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Abstract. Lightweight real-time network communication is crucial for 
commodity cluster systems and embedded control systems. This paper 
introduces the design, implementation and evaluation of SS-RTUDP, a novel 
zero-copy data path based real-time communication protocol with efficient 
communication resources management. To avoid unpredictable overheads 
during SS-RTUDP packets transmission, all communication resources are pre-
allocated. A feasible fragmentation mechanism is also proposed for transmitting 
SS-RTUDP packets larger than the network MTU. On the other hand, the 
additional real-time traffic smoother provides high priorities to SS-RTUDP 
packets and also smoothes peak packets arrival curve. The prototype of SS-
RTUDP is implemented under Linux systems and performance evaluations over 
Fast/Gigabit Ethernet are provided. The measurement results prove that SS-
RTUDP can provide not only much lower latency and higher communication 
bandwidth than traditional UDP protocol, but also good real-time network 
communication performance for commodity cluster systems. 

1 Introduction 

Network environment within cluster system has changed to Fast/Gigabit Ethernet 
with higher bandwidth and lower error-rate. Thus, the user expects mostly in cluster 
systems is the network end-to-end communication performance. The performance of 
the communication sub-system in a cluster system is determined by the transmission 
rate of the network hardware, the processing ability of I/O buses, and also the 
software overheads of network protocol. In recent years, while the network hardware 
and I/O buses provide gigabit bandwidth, the traditional software overheads of 
network communication protocol (such as TCP/IP stack) have become the bottleneck, 
especially in cluster system with large amount of message passing [1]. 

To improve the communication performance in cluster system, several approaches 
have been considered, such as using multiple parallel networks, implementing 
lightweight protocols, avoiding data buffering and copying, avoiding system call 
invoking, overlapping communication and computation, using fast interrupt paths or 
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avoiding interrupt processing, and introducing Jumbo Frames [2]. 
Two main approaches adopted to reduce the software overheads of a 

communication protocol are the improvement of the TCP/IP layers and the 
substitution of the TCP/IP layers by alternative ones [3]. The former focuses mainly 
on zero-copy architectures [4][5], which are capable of moving data between 
application domains and network interfaces without any CPU and memory bus 
intensive copy operations. Two alternatives can be considered to the latter approach: 
communication protocol with efficient OS support [6][7], and the user-level network 
communication [8]~[13]. But most of these facilities require special NIC hardware. 

In this paper, we propose SS-RTUDP (Simple and Static-resources-allocation 
Real-Time User Datagram Protocol), a lightweight real-time network communication 
protocol over commodity Fast/Gigabit Ethernets. High data throughout, low latency 
and real-time communication are the major requirements for SS-RTUDP and the 
zero-copy data path and a fragmentation mechanism are adopted in SS-RTUDP. To 
satisfy real-time communication requirements, an adaptive real-time traffic smoother 
is employed and all communication resources are pre-allocated. 

The organization of this paper is as follows. Section 2 describes the processing of 
original UDP protocol. Section 3 introduces the design and implementation of SS-
RTUDP in detail. The performance measurements of SS-RTUDP prototype system 
are shown in Section 4. Section 5 states the conclusions and directions of future work. 

2 Overhead Analysis of UDP Protocol 

The overhead of UDP protocol consists of per-packet and per-byte costs [14]. The 
per-packet costs include the OS overheads and the protocol processing overheads. 
The per-byte costs include data-copying overheads and checksum calculation 
overheads. Fig. 1 shows the data and control flow of UDP/IP processing on Linux 
system. These costs are analyzed using the Intel PRO/1000 Gigabit Ethernet card with 
Intel Celeron 2.0GHz PC (RedHat9.0, Linux 2.4.20 kernel). Table 1 shows the total 
overhead during sending and receiving a UDP packet over Gigabit Ethernet. The most 
dominant overheads are for UDP/IP layer processing, including memory data copies, 
checksum calculations, resources allocating, etc. 

Table 1. Total cost evaluation of UDP processing 

Gigabit Ethernet Overheads list 
Costs(μs) (%) 

System call and socket layer 3.2 4.7% 
UDP/IP layer(sender) 14.8 21.7% 
UDP/IP layer(receiver) 23.5 34.5% 
Device driver layer 6.8 10.0% 
NIC interrupt processing 6.9 10.1% 
DMA and media transmit 5.5 8.1% 
Others  7.4 10.9% 
Total 68.1 100% 

3 SS-RTUDP Approach 



The SS-RTUDP design issues can be summarized as follows: 
• Use commodity hardware and without modifying hardware firmware. 
• Minimal modification to the Linux kernel and good portability to other systems, 

such as real-time systems and embedded control systems. 
• Coexisting with standard protocol such as TCP/IP stack. 
• Lightweight communication guarantee (zero-copy data path). 
• Provide soft real-time communication. 
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Fig. 1. Data and control flow and their costs using UDP protocol 

3.1 Network Communication Architecture with SS-RTUDP 

The network communication architecture with SS-RTUDP is shown in Fig. 2. Three 
main parts are involved in SS-RTUDP protocol: user-level application library, SS-
RTUDP/IP layer and real-time traffic smoother. 
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Fig. 2. Network communication architecture with SS-RTUDP protocol 

3.1.1   Application Programming Interfaces (APIs) 
In current SS-RTUDP communication library, five APIs similar to traditional 



communication APIs are provided: rt_socket(), rt_mmap(), rt_sendto(), rt_recvfrom() 
and rt_socket_close(). Table 2 shows the main functions of them. 

Table 2. User-level APIs provided by SS-RTUDP 

API Function description 

rt_socket() 

1) Apply for a new real-time socket 
2) Allocate appropriate kernel buffer for the socket 
3) Initialize a socket buffer pool for the socket 
4) Return the physical address of the kernel buffer allocated 

rt_mmap() Remap the user send-buffer space to real-time socket’s kernel buffer 
rt_sendto() Transmit a SS-RTUDP packet 
rt_recvfrom() Receive a SS-RTUDP packet 
rt_socket_close() Close a real-time socket 

3.1.2   Zero-copy Sending Data Path in SS-RTUDP 
In SS-RTUDP protocol, the network MTU is 1500 bytes, the header length of IP 
protocol (Hip) 20 bytes, the header length of SS-RTUDP protocol (HSS-RTUDP) 8 bytes, 
and the Ethernet hardware header (Hhh) 16 bytes. A SS-RTUDP packet larger than 
MTU must be split into several IP fragments before transmission. The headers and the 
data of an IP fragment must be assembled within continuous physical address space 
due to DMA (Direct Memory Access) requirements. Fig. 3 describes the fragmentation 
mechanism, where Ldata stands for data size of a SS-RTUDP packet to be sent while 
Lleft the data size left to be sent, and pointer p points to head of the socket buffer. 

1. Lock user send-buffer and set Lleft=Ldata. 
2. Allocate a socket buffer from the socket’s rtskb_pool. 
3. Assemble the IP, SS-RTUDP and Ethernet headers from p. 
4. If Lleft≤Pmax, transmit the single packet from p with Hip+HSS-RTUDP+Hhh+Lleft 

size using DMA to the network and jump to step9; Else, transmit the first 
fragment with Hip+HSS-RTUDP+Hhh+Pmax size from p to network using DMA 
and set Lleft =Lleft-Pmax. 

5. Set p=p+1480, and allocate a socket buffer from the socket’s rtskb_pool. 
6. Assemble the IP and Ethernet headers from p. 
7. If Lleft≤1480, transmit the last fragment with Hip+Hhh+Lleft size from p to the 

network using DMA; Otherwise, transmit the fragment with Hip+HSS-

RTUDP+Hhh+Pmax size from p to the network using DMA. 
8. Set Lleft=Lleft-1480 and jump to step 5. 
9. Unlock user send-buffer. 

Fig. 3. A fragmentation mechanism for SS-RTUDP protocol 

Based on the fragmentation mechanism in Fig. 3, we design a zero-copy data 
sending path in SS-RTUDP shown in Fig. 4. The user send-buffer is remapped to the 
kernel buffer first using the rt_mmap() system call and all the IP fragments are 
assembled in continuous physical space without additional kernel buffer for the 
headers of each IP fragment. 

3.2   Real-time Communication Considerations for SS-RTUDP Protocol 



Two aspects are considered to provide real-time performance for SS-RTUDP. One is 
to avoid dynamic communication resources allocation. The other is to add real-time 
traffic smoother to provide higher priority to SS-RTUDP packets than other packets. 
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Fig. 4. Zero-copy data sending path in SS-RTUDP 

3.2.1   Pre-allocation of Network Resources 
To satisfy real-time communication performance of SS-RTUDP, the unpredictable 
overheads in the communication path must be avoided. The main unpredictable 
operation is dynamic kernel buffers allocation to buffer the data being copied from the 
user space. During the initialization of SS-RTUDP protocol, a global buffer pool is 
initialized, where four kinds of kernel buffer blocks (1, 4, 8 and 16 continuous 
physical memory pages) are pre-allocated and pinned down. The main functions of 
rt_socket() system call are to apply one appropriate kernel buffer block and initiate a 
socket buffer pool (rtskb_pool). Through remapping its send-buffer to the socket 
kernel buffer using the rt_mmap() system call, the user application can directly use 
the socket kernel buffer. The socket buffer needed during packet sending is not 
dynamically allocated but directly achieved from the rtskb_pool, and the buffer space 
of each socket buffer is set to appropriate position of the socket kernel buffer block. 

3.2.2   Real-Time Traffic Smoother 
The main functions of the real-time traffic smoother are to control the non-real-time 
(NRT) packet arrival rate to appropriate input limit, without affecting the real-time 
(RT) packet arrival rate. The real-time traffic smoother provides statistical real-time 
communication performance that the probability of packet lost is less than a certain 
loss tolerance, Z [15]: 

Pr(packet loss rate)≤Z (1) 

The traffic smoother is leaky bucket-based [16], where credit bucket depth (CBD), 
the capacity of the credit bucket, and a refresh period (RP) are defined. Every RP, up 
to CBD credits, are replenished to the bucket. In our implementation, the unit of credit 
is packet. We set the input limit of packet arrival rate (PAR) as the value of CBD/RP, 



which determines the average throughput available: 

PAR=CBD/RP (2) 

By fixing the values of CBD and varying the values of RP (RPmin≤RP≤Pmax), it is 
possible to control the burst nature of packets flows generated. We set RP0 

(RPmin<RP0<RPmax) as the initialization value (also the average value) of RP. 

PAR0=CBD/RP0 (3) 

Fig. 5 shows the smoothing and refreshing procedures provided by the real-time 
traffic smoother. When a NRT packet arrives from the IP layer, the traffic smoother 
sends it to the NIC and removes one credit if there is at least one credit in the bucket. 
Otherwise, the NRT packet is buffered. A RT packet is not affected by the traffic 
smoothing, but it consumes a credit also. 
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if(SS-RTUDP){ 
send-to-NIC(); 
CNS = CNS-1;} 

else { 
if(CNS≥0){ 

send-to-NIC(); 
CNS = CNS -1;} 
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send-back-to-queue(); 
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RP = RP0; 
if (packet lost in the latest RP region) 

RP = min(RPmax, 2×RP); 
else 

RP = max(RPmin, RP-ΔRP); 
if (CurrentTime == NextRefreshTime) 
{ 

CNS = min(CBD, CNS+CBD); 
NextRefreshTime = CurrentTime+RP; 

} 
RP0 :  The  initialization value of RP 
RPmax : the maximal value of RP 
RPmin : the minimal value of RP 
CNS : Current Number of Credits 

Fig. 5. Smoothing and refreshing procedures 

Fig. 6 shows the effect of traffic smoothing. Fig. 6 (a) shows the symmetric burst 
input arrival rate during [0, 6RP0] from the IP layer to the NIC and Fig. 6 (b) shows 
the smoothed output arrival rate from the NIC to the network. 
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Fig. 6. Traffic smoothing results 

4 Performance Analysis 



All the evaluations of SS-RTUDP are made using a cluster with 24 nodes. Table 3 
shows the configuration of the evaluation environment. 

Table 3. Evaluation environment configuration 

Hardware Intel Celeron 2.0GHz CPU; 256MB DDR Memory; 33MHz/32bit 
PCI bus 

Fast Ethernet 3COM 3C905B 10/100M 
NIC Gigabit Ethernet 

Intel PRO/1000MT Gigabit Ethernet card 
3COM 3c905B Fast Ethernet card 

Ethernet switches D-link DES-1024+Fast Ethernet switch 
Operating systems RedHat 9.0, Linux kernel 2.4.20 
Traffic smoother parameters CBD=40, RP0=10ms, RPmax=100ms, ΔRP=2ms, RPmin=5ms 

The basic application level communication bandwidth and latency over 
Fast/Gigabit Ethernet and the real-time communication performance over Fast 
Ethernet, are measured and compared with traditional UDP/IP in this section. We use 
the modified NetPIPE [17] benchmark to evaluate network latency and bandwidth. 
The real-time performance is measured by packet loss rate. 

4.1   Latency and Bandwidth 

In this experiment, two nodes are connected directly by the cross-over cable. The 
latency and bandwidth results over Fast Ethernet are shown in Fig. 7. 
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Fig. 7. Latency and bandwidth over Fast Ethernet 

In Fig. 7, SS-RTUDP over Fast Ethernet can achieve 37μs latency in a 4 bytes 
message, which is a little smaller than 45.8μs of UDP. Especially, the latency 
decreases over 36% over SS-RTUDP ranging between 256 to 4096 bytes. Fig. 7 also 
shows that SS-RTUDP can achieve a maximal bandwidth of 89.6 Mbps which is a 
little higher than 81.9 Mbps of UDP. These results also show that SS-RTUDP can 
achieve half of the maximal bandwidth below 512 bytes packet size, while this value 
is over 2000 bytes in UDP. Obviously, the performance improved by SS-RTUDP 
protocol is limited over Fast Ethernet due to low media transmitting rate. 

Fig. 8 shows the latency and available bandwidth achieved over Gigabit Ethernet. 
The results show that SS-RTUDP can exploit much more Gigabit Ethernet capacity 
than that of traditional UDP protocol. Over Gigabit Ethernet, SS-RTUDP can achieve 
39μs latency in a 4 bytes message, which is much lower than 65.8μs of UDP 



(40.1% improvement), and a maximal bandwidth of 545.2 Mbps compared with 396.6 
Mbps of UDP (37.5% improvement). 
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Fig. 8. Latency and bandwidth over Gigabit Ethernet  

4.2   Real-time Performance Evaluation 

For two nodes connected directly, an additional long-time and high arriving rate TCP-
stream (occupies over 80% of physical available bandwidth) is added. The 
experimental results in Fig. 9 show that even in very congested environment, SS-
RTUDP can maintain normal and steady performance. 
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Fig. 9. Latency and bandwidth measurements under congested environments 

When 4 cluster nodes are connected through the Ethernet switch shown in Fig.10, 
the total packet arrival rate from node 1~3 to node 4 through the switch is 105.51 
Mbps. Based on the results of Fig. 7, we set 300μs as the transferring deadline to a 
RT packet and 1500μs to a NRT packet. Table 4 shows the experimental results. 

Table 4. Packet loss rate measurement 

Condition Type Sent Lost Loss rate 
RT 360000 56881 15.8% 

Without Traffic Smoother 
NRT 2250000 380250 16.9% 
RT 360000 265 0.074% 

With Traffic Smoother 
NRT 2250000 507329 22.6% 



node1

Switch

node2 node3

4.85/30.32Mbps4.85/30.32Mbps 4.85/30.32Mbps

node4  

Fig. 10. Multiple nodes environment for real-time performance tests 

From Table 4 we find that the RT packet loss rate reduces from 15.8% (without 
real-time traffic smoother) to 0.074% (with real-time traffic smoother), while the NRT 
packet loss rate increases from 16.9% to 22.6%. The results prove that the real-time 
traffic smoother provides good performance guarantee for real-time communications. 

5 Conclusions and Future Works 

In this paper, we propose a lightweight real-time network communication protocol for 
commodity cluster systems, called SS-RTUDP. Through eliminating data copies in 
communication data path, simplifying the data checksum calculations, adopting 
fragmentation mechanism for large real-time packets, SS-RTUDP provides both 
lower latency and higher bandwidth than original UDP protocol over Fast/Gigabit 
Ethernet, especially over Gigabit Ethernet. Pre-allocated network resources and 
additional real-time traffic smoother also provides good real-time network 
communication performance for commodity cluster systems. 

Many works need to be improved to current implementation of SS-RTUDP, such 
as lightweight interrupt processing and true zero-copy data receiving path. In the next 
step, we will implement the SS-RTUDP protocol under real-time micro kernel to 
enhance the real-time performance over Gigabit Ethernets. Another goal is to plant 
SS-RTUDP protocol to embedded control systems. 
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