
An Integrated Scheme for Address Assignment and
Service Location in Pervasive Environments

M J Kim1, M Kumar1 and B A Shirazi2

1 The University of Texas of Arlington
Box 19015, Arlington, TX 76019, USA

{mkim, kumar}@cse.uta.edu
2 School of EECS, Washington State University

Pullman, WA 99164, USA
shirazi@eecs.wsu.edu

Abstract. We propose an efficient scheme called CoReS (Configuration and
Registration Scheme) that integrates address assignment and service location
for ad hoc networks prevalent in pervasive computing environments. CoReS
exploits node heterogeneity such that more capable and stable nodes serve oth-
ers. CoReS allocates addresses to individual nodes locally, but employs global
allocation states to handle network merge situations. In addition, CoReS ex-
ploits the positive features of distributed directory services to perform service
location in a centralized manner resulting in minimal communication over-
heads. We analyze the characteristics of CoReS architecture, evaluate its per-
formance and compare with other schemes. Through the evaluation and com-
parison, we demonstrate that the integrated CoReS system exhibits high
efficiency and cross-layer optimization.

1 Introduction

Pervasive computing is an emerging and very challenging area of research, envisaging
numerous computing devices within a small area [1]. Devices possessing specific
computing and sensing capabilities may want to communicate with each other to
maximize users’ quality of life. Such devices may need to form multi-hop mobile
networks without prior infrastructures and make use of services available on other
nodes. Efficient address assignment and service location are necessary for autonomic
network formation and continuous collaboration among devices.

Routing protocols assume that every node in the network has a unique address and
is aware of the address of the destination node it is communicating with. Perhaps, the
greatest underlying question in networking for pervasive computing does not lie just
in providing seamless mobility, but in supporting zero-configuration networking ca-
pabilities [2]. Some interesting proposals have come up in the area of automatic ad-
dress configuration [3][4][5][6][7][8][9]. In addition, service discovery in pervasive
computing environments especially for ad hoc networks has started to receive atten-
tion [10][11]. Conventionally routing protocols and service discovery protocols are
placed in different layers, but integrated or tightly coupled versions of these two pro-

 2

tocols have the ability to enhance efficiency especially in mobile ad hoc networks
where each node needs to perform routing and service discovery [12].

In this paper, we propose CoReS (Configuration and Registration Scheme), an in-
tegrated protocol for address assignment and service location in pervasive computing
environments. CoReS is a distributed, yet hierarchical approach using a small subset
of the nodes called CR-nodes that are responsible for assigning addresses to other
nodes and registering their services. Relatively stable and capable nodes serve as CR-
nodes, thus CoReS exploits node heterogeneity in terms of mobility and capability. A
node that has registered its services with a CR-node is referred as a child node of the
CR-node. The CR-node that has the registration entry of a child node is referred as the
default CR-node for that child node. CoReS is not limited to any particular MAC pro-
tocol or physical network media. Without loss of generality, in this paper, we assume
multi-hop wireless ad hoc networks that are common in pervasive environments.

CoReS is adaptable to both IP and flat address formats. For small networks such as
Personal Area Networks (PANs) or sensor networks, which do not need any Internet
protocols or applications, flat address format is preferable because smaller address
size can be used. CoReS assigns unique addresses serially using the mod operation,
starting from a random reference address. With CoReS, new address allocation is per-
formed locally and network merge situation is managed with global address allocation
state. In addition, service location of CoReS operates in a centralized manner, yet
flexibly through cooperation of distributed directory services.

The rest of the paper is organized as follows: in Section 2, we discuss related work
on address auto-configuration and service discovery. Basic mechanism and protocols
of CoReS are presented in Section 3. Section 4 presents protocols handling challeng-
ing situation such as network merge. In Section 5, we analyze characteristics of
CoReS architecture and evaluate the protocols by comparisons with other schemes.
We conclude and discuss future work as possible extensions to CoReS in Section 6.

2 Related work

Address auto-configuration has been a topic of research in various types of networks.
Generally, there are two types of auto-configuration protocols - stateless and stateful.
Protocols utilizing a stateless approach [3][6] do not maintain allocation states, thus
new joining nodes self-configure themselves with randomly selected or h/w based ad-
dresses. To assure the uniqueness of the chosen address, Duplicate Address Detection
(DAD) is needed causing high overhead/latency and scalability problems due to
flooding. In network merge situation, stateless approaches require each node respon-
sible for duplicate addresses since the allocation state is not maintained anywhere.

In stateful approaches, address conflicts are avoided as allocation is managed. Dy-
namic Host Configuration Protocol (DHCP) is one of the most popular protocols.
DHCP maintains allocation states at a central server, thus not applicable in pervasive
environments where accessibility to the server is not guaranteed always. More re-
cently, there are interesting proposals employing a stateful approach in Mobile Ad hoc
Networks (MANET). One initial effort is MANETConf [4] where every node main-
tains global allocation states. A new address allocation requires consensus of all

3

nodes, incurring high communication overhead/delay as well as high memory usage at
each node. In network merge situations, detection of address conflicts is easy since
global allocation information is maintained at each node. However, nodes with dupli-
cate addresses need to tackle the conflicts themselves.

Another popular stateful approach exploits a buddy system [5][8] where disjointed
allocation information is maintained locally at every node. Whenever a new node
joins, a preconfigured node just splits its address pool and assigns the divided pool to
the new node, ensuring unique address allocation. Zhou et al. proposed a unique ad-
dress allocation scheme, which uses a special function to assign an address to each
node for large scale MANETs [7]. These schemes [5][7][8] enjoy low communication
overheads for address allocation procedure without network wide flooding. However,
they have limitations in such dynamic situations as network merging and/or abrupt
node departure since there is no global view of allocation status.

Service discovery architectures/protocols have been developed and investigated
with an emphasis on auto-configurable networks. Sun’s Jini [13], Service Location
Protocol (SLP) of IETF and Microsoft’s Universal Plug and Play (UPnP) are promi-
nent among them. Jini operates with centralized directory servers and UPnP performs
in a decentralized manner. SLP works in the two operation modes with and without
centralized directory services. All the above protocols are not well suited for perva-
sive environments due to limitations in supporting node mobility or scalability.

There have been several proposals for service discovery in ad hoc networks re-
cently [10][11][12]. Schemes in [10] and [11] achieve flexible service matching by
employing a service hierarchical tree to describe and discover services. However, all
nodes are required to maintain the fixed hierarchical tree and employ complex match-
ing mechanisms. In [12], authors proposed the service discovery architecture that is
supported by the network layer. Besides the formation of a virtual backbone, the peri-
odic service registration and management of multicast group incur high overhead.

3 CoReS Architecture/Protocols

Each node maintains its degree of mobility (dm) and resource value (R). dm is a rela-
tive value to indicate dynamism of the node and a function of average speed of the
node. For static nodes, dm = 0. R is a quantitative value to indicate the amount of re-
sources the node has. There are three types of resources that make up R - computation,
communication and energy. Using dm and R, each node sets utility value (δ = f (dm,
R)) that is proportional to R and inversely proportional to dm. The nodes with high δ
are good candidates for CR-nodes.

A CR-node predetermines its workload by setting address range (size of address
pool) for its child nodes. The address pool size is set to be proportional to utility value
(δ) of the CR-node. A CR-node assigns a unique address to each joining node serially
ensuring no address duplication unless there are more nodes than total global ad-
dresses. After getting an address, a new node registers its service functionalities and
its δ with its default CR-node. A CR-node maintains a child table and a CR table. A
child table maintains local address allocation states with service information and the
utility values of child nodes for directory service. A CR table maintains global address

 4

states with information of all CR-nodes: i) addresses of CR-nodes; and ii) address
ranges that CR-nodes manage.

A CR-node creates another CR-node among its child nodes when it has exhausted a
predetermined number of addresses, a threshold of the given address pool. A child
with the highest δ is selected for a new CR-node. A new CR-node gets the CR table
from its default CR-node and sets its address range starting from the next available
address.

3.1 Address auto-configuration and service registration

When a node Ni wants to join a network, it sends one-hop broadcast join message to
its neighbors. If no reply is received before the given timeout, Ni tries again with
longer timeout until the number of retrials exceeds its predefined value ω, or it re-
ceives a reply from a neighbor. ω is set to be inversely proportional to δ. After ω
number of retrials without receiving any reply, Ni assumes that there is no CR-node.
Thus Ni becomes the first CR-node and sets own address pool range starting from a
randomly chosen address within the global address space. After that, the first CR-
node assigns itself the first address of the own address range and self-registers its ser-
vice in the child table. In addition, Ni announces its creation to the whole network to
let other (possibly) existing nodes register with Ni. When several nodes try to start the
network simultaneously, the node with the lowest ω value becomes the first CR-node
because it has relatively higher resources and lower mobility.

Let us consider a general situation where some CR-nodes exist. Ni’s neighboring
node, say Nj upon receiving the join message, sends a probe message to its default
CR-node. The default CR-node in turn replies to Nj with remaining address count (Ac).
Nj forwards the reply that includes Ac to Ni. Suppose Nj is a CR-node, it directly re-
plies to Ni with its Ac. After the given period of time, Ni selects the neighbor node Nk
as a broker, where Nk is the neighbor responding with the highest Ac. Nk’s default CR-
node assigns an address for Ni through the broker Nk as shown in Fig. 1.

Fig. 1. Node Join Operation: After getting an address, Ni registers its service with the default
CR-node that in turn sends an acknowledgement with its δ.

3.3 Service location

When a node needs to avail of a service, it sends a service request message to its de-
fault CR-node with the service description. After receiving the service request mes-

Ni : New node

 Nk : Broker 1. Address
 Request

4. Forward
 Assign

2. Forward
 Request 3. Assign

5. Register

6. Ack (δ)
 Nk’s default
 CR-node

5

sage, the default CR-node looks up its child table to find out matched services. Addi-
tionally, it multicasts the service request message to other CR-nodes. Any CR-node
that has the information about the requested service in the child table forwards the re-
quest message to the child node that provides the requested service.

We call a node requesting a service, a client and a node providing the service, a
server. When a server receives a forwarded service request from its default CR-node,
it needs to decide whether to accept the service request according to its current condi-
tions such as workload and available resources. The server may either reject the ser-
vice request by simply ignoring it, or accept it by replying to the original client along
with the detailed service specifications including current resource status and cost. The
client selects a server that provides the best preferable service by comparing several
replies with details of service specifications.

Late service de-registration may be performed at the CR-node as follows. When a
server receives a forwarded service request message, the server needs to send ac-
knowledgement to its default CR-node. If the CR-node does not get acknowledgement
within the given number of trials, it suspects that the server (the child) has left and
marks the server in the child table. For the marking, one bit of flag field is used in
child tables. Similarly, CR tables also have the marking field. When a CR-node has
used up all addresses in its pool, it tries to contact the marked child nodes again. If the
CR-node still cannot hear from the marked child nodes, it de-registers the child nodes’
services and caches their addresses for next address allocation. However, before de-
registration of a child, whenever the CR-node realizes the child node is present in the
network, the CR-node resets the marking field. We call this lazy service de-
registration because de-registration does not take place when the server leaves, but is
delayed until there is no available address at the default CR-node. The lazy service de-
registration makes the protocol more flexible by handling the situation where nodes
temporarily drift from the network and come back later.

4 Robustness of CoReS

4.1 Loss of CR-nodes

CR-nodes are not expected to leave often because they are relatively stable and have
more resources including energy. When a CR-node A needs to leave, it is responsible
to create a substitute CR-node. If A has a capable child node (that has utility value
higher than or equal to that of A), A makes the child a substitute. Otherwise A asks a
peer CR-node to make a substitute. However, nodes moving out of network or nodes
that fail due to some unexpected reason do not have any prior knowledge that they are
separating from the network. As a result, a CR-node may leave abruptly without hand-
ing over to a substitute, resulting in loss of the CR-node. This case is handled starting
from the marking process similar to that in lazy service de-registration. Whenever a
node sends a message to a CR-node, the former is supposed to get acknowledgement
from the latter. A node suspects loss of a CR-node when the former fails to get ac-
knowledgement from the latter within a given number of retrials with increasing time-
out. A node suspecting loss of a CR-node, say A, floods this information to the net-

 6

work. (If several nodes suspect the loss simultaneously, the situation is handled with
content flooding explained in Subsection 4.3.) When other CR-nodes acquire the in-
formation about the loss, they set the marking field of A in their CR tables. When a
child node of A gets this information, the following algorithm is executed at the child
(δA is a utility value of A):

If (need to increase service utilization) { 1
 If (δ ≥ δA) 2
 become a substitute CR-node 3
 else { 4
 relinquish the current address 5
 get a new address from another CR-node 6
 reregister services with the new default CR-node 7
 } 8
} 9
else { 10
 wait until a default CR-node is detected again 11
 if (the detected CR-node is a substitute one) 12
 reregister service with the new default CR-node 13
} 14

During the missing period of the default CR-node, a child node sends service requests
to another CR-node through neighbors.

After marking, if a CR-node B wants to create a substitute CR-node, first, B needs
to wait for a predefined time and check again for presence of the marked CR-node A.
If B still cannot hear from A, the former confirms the latter has left without informing,
and creates a substitute among its child nodes by assigning the same address range of
A. When a child of A becomes a substitute CR-node (line 3 in the above algorithm),
the child gets the CR table information from another CR-node through neighbors. The
substitution process of the child also includes the waiting and checking procedures.
The substitute CR-node announces the substitution by flooding. After receiving the
announcement, the remaining child nodes of A reregister with the substitute CR-node
(line 13 in the above algorithm) and the other CR-nodes update their CR tables.

Before the substitution, if the marked CR-node appears again, other CR-nodes reset
the marking field in their CR tables and the appearing CR-node synchronizes its CR
table with the current one. Notice that substitution of a lost CR-node is not required
urgently. By the waiting and checking procedures before substitution, temporary CR-
node drift can be handled.

4.2 Creation of a CR-node

Creation of a new or substitute CR-node requires consensus among existing CR-nodes
in the system. When a CR-node A wants to create another CR-node, first it needs to
check a possible ongoing creation event. If A has a pending creation event saved in its
cache, it waits for completion of the event before requesting for permission. Other-
wise, A directly requests other CR-nodes for permission to create. Another CR-node,
say B, upon receipt of the request, sends a negative reply if it has a previous pending
creation event. Otherwise, B designates the creation event of A as pending and sends a
positive reply.

7

If A receives positive replies from all other CR-nodes other than marked ones, it
creates a CR-node. If A receives any negative reply, it needs to wait until completion
of the ongoing creation event and try again by asking for permission. When A does
not get a reply from some CR-nodes, A starts the marking process by repeating the
permission request (explained in Subsection 4.1). After completing the marking proc-
ess, A resumes creation of the CR node. After a new (or substitute) CR-node is cre-
ated, it informs to all other CR-nodes of its creation to let them update their CR tables
and remove the pending creation event.

4.3 Networks merge and partition

When several networks merge, the addresses of all nodes in smaller networks will
change by adding offset to larger networks. Let us consider a scenario when three
networks X, Y and Z merge. Table 1 shows their address ranges and required changes.

Table 1. Merging of three networks

Network Original address range
(address pool size) Needed change Address range after merge

X 67 ~ 159 (93) + 0 67 ~ 159
Y 110 ~ 166 (57) + 50 (159 – 110 +1) 160 ~ 216
Z 25 ~ 43 (19) + 192 (216 -25 +1) 217 ~ 235

Suppose size(X) ≥ size(Y) ≥ size(Z), where size(N) is the size of address pool assigned
in network N. X does not need to change any address in its network. All addresses in
Y need to be changed by adding 50 (159 - 110 + 1) to the original ones. Similarly,
network Z starts its address from 217 by adding 192 (216 – 25 + 1).

CoReS needs network ID to distinguish nodes belonging to different networks [4].
When a CR-node A conceives network merge situation, it floods a merge message in-
cluding its CR table and network ID to the combined network. When another CR-
node B receives the merge message from A for the first time, it compares A’s network
ID with its own. If they are same, B just retransmits the merge message. Otherwise, B
saves A’s CR table along with network ID and retransmits the merge message. In ad-
dition, B floods another merge message including own CR table as well as network
ID. After a fixed time period, each CR-node in the system collects all CR tables corre-
sponding to different networks. When there are overlapped address pools among the
CR tables, CR-nodes calculate the needed address changes for each network and
merge the CR tables. In addition, CR-nodes let the other nodes in the system know the
needed address change by flooding. All flooding in this subsection operates somewhat
different from the general flooding protocol such that the messages with the same
payload are treated as duplicates regardless of the sources of the messages. In other
words, regardless of which and how many nodes initiate the flooding, all nodes send
the message once to their neighbors by ignoring any duplicate message of the same
content. We refer to this flooding protocol as content flooding.

When no address ranges of the merging networks are overlapped, address
reconfiguration is delayed until a situation (like another merge) causing overlapped
address pools occurs for the case of temporary network merger. When one part of the
network separates from the rest, reconfiguration is needed in both partitions. The par-

 8

separates from the rest, reconfiguration is needed in both partitions. The partition that
has less than half CR-nodes, changes its network ID. Regardless of getting the new
network ID, each network partition needs to handle two side effects as follows: i)
missing of some child nodes - use the lazy service de-registration in Subsection 3.2;
and ii) loss of CR-nodes - apply the protocol for loss of CR-nodes in Subsection 4.1.

5 Evaluation

5.1 Analysis and comparison of auto-configuration schemes

Auto-configuration protocols using a stateful approach maintain address allocation in-
formation in several ways: i) centralized global allocation states; ii) distributed global
allocation states; and iii) distributed local allocation states. Central global allocation
states are unsuitable for pervasive environments due to uncertain availability of the
central server. Distributed global allocation states in [4][9] need to be synchronized
among all nodes, causing high overhead/latency. In contrast, distributed local alloca-
tion states allow concurrent assignments with low cost as in [5][7][8], but network
merge situation cannot be handled efficiently due to lack of global allocation view.

CoReS exploits a stateful approach requiring special nodes (CR-nodes) to maintain
distributed allocation states. CR-nodes maintain global allocation states in CR tables
as well as local allocation states in child tables. Therefore, address allocation is per-
formed locally and network merge situation is handled with global view of allocation
states. In this subsection, we investigate and compare CoReS with other auto-
configuration schemes in terms of handling of network merger, address (as resource)
management and scalability.

First, CoReS handles network merge situation efficiently due to maintenance of
global allocation states. The number of total broadcasts (content flooding) to handle
network merger is the number of merging networks + 1 (dissemination of a CR table
per network and dissemination of the needed address change). The key advantage is
that each node in smaller networks can resume ongoing communications swiftly since
the node can apply the same conversion rule to all addresses it maintains including its
destination nodes’ addresses and cached addresses (routes) in routing tables.

Second, in terms of address resource management, CoReS uses address resource
optimally by serial assignment while some schemes [6][7] need significantly larger
global address space compared to the number of nodes. Most stateful schemes
[4][5][8][9] use address resource efficiently, but they have some difficulty in handling
abrupt node departure or temporary node drifts while CoReS handles reclamation of
addresses and temporary node drifts in a natural way with the marking process.

Third, with regard to scalability, CoReS is scalable compared to those with distrib-
uted global allocation states due to the difference of synchronization requirements:
protocols using global distributed allocation states need to synchronize the informa-
tion among all nodes while CoReS requires only CR-nodes to synchronize their ad-
dress pools (CR tables) regardless of individual address allocation. Stateful schemes
with local allocation states seem efficient for basic address assignment, but are not
scalable facing challenging situation such as network merge or abrupt node departure.

9

5.2 Performance comparison of service discovery protocols

We compare CoReS with well known MANET broadcast based service discovery
protocols that employ pull and push models. Pull scheme operates such that whenever
a client needs a service, it floods a service request message and any server providing
the matched service replies to the client. Push scheme performs such that whenever a
client needs a service, it looks up its own cache for information of the needed service.
If the client cannot find a match in its cache, it needs to wait for the service adver-
tisement before utilizing the service. A server floods its service advertisement peri-
odically. When a client receives a service advertisement, the client caches the adver-
tisement if it is interested in using the service in future.

We compare the service discovery protocols in terms of operating cost (co) meas-
ured by the number of exchanged messages for a client to find out all matched ser-
vices (matched servers) in the system. Let us say n is the number of total nodes and ns
is the number of matched servers in the system. To make things simple, we assume
that there is no message loss, thus the system can discover ns matched services.

In CoReS, a client sends a service request message to its default CR-node that in
turn forwards the request to the other CR-nodes in the system. The number of request
messages sent (and forwarded) to all CR-nodes is equal to the number of CR-nodes
(ncr). After receiving the request messages, CR-nodes that have information of the re-
quested service forward the message to ns servers (ns messages). Finally, ns servers
reply to the client directly (another ns messages). Thus, with CoReS, co = (ncr+ 2× ns).

When a node floods a message in the network, every node in the network forwards
the message once ignoring duplicates. Hence, we assume that n messages are needed
for one flooding for simple comparison. With pull scheme, a client floods a service
request and the ns servers reply to the client, which leads to co = (n + ns).

With push model, co is dependent on the probability that a client has cached infor-
mation of the requested service. The probability depends on cache policy and cache
size that is another complex issue. Here, we simply refer to the probability that a cli-
ent has no cached information for the matched service as Pmiss. Generally, as network
size (in terms of n) increases, Pmiss increases due to limitation of cache size. With
Pmiss, co is given by (ns× Pmiss × n) since ns× Pmiss advertisements are required.

Usually ns << n and ncr << n, thus service discovery of CoReS incurs a lot less op-
erating costs than pull scheme. In turn, operating cost of pull scheme is less than that
of push scheme when ns× Pmiss is high, e.g. greater than 1.

6 Conclusion and future work

We propose CoReS, an efficient and integrated protocol to assign addresses for nodes
and to support service location in local pervasive environments. CoReS exploits un-
evenness of nodes to allow more capable and stable nodes to serve others. CoReS em-
ploys the hierarchical and distributed architecture such that address assignment is per-
formed locally and network merge situation is handled with global view. Service
discovery in CoReS operates efficiently compared to distributed approaches based on
broadcast, especially in terms of operation costs.

 10

There are several issues we plan for future work. First, we will utilize CR-nodes for
other network functionalities such as routing and security to justify the cost of build-
ing and maintaining the CoReS architecture. Second, trust management will be de-
ployed to establish reliable relationship among entities for overall secure interactions.
Third, we try to provide locality between child nodes and their default CR-nodes to
improve system performance and scalability. Finally, we will incorporate context
awareness to CoReS operations for pervasive environments.

Acknowledgements

This material is based on work supported by the National Science Foundation under
Grant No. 0129682.

References

1. Saha D and Mukherjee A, “Pervasive Computing: a Paradigm for the 21st Century”, IEEE
Computer, March 2003, pp 25 – 31

2. P. Mahonen, J. Riihijarvi, M. Petrova, and Z. Shelby, “Hop-by-Hop Toward Future Mobile
Broadband IP”, IEEE Communications Magazine, Volume 42, Issue 3, March 2004.

3. Zero configuration networking group. http://www.ietf.org/html/charters/zeroconf-charter.
html. Cited 29, January 2004

4. S. Nesarig and R. Prakash, “MANETConf: Configuration of Hosts in a Mobile Ad Hoc Net-
work,” Proc. IEEE INFOCOM 2002, pp 1059-1068

5. A. P. Tayal and L. M. Patnaik, “An Address Assignment for the Automatic Configuration of
Mobile Ad Hoc Networks”, Personal and Ubiquitous Computing Volume 8 , Issue 1, 2004

6. C. Perkins, J. Malinen, R. Wakikawa, E. M. Belding-Royer and Y. Sun, “IP Address Auto-
configuration for Ad Hoc Networks”, IETF, MANET Working group, November 2001

7. H. Zhou, L.M. Ni and M. W. Mutka, “Prophet Address Allocation for Large Scale
MANETs”, Proc. IEEE INFOCOM 2003

8.A. Cavalli and J. Orset. “Secure hosts auto-configuration in mobile ad hoc networks”, To ap-
pear, Ad Hoc Networks Journal by Elsevier Science, 2004

9.M. Mohsin and R. Prakash, “IP Address Assignment in a Mobile Ad Hoc Network,” IEEE
MILCOM, volume 2, October 2002, pp. 856 – 861

10.D. Chakraborty, et al, “Towards Distributed Service Discovery in Pervasive Computing En-
vironments”, IEEE Transactions on Mobile Computing, July. 2004.

11.S. Helal, N. Desai, V. Verma and C. Lee, “Konark--A Service Discovery and Delivery Pro-
tocol for Ad-hoc Networks,” Proc. the Third IEEE Conference on WCNC, March 2003.

12.Ulas C. Kozat and Leandros Tassiulas, “Network Layer Support for Service Discovery in
Mobile Ad Hoc Networks”, Proc. IEEE INFOCOM 2003

13.Sun Microsystems, Jini Architecture Specification, June 2003

