
A DSP-Enhanced 32-bit Embedded
Microprocessor

Hyun-Gyu Kim1,2 and Hyeong-Cheol Oh3

1 Dept. of Elec. and Info. Eng., Graduate School, Korea Univ., Seoul 136-701, Korea
2 R&D center, Advanced Digital Chips, Seoul 135-508, Korea

babyworm@gmail.com
3 Dept. of Info. Eng., Korea Univ. at Seo-Chang. Chung-Nam 339-700, Korea

ohyeong@korea.ac.kr

Abstract. EISC (Extendable Instruction Set Computer) is a compressed
code architecture developed for embedded applications. In this paper, we
propose a DSP-enhanced embedded microprocessor based on the 32-bit
EISC architecture. We present how we could exploit the special features,
and how we could overcome the deficits, of the EISC architecture to ac-
celerate DSP applications with a relatively low hardware overhead. Our
simulations and experiments show that the proposed DSP-enhanced pro-
cessor reduces the average execution time of the DSP kernels considered
in this work by 47.8% and the DSP applications by 29.3%. The proposed
DSP enhancements cost about 10300 gates and do not increase the clock
frequency. The proposed DSP-enhanced processor has been embedded in
an SoC for video processing and proven in silicon.

Keyword: DSP-enhanced microprocessor, SIMD, hardware address gen-
erator, register extension, embedded microprocessor

1 Introduction

As more and more DSP (digital signal processing) applications run on embedded
systems in recent years, it has become one of the most important tasks for embed-
ded microprocessors to accelerate DSP applications. This trend is being reflected
on the most successful embedded processors in the market: ARM cores added sat-
uration arithmetic in ARMv5TE and SIMD (Single Instruction Multiple Data)
instruction set in ARMv6 [1]; and MIPS cores adopted an application-specific-
extension instruction set for DSP and 3D applications [2]. The capabilities of
accelerating DSP accelerations should be implemented with as little hardware
overhead as possible, since most embedded microprocessors target on the cost
and power sensitive markets.

In this paper, we introduce a DSP-enhanced embedded microprocessor based
on the EISC (Extendable Instruction Set Computer) architecture [3–5]. EISC
is a compressed code architecture developed for embedded applications. While
achieving high code density and a low memory access rate, the EISC architecture
uses a novel and terse scheme to resolve the problem of insufficient immediate



2 H.-G. Kim and H.-C. Oh

operand fields of the compressed code RISC machines. We present how we could
exploit the special features of the EISC architecture to accelerate DSP applica-
tions with a relatively low hardware overhead. Since EISC also has deficits in
processing DSP applications like any other compressed code architectures, we
propose various schemes to overcome these deficits of the EISC.

In order to seek proper enhancements, we analyze the workload of benchmark
programs from Mediabench [6] on the 32-bit EISC processor, called base below.
The processor base is a 5-stage pipelined implementation of the non-DSP 32-bit
instruction set of EISC [5]. Based on the profiling results, we modify the base by
carefully choosing and adding DSP supporting instructions, such as SIMD MAC
and saturation arithmetic. We also adopt and add various schemes for signal
processing, such as a support for correcting radix point during the fixed-point
multiplications, a hardware address generator for supporting memory accesses
efficiently, and a scheme for increasing the effective number of general-purpose
registers (GPRs).

Our simulations and experiments show that the proposed DSP-enhanced pro-
cessor reduces the average execution time of the DSP kernels considered in this
work by 47.8% and the DSP applications by 29.3%. The proposed DSP en-
hancements cost approximately 10300 gates only and do not increase the clock
frequency.

This paper is organized as follows: In Section 2, an overview of the EISC
architecture is presented. Section 3 describes the schemes we propose for en-
hancing DSP capabilities. Section 4 presents our evaluation results and an SoC
that has been developed based on the proposed processor. Section 5 concludes
the paper.

2 The EISC Architecture

In an embedded microprocessor system, code density and chip area are two
major design issues, since these costs are more important in this area. However,
many 32-bit embedded microprocessors suffer from poor code density. In order
to address this problem, some RISC-based 32-bit microprocessors adopt 16-bit
compressed instruction set architectures, such as ARM THUMB [7] and MIPS16
[8]. This approach provides better code density but needs some mechanisms to
extend the insufficient immediate field and to provide backward compatibility
with their previous architectures, which can result in extra hardware overhead.
Moreover, these architectures have difficulty in utilizing their registers efficiently
in the compressed mode [7, 8].

The EISC architecture takes a different approach for achieving high code
density [3, 4]. EISC uses efficient fixed length 16-bit instruction set for 32-bit
data processing. To resolve the problem of insufficient immediate operand fields
in a terse way, EISC uses an independent instruction called leri, which consists
of a 2-bit opcode and a 14-bit immediate value. The leri instruction loads
immediate value to the special register called ER (extension register), and the



A DSP-Enhanced 32-bit Embedded Microprocessor 3

value in the ER is used for extending the immediate field of a related instruction
to make a long immediate operand.

By using the leri instruction, the EISC architecture can make the pro-
gram code more compact than the competing architectures, ARM-THUMB and
MIPS16, since the frequency of the leri instruction is much less than 20% in
most programs. In [3], the code density of the EISC architecture was evaluated
to be 6.5% higher than that of ARM THUMB and 11.5% higher than that of
MIPS16 for various programs considered in [3]. In our experiments, the static
code sizes of base are 18.9% smaller than those of ARM9-TDMI for the programs
in Mediabench. As the leri instruction is just used to extend the immediate field
of a related instruction, it can be a performance burden for the EISC processor.
To overcome this deficit, EISC uses leri instruction folding method explained in
[10].

As EISC uses fixed length 16-bit instruction set, the instruction decoder for
the EISC architecture is much simpler than that of the CISC(Complex Instruc-
tion Set Computer) architecture. In addition, the EISC does not suffer from
the overhead for switching its processor mode, which is often needed to han-
dle long immediate values or complicated instructions in the compressed code
RISC architectures. Moreover, the EISC architecture reduces its data memory
access rate by fully utilizing its 16 registers while the competing architectures
can access limited number of registers in the compressed mode. In [4], the data
memory access rate of the EISC is 35.1% less than that of the ARM THUMB
and 37.6% less than that of MIPS16 for the programs considered in [4]. Thus,
the EISC can reduce both instruction references and data references. Reducing
the memory accesses would bring reduction in power consumption related to
the memory accesses and also lessen the performance degradation caused by the
speed gap between the processor and the memory.

3 DSP Enhancements for the EISC Processor

In this paper, we propose several DSP enhancements for developing a DSP-
enhanced EISC processor with as little extra hardware cost as possible. We
develop instructions for enhancing DSP performances: instructions for SIMD
operations with the capability of saturation arithmetic; and instructions for gen-
erating addresses and packing, loading, and storing media data. We try to min-
imize the overheads for feeding data into the SIMD unit [11]. We develop the
enhancements so that they can be realized within the limited code space, since
the processor uses 16-bit instructions (even though it has a 32-bit datapath.)

3.1 DSP Instruction Set

Since the data in the multimedia applications are frequently smaller than a
word, we can boost up the performance of the processor base by adopting a
SIMD architecture. When the SIMD operations are performed, however, some
expensive packing operations are also performed for arranging the data to the



4 H.-G. Kim and H.-C. Oh

SIMD operation unit [11]. In order to reduce the number of packing operations,
the processor should support various types of packed data. However, since the
code space allowed for the DSP-enhancements is limited as mentioned above,
we focus on accelerating the MAC operations which are apparently the most
popular operations in the DSP applications. We implement two types of MAC
operations shown in Fig. 1: the parallel SIMD type and the sum-of-products
type. The parallel SIMD type of MAC operation, shown in Fig. 1(a), is much
more efficient than any other types of operations for processing the arrays of
structured data such as RGBA formatted pixel data. On the other hand, the sum-
of-products type of MAC operation, shown in Fig. 1(b), is efficient for processing
general data arrays.

+ + + +

+ +++ + + + +

+
++

oper_a

oper_b

accumulation 
register

oper_a

oper_b

accumulation 
register

(a) Parallel SIMD MAC (b) SIMD MAC: Sum of Products

Fig. 1. Two types of the SIMD MAC operations supported in the proposed DSP-
enhanced processor.

We also adopt the instructions for the saturation arithmetic which is often
used in DSP applications. Unlike the wrap-around arithmetic, the saturation
arithmetic uses the maximum or the minimum value when it detects an overflow
or an underflow.

In the signal processing, the fixed-point arithmetic is commonly used because
it is much cheaper and faster than the floating-point arithmetic. During the
multiplication of two 32-bit fixed-point numbers, the results are stored in the
64-bit multiplication result register (MR). Since the position of radix point in
a fixed-point number can be changed during multiplications, we need to select
a part of the 64-bit multiplication result to make a 32-bit fixed-point number.
For that purpose, base would require a sequence of five instructions looking like
the one in the first box shown below. We propose to use an instruction with the
mnemonic mrs (multiplication result selection), as shown below.

mfmh %Rx # move MR(H) to GPR(Rx)
mfml %Ry # move MR(L) to GPR(Ry)
asl DP, %Rx # DP-bit shift left Rx
lsr (32-DP), %Ry # (32-DP)-bit shift right Ry
or %Rx, %Ry # Ry = Rx | Ry

↓
mrs DP, %Ry



A DSP-Enhanced 32-bit Embedded Microprocessor 5

3.2 Accelerating Address Generation

DSP applications usually perform a set of computations repeatedly for stream-
ing data that have almost uniform data patterns. In this section, we introduce
a loop-efficient hardware address generator that can accelerate the memory-
addressing processes. We intend to use this address generator for accelerating
DSP applications, including the memory-copy operations, with low cost.

The proposed address generator has a capability of handling the auto-incre-
ment addressing mode which is usually used for various applications includ-
ing the memory-copy operations. As DSP operations use a loop for computing
processes to handle streaming data, the proposed address generation unit is
equipped with a comparator to detect the end-offset for loop. The address gen-
erator is also intended for supporting other special memory-addressing modes,
such as the wrap-around incremental addressing mode for a virtual circular buffer
and the bit-reversal addressing mode for transform kernels. We only support the
post-modifying scheme because it is more popularly used [12].

IncrementorBit Reverser 4-bit Barrel Shifter
Mode Inc. End Offset Offset Counter =Mode Selection Zero FlagNext Offset

Memory AddressIndex Register General ALU

Counter Register
Address Generation Unit

Fig. 2. Proposed address generation unit.

Since the hardware complexity is important, the proposed address generator
only produces the small sized offset instead of the entire addresses. Fig. 2 shows
the block diagram of the proposed address generator and the counter register.
The control register is used to control the address generator and holds a con-
trol word regarding generation pattern, offset counter, end offset for looping,
and incremental offset. Since we use a post-modifying scheme, the ALU uses
the previously generated offset counter to make a memory address, while the



6 H.-G. Kim and H.-C. Oh

incrementor uses it to generate the next offset. The generated offset is written
back to the offset counter field in the counter register.

3.3 Register Extension

Almost DSP routines use many coefficients and temporary values simultane-
ously. However, most embedded microprocessors do not have enough registers
to hold those values. A general approach for resolving this problem of shortage
of registers is to spill the contents of registers into the memory. However, media
data often take the form of data streams, in which case they are temporarily
stored in the memory, continuously read into the processor, and used only a few
times. Therefore, media applications running on an embedded processor often
suffer from significant performance losses due to the frequent register spilling
processes.

We propose a register extension scheme that increases the effective number
of registers by adopting the idea of shadow register to hold temporary values
in the registers. The idea of shadow register has been used in various aspects,
such as the context switching latency [13]. We find that this idea is also very
useful for embedded processors which have limited code spaces, such as the
EISC processors, since it is hard for them to allocate additional bits for register
indexing [9].

For the register extension scheme, we divide the register file into two parts:
one part consists of a set of smaller register files, register pages, and another
part consists of eight registers to be shared among register pages. Each register
page consists of eight registers. We use three bits in the status register to select
active register page. Thus we can use up to seventy two registers, eight shared
registers and eight register pages with eight registers, in the proposed processor
when whole register pages are implemented. The use of register pages decreases
memory traffic due to memory spilling.

4 Evaluations

The designed DSP-enhanced microprocessor has been modeled in Verilog HDL as
a synthesizable RTL model. We synthesize the model using the Samsung STD130
0.18µm CMOS standard cell library [14] and the Synopsys DesignCompiler. The
critical path delay is estimated by using the Synopsys PrimeTime under the
worst-case operating condition (1.65V supply voltage and 125 ◦C junction tem-
perature.) The results are summarized in Table 1. As shown in Table 1, the
critical path delay is almost the same even through some units are added to
accelerate DSP applications. The enhancements we add cost about 10270 equiv-
alent gates, most of which are used for the shadow register file and the SIMD
MAC unit. The others cost less than 1000 gates per each unit.

In order to evaluate the performance of the proposed architecture, we use
DSP kernels used commonly in many DSP applications: IMDCT (inverse mod-
ified discrete cosine transform), FFT (fast Fourier transform), DCT (discrete



A DSP-Enhanced 32-bit Embedded Microprocessor 7

Table 1. Cost and power performance of the enhancements

Area Critial Path Delay
[equi. gates] [ns]

Base processor 56852 6.25

Proposed processor 67122 6.19

cosine transform), and FIR (finite impulse response) filter. The IMDCT routine
is used for reducing aliases in high fidelity audio coding applications including
MP3, and AAC. The DCT is commonly used in the image compression. The
FFT and FIR filter are the most common DSP functions in many DSP appli-
cations. We use the verilog-HDL model with the perfect memory model during
the performance evaluation.

47.75

62.52

78.12

29.28

45.18

63.77

47.21

0.0

2000.0

4000.0

6000.0

8000.0

10000.0

12000.0

IMDCT FFT16 FFT64 FDCT8 IDCT8 FIR filter AVG

DSP Kernels

R
un

T
im

e 
(c

yc
le

s)

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

Im
pr

ov
em

en
t (

%
)

base

w-DSP

Improvement

Fig. 3. Performance gain for popular DSP kernels.

The results of the experiments are summarized in Fig. 3. The proposed DSP
architecture reduces the average execution time of the DSP kernels considered
by 47.8%. For IMDCT, the use of the mac and mrs results in the reductions
of the computation time. Furthermore, the use of the register extension scheme
reduces the number of memory accesses by 9%. For FFT kernels, the performance
improvement is mainly due to the parallel SIMD MAC operations. However, we
observe a limited performance enhancement for the 64-point FFT, since it takes
too much time to process the data packing and the memory accesses for spilling
temporary values. For DCT and FIR filter, the instruction for sum of products



8 H.-G. Kim and H.-C. Oh

is used efficiently and results in the performance gain. Moreover, the register
extension scheme reduces memory operations in the FIR filter application. In
our experiments, the coefficients for an 8-TAP FIR filter are loaded just once
during the processing.

We also experiment with real DSP applications such as MP3 decoding pro-
gram which uses MAD (MPEG audio decoding) library, ADPCM (Adaptive
Differential Pulse Code Modulation) encoding program, and JPEG image de-
coding program. While selecting the functions to be optimized, we analyze the
DSP applications to identify functions which take a large portion of the run time.
In the experiments, a perfect (zero-wait) external memory is also assumed. The
input data that we use and the selected functions are summarized in Table 2.

Table 2. Input data and selected kernels for the considered DSP applications.

DSP application Input data Selected kernel(s)

MP3 decoding 8.124-second stereo MP3 sample, imdct l
44.1KHz sampling rate, 192bps bit rate subband synthesis

JPEG decoding 64 × 64 × 24b jpeg file Huffman decode

ADPCM encoding 3.204-second mono PCM sample, ADPCM encode
8KHz sampling rate, 16-bit little endian

We measure the clock counts. The results are summarized in Table 3. For
MP3 decoding application, optimized imdct l and subband synthesis kernels re-
duce the run time by 30.8%. It means that the proposed DSP-enhanced processor
is able to decode a high-fidelity MP3 audio at 31.1MHz, while the processor base
has to be clocked at 45MHz to perform the same job. While optimizing the
JPEG decoder, cnt1 instructions and SIMD saturate add instructions are used
to optimize Huffman decode and the functions related on the variable length cod-
ing. In the case of the ADCPM encoding application, we reduce the execution
time by 36.9% using the address generator and saturate add instructions. As a
result, the proposed processor reduces the average execution time of the DSP
applications considered by 29.3%.

Table 3. Performance gain for DSP applications.

DSP applications Base processor Proposed processor Improvement

MP3 decoding 365,827,110 252,923,593 30.9%

JPEG decoding 4,507,509 3,597,074 20.2%

ADPCM encoding 1,914,368 1,208,188 36.9%

The proposed DSP-enhanced processor has been embedded in an SoC for
video processing [15] and proven in silicon. Fig. 4 shows the layout of the SoC.



A DSP-Enhanced 32-bit Embedded Microprocessor 9

Fig. 4. Layout of the SoC equipped with the proposed DSP-enhanced EISC processor.

The SoC is equipped with a 2D graphics engine, a sound engine, a video encoder,
a USB1.1 device controller, a four-channel DAC/ADC, and other peripherals
including four DMAs, a memory controller, four UARTs, an I2S, a key-pad
controller, an interrupt controller, a two-channel watchdog timer, a PWM, and
a GPIO.

5 Conclusions

In this paper, we have introduced a DSP-enhanced embedded microprocessor
based on the EISC architecture. In order to accelerate DSP application with as
little extra hardware as possible, we propose various enhancement schemes: some
schemes exploit the special features of the EISC, including the leri instruction;
and some schemes are to overcome the inherent deficits of the EISC, including
the insufficiency of the instruction bits and the insufficiency of GPRs.

We adopt the SIMD architecture and tailor it to reduce the hardware com-
plexity and the packing overhead. To improve the performance of SIMD ar-
chitecture, we propose a loop-efficient address generation unit. The proposed
address generation unit is designed to support commonly used memory address-
ing modes in DSP applications with low hardware complexity. We also adopt a
register extension scheme to reduce performance degradation due to the register
spilling.

The proposed DSP-enhanced processor has been modeled in Verilog HDL
and synthesized using a 0.18µm CMOS standard library. The proposed DSP



10 H.-G. Kim and H.-C. Oh

enhancements cost about 10300 gates and not increase the clock frequency. Our
simulations and experiments show that the proposed DSP-enhanced processor
reduces the execution time of the DSP kernels considered in this work by 47.8%
and the DSP applications by 29.3%. The proposed processor has been embedded
in an SoC for video processing and proven in silicon.

Acknowledgements

The authors wish to acknowledge the CAD tool support of IDEC (IC Design
Education Center), Korea and the financial support of Advanced Digital Chips
Inc., Korea. The authors would also like to thank the anonymous reviewers for
their valuable comments.

References

1. Francis, H.: ARM DSP-Enhanced Instructions White Paper, http://arm.com/
pdfs/ARM-DSP.pdf

2. MIPS Tech. Inc.: Architecture Set Extension, http://www.mips.com/content/
Documentation/MIPSDocumentation/ProcessorArchitecture/doclibrary

3. Cho, K.Y.: A Study on Extendable Instruction Set Computer 32 bit Microproces-
sor, J. Inst. of Electronics Engineers of Korea, 36-D(55) (1999) 11–20

4. Lee, H., Beckett, P., Appelbe, B.: High-Performance Extendable Instruction Set
Computing, Proc. of 6th ACSAC-2001 (2001) 89–94

5. Kim, H.-G., Jung, D.-Y., Jung, H.-S., Choi, Y.-M., Han, J.-S., Min, B.-G., Oh,
H.-C.: AE32000B: A Fully Synthesizable 32-bit Embedded Microprocessor Core,
ETRI Journal 25(5) (2003) 337–344

6. Lee, C., Potkonjak, M., Mangione-Smith. H.: MediaBench: A Tool for Evaluat-
ing and Synthesizing Multimedia and Communications Systems, MICRO-30(1997)
330–335

7. ARM Ltd.: The Thumb Architecture Extension, http://www.arm.com/products/
CPUs/archi-thumb.html

8. Kissell, K.D.: MIPS16: High-density MIPS for the Embedded Market, Technical
Report, Silicon Graphics MIPS Group (1997).

9. Park, G.-C., Ahn, S.-S., Kim, H.-G., Oh, H.-C.: Supports for Processing Media
Data in Embedded Processors, Poster Presentation, HiPC2004 (2004).

10. Cho,K.Y., Lim, J.Y., Lee, G.T., Oh, H.-C., Kim, H.-G., Min, B.G., Lee, H.: Ex-
tended Instruction Word Folding Apparatus, U.S. Patent No.6,631,459, (2003)

11. Talla, D., John, L.K., Buger, D.: Bottlenecks in Multimedia Processing with SIMD
Style Extensions and Architectural Enhancements, IEEE Tras. of Comp. 52(8)
(2003) 1015–1011

12. Hennessy, J.L, Patterson, D.A.: Computer Architecture; A Quantitative Approach
3rd Ed., Morgan Kaufmann Publishers (2003)

13. Jayaraj, J., Rajendran, P.L., Thirumoolam, T.: Shadow Register File Architec-
ture: A Mechanism to Reduce Context Switch Latency, HPCA-8 (2002) Poster
Presentation

14. Samsung Electronics: STD130 0.18um 1.8V CMOS Standard Cell Library for Pure
Logic Products Data Book, Samsung Electronics (2001)

15. Advanced Digital Chips Inc.: GMX1000: A High Performance Multimedia Proces-
sor User Manual, Advanced Digital Chips Inc. (2005)


