respect to input abstract
environment. Then since the scopes of the action parameters of a molecule are independent, we
will update their result abstraction environment in parallel with the same input abstract
environment. Next path environment will be obtained by updating original input path
environment with every imported name and its path as current path p because the imported names
in action parameters will not be effective outside the molecule. Finally the resulting binding
environment and bound environment are the combination of all the binding environment and
bound environment obtained from the computations of those action parameters.

3.3 Correctness

The correctness of the function is demonstrated by showing that the function can compute correct
abstract environment for any molecular forms.

Here with four prepositions we get one lemma which will show that with the above function
we can get correct abstract environment for any molecular forms.
Proposition 1 Assume that id[(x)< y >] is a subaction of an action a, p is its path in a, σ is the
right set of names and their paths that is effective for id, if id[(x)< y >] pσρκ= (σ’, ρ’ , κ’) then
we have :

(1) yi is bound by an imported name of path p’ in a iff ρ’(p, yi) = p’ ;
(2) xi is binding an exported name of path p’ in a iff p’∈κ’(p, xi).

Proof: From the definition of id[(x)< y >] we can see that:
(1) σ’ is just obtained by updating σ with current new effective imported names x; since σ is

right, therefore σ’ is right too;
(2) with new computed σ’ we can compute (ρn, κn) by adding exported names y; since σ’ is

right, therefore from the computation process of (ρn, κn) we can say that (ρn, κn) is correct

 6

for id, therefore adding (ρn, κn) to original (ρ, κ) will produce a correct one (ρ’ , κ’)so far
including id;

On the other hand, if there is ρ’(p, yi) = p’ and p’ ∈κ’(p, xi), since the path is unique for id,
therefore they can only be computed by [id[(x)< y >]], and since σ’ is effective, therefore, yi is
bound by an imported name of path p’ in a and xi is binding an exported name of path p’ in a.

Proposition 2 Assume that id[(x) [µ1 …µr] < y >] is one subaction of an action a, p is its path
in a, σ is the right set of names and their paths that is effective for id, if [id[(x) [µ1 …µr]

< y >]]pσρκ= (σ’, ρ’ , κ’) , and if [µi](cons(p,id(µi)), σi-1, ρi-1 , κi-1) are correct, then we
have :

(1) yi is bound by an imported name of path p’ in a iff ρ’(p, yi) = p’ ;
(2) xi is binding an exported name of path p’ in a iff p’ ∈ κ’(p, xi).

Proof: From the definition of ╓ id[(x) [µ1 …µr]< y >]╖we can see that:
(1) σ’ is just obtained by updating σ with current new effective imported names x; since σ is

right, therefore σ’ is right too;
(2) we can sequentially compute binding and bound environment for every molecule, and we

know that [µi](cons(p,id(µi)), σi-1, ρi-1 , κi-1) are correct; then for exported names of id,
the computation is processed with the result of all the molecules, which is also correct.
Therefore, adding the correct result of molecules and that of the exported names of id to
original (ρ, κ) will produce a correct one so far including id; On the other hand, if there is
ρ’(p, yi) = p’ and p’ ∈κ’(p, xi), since the path is unique for id, therefore they can only be
computed by [id[(x) [µ1 …µr] < y >]], and since path environment is effective, therefore,
yi is bound by an imported name of path p’ in a and xi is binding an exported name of path
p’ in a.

Proposition 3 Assume that id[< u > K (v)] is a molecule of one subaction of an action a, p is its
path in a, σ is the right set of names and their paths that is effective for id, if id[< u > K
(v)] pσρκ= (σ’, ρ’ , κ’) then we have :

(1) ui is bound by an imported name of path p’ in a iff ρ’(p, ui) = p’ ;
(2) vi is binding an exported name of path p’ in a iff p’ ∈κ’(p, vi).

Proof: The proof is similar to preposition 1.
Proposition 4 Assume that id[< u > Ka (v)] is a molecule of one subaction of an action a, p is its
path in a, σ is the right set of names and their paths that is effective for id, if id[< u > Ka
(v)] pσρκ= (σ’, ρ’ , κ’) , and if ai (cons(p,id(a1)), σ’, Φ, Φ) are correct, then we have :

(1) ui is bound by an imported name of path p’ in a iff ρ’(p, ui) = p’ ;
(2) vi is binding an exported name of path p’ in a iff p’ ∈κ’(p, vi).

Proof: The proof is similar to preposition 2.
Lemma 1 For an action a whose identifier is ida, we assume that the initial abstract environment
is { σ0 = [x→()]; ρ0 = [(p, x)→()]; κ0 = [(p, x)→{}] }, for any name x occurring in a, and the
initial path p is (ida). If a pσ0ρ0κ0= (σ, ρ, κ), then we have:

(1) an exported name x of path p1 is bound by the imported name of path p2 in a iff ρ(p1, x) =
p2 ;

(2) an imported name x of path p1 is binding an exported name of path p2 in a iff p2∈κ(p1,
x).

Proof:
(1) for any action, the initial abstract given here as input is no doubt correct;
(2) since the number of subactions of an action is finite number, therefore, the [a]pσ0ρ0κ0 will

surely terminate;

 7

(3) for any action a, from the definition of the analyzing function, computation of [a]pσ0ρ0κ0
will be processed recursively until meeting the constant action or a molecule with constant
control, from the preposition 1, 2, 3, 4 we can prove that since in every step the path and
the path environment are correct, therefore in every step we result in exact binding
environment and bound environment, so in the termination we have the exact binding
environment and bound environment for that action, which satisfy (1) and (2).

4 Security Properties

In this section we will present the security policies for both static and dynamic action calculi in
terms of corresponding security properties, and then establish the relationship between the static
notation and dynamic one.

We use the result of the above formal flow analysis to establish security properties mainly
integrating the idea of [1, 3], which is to ensure that an action preserve the secrecy of data.

Similar to [3], we partition names with its paths defined in an action a into trustworthy T(a)
and untrustworthy U(a). We say that the secrecy of data is preserved if an action a never read an
untrustworthy name to it and an action a never write to other actions the untrustworthy name,
which can be represented by following formal definition.
Definition 8 A subaction a in action b with occurrence path p is defended, iff (σ, ρ,
κ)= b p0σ0ρ0κ0 , and there is no such (x, px)∈ U(a) that p∈κ(x, px), and ∀x∈exp(a), (x,
ρ(x,p))∈T(a).
Definition 9 A subaction a in action b with occurrence path p has no leakage iff (σ, ρ,
κ)= b p0σ0ρ0κ0 , and there is no such c of path p’ in b, Path(c, a)∩ Path(b, a) ≠ Φ, that ∀x∈(U (c)
∩ names(c)), σ(x, p’) = p, and ∀x∈imp(a), p’’∈κ (x, p), (x, p’’)∈T(d), where Path(d, a)=p’’.
Definition 10 An action a preserves secrecy of data iff all the subactions of a are defended and
have no leakage.

The definitions above are static security notations for action calculi. Next we would like to
present dynamic secrecy notation for action calculi. Since the dynamics need to be defined when
you are defining a concrete action calculus, the concrete form of the reactive rule are undefined,
therefore, we can only give a general result.
Definition 11 An action a is protected iff whenever a b, and c is communicating y to d via x in
this reaction, we have x∈T(c) and x∈T(d), y∈T(d), where x is a name, c and d are subaction of a,
Lemma 2 If an action a preserves secrecy of data then it is protected.
Proof: From the definition 8, 9 and 10, if an action a preserves secrecy of data, then we have that
every subaction b of a are defended and have no leakage, which means:

∀x∈exp(c), (x, ρ(x, p))∈T(c).
∀x∈exp(d), (x, ρ(x, p))∈T(d).
∀x∈imp(a), p’’∈κ (x, p), (x, p’’)∈T(d) , where Path(d, a)=p’’
where (σ, ρ, κ)= b p0σ0ρ0κ0.

x is a name, if a b, c, d are subaction of a, and c is communicating y to d via x in this reaction,
then we have:

(1) x must be exported names of c and d;
(2) y must be imported name of c and exported name of d satisfying that y in c is binding y in

d;
therefore, we can conclude that x∈T(c) and x∈T(d), y∈T(d). So according to definition 11 we
can say that a is protected.

 8

5 Related Work and Conclusion

Applying static analysis of formal models in studying security properties of concurrent systems is
an active and interesting research topic in formal methods in recent years[1,2].There is a large
body of research on information flow control aiming at specifying, verifying and analyzing
security.

Secure information flow in programming language received its recent reincarnation. Many
researchers have investigated the problem including [12,13,14,15,16], which all use concrete
calculi or programming languages as research target, while this paper use action calculi, an
abstract model for a class of calculi.

Recently, the use of type systems for information flow is also developed[3, 9, 16].
In [1, 2, 3, 4] data flow or control flow analysis for pi calculus, safe ambients, CML have been

presented, and some encouraging results in proving security property are established.
The idea of using information flow analysis techniques for studying the security properties of

action calculi arises from that of pi calculus and ambient[1, 2, 3]. We propose information flow
analysis for static action calculi, and use it for the validation of rather simple security properties
of interactive systems. More complicated security properties will be studied in the future.
Because action calculi is a framework for a class of models for interactive system, these work can
open a way to study the generality of these properties by comparing the results with those of each
concrete model for interactive system.

References

1. C. Bodel, P. Deggan, F. Nielson, and H. Riis Nielson. Static Analysis for the π-calculus with
Applications to Security. Available at http://www.di.unipi.it/~chiars/publ-40/BDNN100.ps.

2. C. Bodei, P. Degano, F. Nielson, and H. Riis Nielson. Control flow analysis for the π-calculus.
In Proceedings of CONCUR’98, LNCS 1466, pp84-89. Springer-Verlag, 1998.

3. P. Degano, F. Levi and C. Bodei. Safe Ambients: Control Flow Analysis and Security. In
Proceedings of ASIAN '00. LNCS 1961, 199-214. Springer-Verlag.

4. Gasser, K.L.S., Nielson, F., Nielson H.R. Systematic realization of control flow analysis for
CML. In Proceedings of ICFP’97, P38-51. ACM press, 1997.

5. Gardner, P.. Closed Action Calculi. Theoretical Computer Science, vol. 228, 1999.
6. Milner, R.. “Action calculi, or concrete action structures”, Proc. MFCS Conference, Gdansk,

Poland, LNCS, Vol. 711, Springer-Verlag, pp105-121, 1993.
7. Milner R.. Action Calculi IV: Molecular forms, Computer Sciences Department, University of

Edinburgh. Draft(1993).
8. Milner R.. “ Calculi for Interaction”, Acta Inform. 33(8), pp 707-737, 1996.
9. Silvia Crafa, Michele Bugliesi, Giuseppe Castagna. Information Flow Security in Boxed

Ambients. Electronic Notes in Theoretical Computer Science 66, No.3(2003.
10.Ying JIN, Chengzhi JIN. Encoding Gamma Calculus in Action Calculus. Journal of Software,

Vol. 14, No. 1, January 2003.
11.Ying JIN, Chengzhi JIN. Representing Imperative Language in Higher-order Action Calculus.

Journal of Computer Research and Development, Vol. 39, No.10, Oct. 2002.
12.R. Focardi. Analysis and Automatic Detection of Information Flows in Systems and Networks.

PhD thesis, Unviersity of Bologna(Italy), 1999.
13.R. Focardi, R. Gorrieri, and F. Martinelli. Information Flow Analysis in a Discrtete Time

Process Algebra. In Proceedings of 13th IEEE Computer Security Foundations
Workshop(CSFW13), P. Syverson ed., Page 170-184. IEEE CS Press, July 2000.

 9

14.R. Focardi, R. Gorrieri, and R. Segala. A New Definition of Security Properties. In
Proceedings of Workshop on Issues in the Theory of Security(WITS’00), University of
Geneva, July 2000.

15.Heiko Mantel, Andrei Sabelfeld. A Unifying Approach to Security of Distributed and Multi-
Threaded Programs. In Proceedings of the 14th IEEE Computer Security Foundations
Workshop, Cape Breton, Nova Scotia, Canada, June 2001.

16.Andrei Sabelfeld, Andrew C. Myers. Language-Based Information-Flow Security. IEEE
Journal of Selected Areas in Commnications, Vol. 21, No. 1, January 2003.

