
Lightweight Real-time Network Communication
Protocol for Commodity Cluster Systems∗

Hai Jin, Minghu Zhang, Pengliu Tan, Hanhua Chen, Li Xu

Cluster and Grid Computing Lab.
Huazhong University of Science and Technology, Wuhan, 430074, China

Email: hjin@hust.edu.cn

Abstract. Lightweight real-time network communication is crucial for
commodity cluster systems and embedded control systems. This paper
introduces the design, implementation and evaluation of SS-RTUDP, a novel
zero-copy data path based real-time communication protocol with efficient
communication resources management. To avoid unpredictable overheads
during SS-RTUDP packets transmission, all communication resources are pre-
allocated. A feasible fragmentation mechanism is also proposed for transmitting
SS-RTUDP packets larger than the network MTU. On the other hand, the
additional real-time traffic smoother provides high priorities to SS-RTUDP
packets and also smoothes peak packets arrival curve. The prototype of SS-
RTUDP is implemented under Linux systems and performance evaluations over
Fast/Gigabit Ethernet are provided. The measurement results prove that SS-
RTUDP can provide not only much lower latency and higher communication
bandwidth than traditional UDP protocol, but also good real-time network
communication performance for commodity cluster systems.

1 Introduction

Network environment within cluster system has changed to Fast/Gigabit Ethernet
with higher bandwidth and lower error-rate. Thus, the user expects mostly in cluster
systems is the network end-to-end communication performance. The performance of
the communication sub-system in a cluster system is determined by the transmission
rate of the network hardware, the processing ability of I/O buses, and also the
software overheads of network protocol. In recent years, while the network hardware
and I/O buses provide gigabit bandwidth, the traditional software overheads of
network communication protocol (such as TCP/IP stack) have become the bottleneck,
especially in cluster system with large amount of message passing [1].

To improve the communication performance in cluster system, several approaches
have been considered, such as using multiple parallel networks, implementing
lightweight protocols, avoiding data buffering and copying, avoiding system call
invoking, overlapping communication and computation, using fast interrupt paths or

∗ This paper is supported by National 863 Hi-Tech R&D Project under grant

No.2002AA1Z2102.

avoiding interrupt processing, and introducing Jumbo Frames [2].
Two main approaches adopted to reduce the software overheads of a

communication protocol are the improvement of the TCP/IP layers and the
substitution of the TCP/IP layers by alternative ones [3]. The former focuses mainly
on zero-copy architectures [4][5], which are capable of moving data between
application domains and network interfaces without any CPU and memory bus
intensive copy operations. Two alternatives can be considered to the latter approach:
communication protocol with efficient OS support [6][7], and the user-level network
communication [8]~[13]. But most of these facilities require special NIC hardware.

In this paper, we propose SS-RTUDP (Simple and Static-resources-allocation
Real-Time User Datagram Protocol), a lightweight real-time network communication
protocol over commodity Fast/Gigabit Ethernets. High data throughout, low latency
and real-time communication are the major requirements for SS-RTUDP and the
zero-copy data path and a fragmentation mechanism are adopted in SS-RTUDP. To
satisfy real-time communication requirements, an adaptive real-time traffic smoother
is employed and all communication resources are pre-allocated.

The organization of this paper is as follows. Section 2 describes the processing of
original UDP protocol. Section 3 introduces the design and implementation of SS-
RTUDP in detail. The performance measurements of SS-RTUDP prototype system
are shown in Section 4. Section 5 states the conclusions and directions of future work.

2 Overhead Analysis of UDP Protocol

The overhead of UDP protocol consists of per-packet and per-byte costs [14]. The
per-packet costs include the OS overheads and the protocol processing overheads.
The per-byte costs include data-copying overheads and checksum calculation
overheads. Fig. 1 shows the data and control flow of UDP/IP processing on Linux
system. These costs are analyzed using the Intel PRO/1000 Gigabit Ethernet card with
Intel Celeron 2.0GHz PC (RedHat9.0, Linux 2.4.20 kernel). Table 1 shows the total
overhead during sending and receiving a UDP packet over Gigabit Ethernet. The most
dominant overheads are for UDP/IP layer processing, including memory data copies,
checksum calculations, resources allocating, etc.

Table 1. Total cost evaluation of UDP processing

Gigabit Ethernet Overheads list
Costs(μs) (%)

System call and socket layer 3.2 4.7%
UDP/IP layer(sender) 14.8 21.7%
UDP/IP layer(receiver) 23.5 34.5%
Device driver layer 6.8 10.0%
NIC interrupt processing 6.9 10.1%
DMA and media transmit 5.5 8.1%
Others 7.4 10.9%
Total 68.1 100%

3 SS-RTUDP Approach

The SS-RTUDP design issues can be summarized as follows:
• Use commodity hardware and without modifying hardware firmware.
• Minimal modification to the Linux kernel and good portability to other systems,

such as real-time systems and embedded control systems.
• Coexisting with standard protocol such as TCP/IP stack.
• Lightweight communication guarantee (zero-copy data path).
• Provide soft real-time communication.

User Process

UDP/IP handler

Data Link layer
Device handler

NIC hardware

User

Kernel

NIC

Kernel Buffer

NIC Buffer

S2.4)Kernel to NIC
DMA:2.5+0.0035×N µs

R3.2)NIC to Kernel
DMA:2.5+0.0035×N µs

R3.1)Interrupt:7.9µs

S1.2)User to Kernel
0.006×N µs

R2.4)Kernel to User
0.006×N µs

1.1)System Call:1.0 µs

2.1)Protocol processing:7.5µs
2.2)Device driver:6.5µs
2.3)Checksum Calculation:0.003×N µs

User Buffer

Fig. 1. Data and control flow and their costs using UDP protocol

3.1 Network Communication Architecture with SS-RTUDP

The network communication architecture with SS-RTUDP is shown in Fig. 2. Three
main parts are involved in SS-RTUDP protocol: user-level application library, SS-
RTUDP/IP layer and real-time traffic smoother.

NRT Applications
SS-RTUDP Lib.

BSD Socket Layer
SS-RTUDP/IP TCP(UDP)/IP

Real-time Traffic Smoother

User

Kernel

Data Link Layer/Device Driver

Network Interface CardHardware

RT Applications
Linux Lib.

Fig. 2. Network communication architecture with SS-RTUDP protocol

3.1.1 Application Programming Interfaces (APIs)
In current SS-RTUDP communication library, five APIs similar to traditional

communication APIs are provided: rt_socket(), rt_mmap(), rt_sendto(), rt_recvfrom()
and rt_socket_close(). Table 2 shows the main functions of them.

Table 2. User-level APIs provided by SS-RTUDP

API Function description

rt_socket()

1) Apply for a new real-time socket
2) Allocate appropriate kernel buffer for the socket
3) Initialize a socket buffer pool for the socket
4) Return the physical address of the kernel buffer allocated

rt_mmap() Remap the user send-buffer space to real-time socket’s kernel buffer
rt_sendto() Transmit a SS-RTUDP packet
rt_recvfrom() Receive a SS-RTUDP packet
rt_socket_close() Close a real-time socket

3.1.2 Zero-copy Sending Data Path in SS-RTUDP
In SS-RTUDP protocol, the network MTU is 1500 bytes, the header length of IP
protocol (Hip) 20 bytes, the header length of SS-RTUDP protocol (HSS-RTUDP) 8 bytes,
and the Ethernet hardware header (Hhh) 16 bytes. A SS-RTUDP packet larger than
MTU must be split into several IP fragments before transmission. The headers and the
data of an IP fragment must be assembled within continuous physical address space
due to DMA (Direct Memory Access) requirements. Fig. 3 describes the fragmentation
mechanism, where Ldata stands for data size of a SS-RTUDP packet to be sent while
Lleft the data size left to be sent, and pointer p points to head of the socket buffer.

1. Lock user send-buffer and set Lleft=Ldata.
2. Allocate a socket buffer from the socket’s rtskb_pool.
3. Assemble the IP, SS-RTUDP and Ethernet headers from p.
4. If Lleft≤Pmax, transmit the single packet from p with Hip+HSS-RTUDP+Hhh+Lleft

size using DMA to the network and jump to step9; Else, transmit the first
fragment with Hip+HSS-RTUDP+Hhh+Pmax size from p to network using DMA
and set Lleft =Lleft-Pmax.

5. Set p=p+1480, and allocate a socket buffer from the socket’s rtskb_pool.
6. Assemble the IP and Ethernet headers from p.
7. If Lleft≤1480, transmit the last fragment with Hip+Hhh+Lleft size from p to the

network using DMA; Otherwise, transmit the fragment with Hip+HSS-

RTUDP+Hhh+Pmax size from p to the network using DMA.
8. Set Lleft=Lleft-1480 and jump to step 5.
9. Unlock user send-buffer.

Fig. 3. A fragmentation mechanism for SS-RTUDP protocol

Based on the fragmentation mechanism in Fig. 3, we design a zero-copy data
sending path in SS-RTUDP shown in Fig. 4. The user send-buffer is remapped to the
kernel buffer first using the rt_mmap() system call and all the IP fragments are
assembled in continuous physical space without additional kernel buffer for the
headers of each IP fragment.

3.2 Real-time Communication Considerations for SS-RTUDP Protocol

Two aspects are considered to provide real-time performance for SS-RTUDP. One is
to avoid dynamic communication resources allocation. The other is to add real-time
traffic smoother to provide higher priority to SS-RTUDP packets than other packets.

N
et

w
or

k
In

te
rf

ac
e

C
ar

d

DMA

DMA

DMA

DMA

…
…
…

U
se

r
se

nd
-b

uf
fe

r

R
ea

l-
tim

e
so

ck
et

 b
uf

fe
r

D
at

a1
D

at
a2

D
at

a3
...

D
at

an

D
at

a1

D
at

a2

D
at

a3

D
at

an

Frag 1

Frag 2

Frag 3

Frag n

Header 1

Header 2

Header 3

Header n

Fig. 4. Zero-copy data sending path in SS-RTUDP

3.2.1 Pre-allocation of Network Resources
To satisfy real-time communication performance of SS-RTUDP, the unpredictable
overheads in the communication path must be avoided. The main unpredictable
operation is dynamic kernel buffers allocation to buffer the data being copied from the
user space. During the initialization of SS-RTUDP protocol, a global buffer pool is
initialized, where four kinds of kernel buffer blocks (1, 4, 8 and 16 continuous
physical memory pages) are pre-allocated and pinned down. The main functions of
rt_socket() system call are to apply one appropriate kernel buffer block and initiate a
socket buffer pool (rtskb_pool). Through remapping its send-buffer to the socket
kernel buffer using the rt_mmap() system call, the user application can directly use
the socket kernel buffer. The socket buffer needed during packet sending is not
dynamically allocated but directly achieved from the rtskb_pool, and the buffer space
of each socket buffer is set to appropriate position of the socket kernel buffer block.

3.2.2 Real-Time Traffic Smoother
The main functions of the real-time traffic smoother are to control the non-real-time
(NRT) packet arrival rate to appropriate input limit, without affecting the real-time
(RT) packet arrival rate. The real-time traffic smoother provides statistical real-time
communication performance that the probability of packet lost is less than a certain
loss tolerance, Z [15]:

Pr(packet loss rate)≤Z (1)

The traffic smoother is leaky bucket-based [16], where credit bucket depth (CBD),
the capacity of the credit bucket, and a refresh period (RP) are defined. Every RP, up
to CBD credits, are replenished to the bucket. In our implementation, the unit of credit
is packet. We set the input limit of packet arrival rate (PAR) as the value of CBD/RP,

which determines the average throughput available:

PAR=CBD/RP (2)

By fixing the values of CBD and varying the values of RP (RPmin≤RP≤Pmax), it is
possible to control the burst nature of packets flows generated. We set RP0

(RPmin<RP0<RPmax) as the initialization value (also the average value) of RP.

PAR0=CBD/RP0 (3)

Fig. 5 shows the smoothing and refreshing procedures provided by the real-time
traffic smoother. When a NRT packet arrives from the IP layer, the traffic smoother
sends it to the NIC and removes one credit if there is at least one credit in the bucket.
Otherwise, the NRT packet is buffered. A RT packet is not affected by the traffic
smoothing, but it consumes a credit also.

Smoothing Refreshing
1
2
3
4
5
6
7
8
9

10

if(SS-RTUDP){
send-to-NIC();
CNS = CNS-1;}

else {
if(CNS≥0){

send-to-NIC();
CNS = CNS -1;}

else
send-back-to-queue();

}

1
2
3
4
5
6
7
8
9

10

RP = RP0;
if (packet lost in the latest RP region)

RP = min(RPmax, 2×RP);
else

RP = max(RPmin, RP-ΔRP);
if (CurrentTime == NextRefreshTime)
{

CNS = min(CBD, CNS+CBD);
NextRefreshTime = CurrentTime+RP;

}
RP0 : The initialization value of RP
RPmax : the maximal value of RP
RPmin : the minimal value of RP
CNS : Current Number of Credits

Fig. 5. Smoothing and refreshing procedures

Fig. 6 shows the effect of traffic smoothing. Fig. 6 (a) shows the symmetric burst
input arrival rate during [0, 6RP0] from the IP layer to the NIC and Fig. 6 (b) shows
the smoothed output arrival rate from the NIC to the network.

RP0

PAR0

0 3RP0

A
rr

iv
al

 r
at

e

time

RP00

PAR0

time

A
rr

iv
al

 r
at

e

2RP0 3RP0 5RP02RP0 4RP0

packet lost in these regions

PARmaxPARmax

6RP05RP04RP0 6RP0

(a) Input arrival rate (b) Output arrival rate

Fig. 6. Traffic smoothing results

4 Performance Analysis

All the evaluations of SS-RTUDP are made using a cluster with 24 nodes. Table 3
shows the configuration of the evaluation environment.

Table 3. Evaluation environment configuration

Hardware Intel Celeron 2.0GHz CPU; 256MB DDR Memory; 33MHz/32bit
PCI bus

Fast Ethernet 3COM 3C905B 10/100M
NIC Gigabit Ethernet

Intel PRO/1000MT Gigabit Ethernet card
3COM 3c905B Fast Ethernet card

Ethernet switches D-link DES-1024+Fast Ethernet switch
Operating systems RedHat 9.0, Linux kernel 2.4.20
Traffic smoother parameters CBD=40, RP0=10ms, RPmax=100ms, ΔRP=2ms, RPmin=5ms

The basic application level communication bandwidth and latency over
Fast/Gigabit Ethernet and the real-time communication performance over Fast
Ethernet, are measured and compared with traditional UDP/IP in this section. We use
the modified NetPIPE [17] benchmark to evaluate network latency and bandwidth.
The real-time performance is measured by packet loss rate.

4.1 Latency and Bandwidth

In this experiment, two nodes are connected directly by the cross-over cable. The
latency and bandwidth results over Fast Ethernet are shown in Fig. 7.

10

100

1000

10000

0

20

40

60

80

100

La
te

nc
y(

M
ic

ro
se

co
nd

)

Packet Size(Bytes)

 UDP
 SS_RTUDP

1 4 16 64 256 1K 4K 16K 64K

B
an

dW
id

th
(M

bp
s)

Packet Size(Bytes)

 UDP
 SS_RTUDP

1 4 16 64 256 1K 4K 16K 64K 256K 1M

Fig. 7. Latency and bandwidth over Fast Ethernet

In Fig. 7, SS-RTUDP over Fast Ethernet can achieve 37μs latency in a 4 bytes
message, which is a little smaller than 45.8μs of UDP. Especially, the latency
decreases over 36% over SS-RTUDP ranging between 256 to 4096 bytes. Fig. 7 also
shows that SS-RTUDP can achieve a maximal bandwidth of 89.6 Mbps which is a
little higher than 81.9 Mbps of UDP. These results also show that SS-RTUDP can
achieve half of the maximal bandwidth below 512 bytes packet size, while this value
is over 2000 bytes in UDP. Obviously, the performance improved by SS-RTUDP
protocol is limited over Fast Ethernet due to low media transmitting rate.

Fig. 8 shows the latency and available bandwidth achieved over Gigabit Ethernet.
The results show that SS-RTUDP can exploit much more Gigabit Ethernet capacity
than that of traditional UDP protocol. Over Gigabit Ethernet, SS-RTUDP can achieve
39μs latency in a 4 bytes message, which is much lower than 65.8μs of UDP

(40.1% improvement), and a maximal bandwidth of 545.2 Mbps compared with 396.6
Mbps of UDP (37.5% improvement).

1 4 16 64 256 1024 4096 16384 65536
10

100

1000

10000

1 4 16 64 256 1024 4096 16384 65536
0

100

200

300

400

500

600

 UDP
 SS-RTUDP

La
te

nc
y(

in
 m

ic
ro

se
co

nd
s)

Packet Size(in bytes)

 UDP
 SS-RTUDP

B
an

dw
id

th
(in

 M
bp

s)

Packet Size(in bytes)

Fig. 8. Latency and bandwidth over Gigabit Ethernet

4.2 Real-time Performance Evaluation

For two nodes connected directly, an additional long-time and high arriving rate TCP-
stream (occupies over 80% of physical available bandwidth) is added. The
experimental results in Fig. 9 show that even in very congested environment, SS-
RTUDP can maintain normal and steady performance.

10

100

1000

10000

0

20

40

60

80

100
 UDP
 SS_RTUDP

La
te

nc
y(

M
ic

ro
se

co
nd

)

Packet Size(Bytes)
1 4 16 64 256 1K 4K 16K 64K

 UDP
 SS_RTUDP

B
in

dW
id

th
(M

bp
s)

Packet Size(Bytes)
1 4 16 64 256 1K 4K 16K 64K 256K 1M

Fig. 9. Latency and bandwidth measurements under congested environments

When 4 cluster nodes are connected through the Ethernet switch shown in Fig.10,
the total packet arrival rate from node 1~3 to node 4 through the switch is 105.51
Mbps. Based on the results of Fig. 7, we set 300μs as the transferring deadline to a
RT packet and 1500μs to a NRT packet. Table 4 shows the experimental results.

Table 4. Packet loss rate measurement

Condition Type Sent Lost Loss rate
RT 360000 56881 15.8%

Without Traffic Smoother
NRT 2250000 380250 16.9%
RT 360000 265 0.074%

With Traffic Smoother
NRT 2250000 507329 22.6%

node1

Switch

node2 node3

4.85/30.32Mbps4.85/30.32Mbps 4.85/30.32Mbps

node4

Fig. 10. Multiple nodes environment for real-time performance tests

From Table 4 we find that the RT packet loss rate reduces from 15.8% (without
real-time traffic smoother) to 0.074% (with real-time traffic smoother), while the NRT
packet loss rate increases from 16.9% to 22.6%. The results prove that the real-time
traffic smoother provides good performance guarantee for real-time communications.

5 Conclusions and Future Works

In this paper, we propose a lightweight real-time network communication protocol for
commodity cluster systems, called SS-RTUDP. Through eliminating data copies in
communication data path, simplifying the data checksum calculations, adopting
fragmentation mechanism for large real-time packets, SS-RTUDP provides both
lower latency and higher bandwidth than original UDP protocol over Fast/Gigabit
Ethernet, especially over Gigabit Ethernet. Pre-allocated network resources and
additional real-time traffic smoother also provides good real-time network
communication performance for commodity cluster systems.

Many works need to be improved to current implementation of SS-RTUDP, such
as lightweight interrupt processing and true zero-copy data receiving path. In the next
step, we will implement the SS-RTUDP protocol under real-time micro kernel to
enhance the real-time performance over Gigabit Ethernets. Another goal is to plant
SS-RTUDP protocol to embedded control systems.

References

[1] S. Di and W. Zheng, “Reduced Communication Protocol for Clusters”, Proceedings of
Advances in Parallel and Distributed Computing. Shanghai, China, 1997, pp.314-319.

[2] R. Buyya, High Performance Cluster Computing Architectures and Systems, Volume 1,
1st Edition, USA, Prentice-Hall, Inc., 1999, pp.182-184.

[3] A. F. Diaz, J. Ortega, A. Canas, F. J. Fernandez, M. Anguita and A. Prieto, “The
lightweight protocol CLIC on Gigabit Ethernet”, Proceedings of International Parallel

and Distributed Processing Symposium(IPDPS’2003), April 2003.
[4] K. Christian, M. Michel, and R. Felix, “Speculative Defragmentation − A Technique to

Improve the Communication Software Efficiency for Gigabit Ethernet”, Proceedings of
the 9th International Symposium on High-Performance Distributed Computing, Pittsburgh,
PA, USA, 2000, pp.131-138.

[5] K. A. Skevik, P. Thomas, G. Plagemann, and V. Goebel, and P. Halvorsen, “Evaluation of
a Zero-Copy Protocol Implementation”, Proceedings of the 27th EUROMICRO
Conference, Warsaw, Poland, 2001, pp.324-330.

[6] G. Chiola and G. Ciaccio, “Efficient parallel processing on low-cost clusters with
GAMMA active ports”, Parallel Computing, Vol.26, 2000, pp.333-354.

[7] A. F. Díaz, J. Ortega, A. Cañas, F. J. Fernández, and A. Prieto, ”The Lightweight Protocol
CLIC: Performance of an MPI implementation on CLIC”, IEEE International Conference
on Cluster Computing (CLUSTER’2001), October, 2001, pp.391-398.

[8] K. Ghouas, K. Omang and H. Bugge, “VIA over SCI - Consequences of a Zero Copy
Implementation, and Comparison with VIA over Myrinet”, Proceedings of the 15th
International Parallel and Distributed Processing Symposium (IPDPS’2001), San
Francisco, California, USA, 2001, pp.1632-1639.

[9] Y. Chen, Z. Q. Jiao, J. Xie, Z. H. Du, and S. L. Li, “Design and Implementation of a High
Performance VIA Based on Myrinet”, Journal of Software, Vol.14, No.2, 2003, pp.285-
292.

[10] S. Pakin, V. Karacheti, and A. Chien, “Fast Messages (FM): Efficient, Portable
Communication for Workstation Clusters and Massively-Parallel Processors”, IEEE
Parallel and Distributed Technlogy, Vol.5, No.2, April/June, 1997.

[11] L. Prylli and B. Tourancheau, “BIP: a new protocol designed for high performance
networking on Myrinet”, Proceedings of Workshop PC-NOW at IPPS/SPDP98, April,
1998, pp.472-485.

[12] T. Eicken, A. Basu, V. Buch, and W. Vogels, “U-Net: a user-level network interface for
parallel and distributed computing”, Proceedings of the 15th ACM Symposium on
Operating Systems Principles (SOSP'95), December, 1995.

[13] R. A. F. Bhoedjang, T. Rühl, and H. E. Bal, “User-level Network Interface Protocols”,
IEEE Computer, November, 1998, pp.53-60.

[14] D. Clark, V. Jacobson, J. Romkey, and H. Salwen, “An Analysis of TCP Processing
Overhead”. IEEE Communications Magazine, Vol.27, No.6, June 1989, pp.23-29.

[15] C. C. Chou and K. G. Shin, ”Statistical real_time channels on multiaccess networks”,
IEEE Transaction on Parallel and Distributed Systems, Vol.8, Aug. 1997, pp.769-780.

[16] R. L. Cruz, “A Calculus for network delay, Part I: Network Elements in Isolation”, IEEE
Transaction on Information Theory, Vol.37, No.1, Jan. 1991, pp.114-131.

[17] NetPIPE: A Network Protocol Independent Performance Evaluator,
http://www.scl.ameslab.gov/netpipe/.

