
AlchemistJ: A Framework for Self-adaptive
Software?

Dongsun Kim, Sooyong Park

Department of Computer Science and Interdisciplinary Program of Integrated
Biotechnology, Sogang University, Shinsu-Dong, Mapo-Gu, Seoul, 121-742, Republic

of Korea,
{darkrsw, sypark}@sogang.ac.kr

Abstract. The major goal of self-adaptive software is to provide a mech-
anism that allows a software system to dynamically change its architec-
tural configuration during run-time to cope with requirement changes
and unexpected conditions. Software which needs to handle dynamically
changing internal and external environment is one of the areas in which
self-adaptive software may do an important role in improving the relia-
bility and performance of software systems. There are three main capa-
bilities that are necessary to support self-adaptive software: the ability
to monitor and recognize internal/external situations that affect behav-
ior of the software system; the ability to determine when and what to
reconfigure in the software system to handle the situations; and the abil-
ity to dynamically change the software architecture during run-time to
make the reconfiguration effective. In this paper, we describe a software
framework to support such capabilities to realize self-adaptive software
and its experiment results.

1 Introduction

Intelligent software systems embedded in dynamic devices such as intelligent
service robots should provide various capabilities in various environment con-
tinuously. This requirement makes the internal operations in software systems
more complex. Due to the complexity, unpredictable errors and changes of sit-
uation often occurs at run-time[10]. Those unpredictable errors and changes of
situations disturb maintaining proper performances of a system at run-time. In
addition, it is a major factor which makes stable and persistent services of a
system impossible.

In particular, the embedded software, which needed in more dynamic and
complex changes of environment, faces the following problems:

1. Various unexpected situations that cannot be handled by pre-programmed
actions

? This research was performed for the Intelligent Robotics Development Program, one
of the 21st Century Frontier R&D Programs funded by the Ministry of Commerce,
Industry and Energy of Korea.

2

2. Changing user requirements that are encountered after deploying the em-
bedded software

3. Faults and errors (in embedded hardware and software) that make some
parts of embedded software unusable or malfunctioned

4. Frequent replacement and reconfiguration of hardware components, which
may cause some inconsistency problems in software that depends on the
hardware components

To overcome the problems above, the embedded software need to have the
ability to maintain and improve its own capabilities. The embedded software
should maintain three capabilities even in complex and exceptional situation of
external environment, which are changing dynamically. The followings are three
capabilities to maintain and improve its own functionalities:

1. Interfaces for implementing recognition of environment
2. Decision making and learning for the adaptive behavior by using reinforce-

ment learning
3. Dynamic reconfiguration by using role- and port- based software architecture

Three capabilities above cannot directly overcome all situations such as un-
expected problems, changes of user’s requirements, disorders in hardware and
software, and inconsistency in a system. However, the capabilities offer flexibility
and opportunity for software to adapt itself against environmental changes. Self-
adaptive software attaches new operations, modifies the current operations, and
removes unnecessary operations in order to overcome problems. In this paper,
we propose a framework for self-adaptive software called ’AlchemistJ’.

We explain the framework proposed in this research in detail in section 2,
and then show a case study using Robocode in section 3. We comment on other
significant work in Section 4 before drawing conclusions and proposing future
research in section 5.

2 Approach

2.1 Overall Architecture

AlchemistJ consists of the Monitor package(’env’), the Decision maker & Learner
package(’learner’) and the Reconfigurator package(’recon’). The Monitor pack-
age contains interfaces to support observation of situations and rewards of en-
vironment. Each situation is a vector of factors which can affect behavior of the
software system. Each reward is a real-numbered value that evaluates behavior
of the software system. The Decision maker & Learner package contains compo-
nents to support decision making and learning of software. This makes decisions
based on situations and rewards given by a monitor. The Reconfigurator pack-
age provides components to maintain software architecture of the systems and
reconfigure the architecture based on adaptation decisions from the Decision
Maker. AlchemistJ assumes software is designed by using role- and port-based
software architecture and reconfigures software architecture at run-time.

3

Reconfigurations leads to changes of behavior of the software system. The
changed behavior affects its environment. This affection changes situations of its
environment because of not only the changed behavior but also other factors(for
example, human factors, randomness, etc). The software system observes a new
situation and reward by using the Monitor. The Learner updates its knowledge
using the observed situation and reward. The software system repeats this iter-
ations at run-time to adapt its operations and to accumulate experience.

Fig. 1 shows the process of AlchemistJ explained above.

EnvironmentEnvironmentEnvironmentEnvironmentEnvironmentEnvironmentEnvironmentEnvironment

Decision MakerDecision MakerDecision MakerDecision MakerDecision MakerDecision MakerDecision MakerDecision Maker

& Learner& Learner& Learner& Learner& Learner& Learner& Learner& Learner

ReconfiguratorReconfiguratorReconfiguratorReconfiguratorReconfiguratorReconfiguratorReconfiguratorReconfigurator

Target SoftwareTarget SoftwareTarget SoftwareTarget SoftwareTarget SoftwareTarget SoftwareTarget SoftwareTarget Software

<a=1, b=3, b=<a=1, b=3, b=<a=1, b=3, b=<a=1, b=3, b=‘yesyesyesyes’, , , , …>>>>

<a=3, b=2, b=<a=3, b=2, b=<a=3, b=2, b=<a=3, b=2, b=‘yesyesyesyes’, , , , …>>>>

<a=6, b=1, b=<a=6, b=1, b=<a=6, b=1, b=<a=6, b=1, b=‘nononono’, , , , …>>>>

<a=0, b=1, b=<a=0, b=1, b=<a=0, b=1, b=<a=0, b=1, b=‘yesyesyesyes’, , , , …>>>>

…

RewardRewardRewardRewardRewardRewardRewardReward

L

∑

∑

=

=

22

2

11

1

ii

ii

pwr

pwr

ActionActionActionActionActionActionActionAction

Add Component Add Component Add Component Add Component ‘BBBB’

Replace Component Replace Component Replace Component Replace Component ‘CCCC’ ���� ‘DDDD’

Remove Component Remove Component Remove Component Remove Component ‘AAAA’

…

ReconfigurationReconfigurationReconfigurationReconfigurationReconfigurationReconfigurationReconfigurationReconfiguration

EffectEffectEffectEffectEffectEffectEffectEffect

SituationSituationSituationSituationSituationSituationSituationSituation

MonitorMonitorMonitorMonitorMonitorMonitorMonitorMonitor

Fig. 1. The Process of AlchemistJ

2.2 The Monitor

The Monitor package defines basic interfaces for observation of environment and
a process for passing situations and rewards to the Decision Maker and Learner.
This package has three interfaces, ’IState’, ’IReward’ and ’IEnvironment’.

’IState’ defines how to implement situation information. ’IState’ has two
methods as follows:

1. public String getStateCode()
2. public void setStateCode(String code)

4

’getStateCode()’ returns the unique situation code which is a string of char-
acters. ’setStateCode()’ replaces the unique situation code with a given situation
code. Developers should implement a monitor instance which is appropriate for
a target domain to observe environment and implement a class to contain situ-
ation information using ’IState’. Each object of the class contains a situation of
environment. Each situation is mapped to the unique situation code. ’IReward’
defines how to express reward information. ’IReward’ has one method as follows:

1. public double getReward()

’getReward()’ returns a real-numbered reward value. This value is determined by
a predefined equation. This equation should be defined by developers. AlchemistJ
basically assumes software maximize rewards. If a developer is eager to minimize
rewards, the Monitor should be implemented to multiply rewards by ’-1’.

’IEnvironment’ defines connections of the Monitor, the Decision maker &
Learner and the Reconfigurator. ’IEnvironment’ provides four methods:

1. public IState getState()
2. public boolean giveAction(IAction action)
3. public IReward getReward()
4. public ActionSet getAdmissibleActionSet(IState s)

Developers should implement a component in compliance with ’IEnviron-
ment’. ’getState()’ returns the current situation of environment. The current
situation is a object of the class which implements ’IState’. ’giveAction()’ gives
an adaptation decision made by the Decision Maker to the Reconfigurator. The
Reconfigurator reorganizes components of the software system and composes
them into a new architecture. ’getReward()’ returns rewards which are observed
from environment. Each reward is a instance of the class which implements ’IRe-
ward’. ’getAdmisibleActionSet()’ returns a set of possible adaptation actions.
These actions describe architecture-based adaptation actions such as component
replacement, component attachment and topology changes. The Decision Maker
determines one of the adaptation actions as the current adaptation decision.

2.3 The Decision maker & Learner

AlchemistJ applies reinforcement learning to the Decision Making & Learning.
Reinforcement learning is a mathematical formulation of interaction between an
agent and its environment[13]. There are lots of specific algorithms that carry
out reinforcement learning. AlchemistJ offers Q-learning implementation which
is one of the specific algorithms of reinforcement learning[14][15]. Q-learning
assumes a modeless environment. In other words, software cannot know deter-
ministic model of state transitions.

The Decision Maker receives the current situation as input data from the
Monitor. Then, the Decision Maker chooses an action to be applied. After ap-
plying the action to the system, The Learner receives the next situation and
the immediate reward from the Monitor and updates Q-values, Q(s, a). This
updating is carried out by equation (1):

5

Q(st, at) ← (1− α)Q(st, at) + α[rt+1 + γ max
a

Q(st+1, a)],

where 0 < α < 1, 0 < γ < 1
(1)

In equation (1), Q(st, at) indicates the Q-value for the situation st and the
taken action at where t is time. The term (1− α)Q(st, at) represents knowledge
that the software system experienced and the term α[rt+1 + γ maxa Q(st+1, a)]
represents the current experience where rt+1 is an immediate reward from mon-
itor and γ is a discount factor[13]. The value α controls weights of two terms.

Fig. 2 depicts a conceptual process of Q-learning in the Decision Maker &
the Learner. In each state the Decision Maker takes an action and moves to the
next state. In every transition, the Learner records rewards which is evaluated
by the monitor.

10,10
)],(max[),()1(),(11

<<<<

++−← ++

γα

γαα

where
asQrasQasQ t

a
ttttt

ts

1+ts

2+ts

3+ts

ta

1+ta

2+ta

),(tt asQ

),(11 ++ tt asQ

),(22 ++ tt asQ

State
Action

Fig. 2. Q-learning accumulates experiences of the software system by updating Q-
values

’learner’ package implements the Decision Maker & Learner. ’AbstractLearner’
contains general functionalities for decision making & learning. This is connected
with the Monitor which implements ’IEnvironment’ interface. ’AbstractLearner’
receives situation and reward information from the Monitor through ’IEnvi-
ronment’ interface and makes decisions and learns its environment using the
information. Basically, AlchemistJ offers ’QLearner’ as an implementation of

6

’AbstractLearner’. If developers want to design a new decision maker & learner,
they should implement a class that inherits ’AbstractLearner’ and connect it
with the Monitor.

2.4 Role- and Port-based Software Architecture

To make self-adaptation possible, the software system should contain flexible
components. These components should be reorganized into architecture to op-
erate its functionalities. For this reason, self-adaptive software development re-
quires predefined component & architecture design principle.

AlchemistJ provides role- and port-based architecture[9][6][3] as a design
principle. Assuming software is designed by role- and port-based architecture
design method, AlchemistJ reconfigures target software architecture. To con-
struct role- and port-based architecture, developers must decompose software
into roles. Each role describes abstract functionalities of each independent part
of software. Roles do not express concrete capabilities or strategies. In other
words, they should not define ’how to do’, but ’what to do’. A role can be con-
nected to make use of another role. After defining roles, they should be composed
into a role-model. This role-model is a basis of software architecture.

Component AComponent AComponent AComponent A

Role ARole ARole ARole A

Component AComponent AComponent AComponent A

Role ARole ARole ARole A

Role A Role B

Role C Role D

Role A Role B

Role C Role D

Component BComponent BComponent BComponent B

Role BRole BRole BRole B

Component BComponent BComponent BComponent B

Role BRole BRole BRole B

Component CComponent CComponent CComponent C

Role CRole CRole CRole C

Component CComponent CComponent CComponent C

Role CRole CRole CRole C

Component DComponent DComponent DComponent D

Role DRole DRole DRole D

Component DComponent DComponent DComponent D

Role DRole DRole DRole D

Fig. 3. Correspondence between roles and components

A role-model describes relationship among roles. The Reconfigurator of Al-
chemistJ makes it possible to change a role-model at run-time. A role can be
attached in and removed from the role-model. Each role should correspond to
a component. This component should play the corresponding role. Each com-
ponent consists of component body, role description, required ports, provided

7

ports. The component body contains executable code that the component ex-
ecutes. The role description indicates a role that the component plays. One
component can play only one role. The required ports describes other compo-
nents(actually provided ports) that the component needs. The Provided ports
describe what the component can do. One provided port should be connected
with only one required port. Fig. 3 shows a sample of correspondence between
roles and components.

2.5 Reconfigurator

AlchemistJ supports reconfiguration of roles and components at run-time. Role
reconfiguration consists of role attachment, role removal and changes of topology.
Component reconfiguration comprises component attachment because of role
attachment, component removal because of role removal, changes of a component
topology because of changes of role topology and component replacement. These
capabilities are implemented in ’recon’ package.

’Reconfigurator’ maintains the role-model and components in software ar-
chitecture and reorganizes components into a new architecture. Components
maintained by ’Reconfigurator’ should comply role- and port-based architecture.
To do this, ’recon’ package offers five interfaces. ’IPort’ contains basic methods
for ports. ’IPortRequired’ and ’IPortProvided’ which inherit ’IPort’ describe re-
quired ports and provided ports respectively. All components should implements
’IComponent’ interface which provides basic operations of components. ’IRole’
contains basic operations to describe a role. Every component has an object
implementing ’IRole’. ’recon’ package basically provides ’SimpleRole’ as an im-
plementation of ’IRole’.

3 Experiment

3.1 Introduction to Robocode

Robocode is a platform which includes the environment for game development
and a simulator and is developed by IBM. The game simulator in Robocode
provides a rectangular field for a battle. In the field, robots participating battle
away each other in order to destroy the opposing robot. In order to simplify the
implementation, this paper supposes that only two robots can participate in a
battle.

3.2 Implementation of a robot using AlchemistJ

We have implemented the robot’s capability to recognize environment according
to interfaces provided by ’env’ package in the framework. As mentioned in Sec-
tion 2.2, ’env’ package provides three kinds of interfaces. First, ’RobotState’ class
implements ’IState’ interface. ’RobotState’ class contains the number of hit by

8

bullets and the number of hit by wall. This class converts and encodes the cur-
rent situation into the unique situation code. ’RobotReward’ class implements
’IReward’ interface. An equation for rewards is set up as follows.

rt = 0.3 · 4ES + (−1) · 0.7 · 4EE (2)

In equation (2), rt, the reward value in time t, is calculated by summation of
two terms, 4ES and 4EE . 4ES is the difference of the robot’s energy between
time t−1 and t. 4EE is the difference of the enemy’s energy between time t−1
and t. Weights of two terms are 0.3 and 0.7 respectively. Since the energy of the
enemy should be minimized, we multiplied 4EE by (-1).

3.3 Construction of Software Architecture

We design a robot in compliance with Role- and port-based software architecture
proposed in section 2.4. Fig. 4 shows the roles of the robot and the relationship
among them.

The robot has five roles. ’Maneuver’ is responsible for how to move. ’Radar’
determines how to find an enemy robot by using a radar, and ’Targeting Strategy’
determines how to target the enemy robot. ’Firing Strategy’ determines how to
fire at the enemy robot. ’RobotBody’ has a role to relay over to the other 4
roles. In this experiment, ’Maneuver’ and ’Targeting Strategy’ are the target of
adaptation.

RobotBody RadarManeuver

Targeting

Strategy

Firing

Strategy

RobotBody RadarManeuver

Targeting

Strategy

Firing

Strategy

Fig. 4. The Role-model of the Robot

Based on the components shown in table 1, the robot is constituted. Fig. 5
shows the structure of the components assigned roles of the robot in the initial
state. The ’LinearManeuver’ component works a role as ’Maneuver’ and the
’LinearTargeting’ does as ’Targeting Strategy’ in the initial state of the robot.

9

Table 1. The component list of robot architecture

Component name Role of component Required ports Provided ports

NewRobot RobotBody RadarPort, Maneu-
verPort, TargetPort

N/A

Radar Radar N/A RadarPortP

LinearManeuver Maneuver N/A ManeuverPortP

CircularManeuver Maneuver N/A ManeuverPortP

AdvancedTargeting Targeting Strategy FiringPort TargetPortP

RammingTargeting Targeting Strategy FiringPort TargetPortP

LinearTargeting Targeting Strategy FiringPort TargetPortP

Firing Firing Strategy N/A FiringPortP

LinearManeuver

Maneuver

LinearManeuver

Maneuver

LinearTargeting

Targeting

Strategy

LinearTargeting

Targeting

Strategy

NewRobot

RobotBody

NewRobot

RobotBody

Radar

Radar

Radar

Radar

Firing

Firing

Strategy

Firing

Firing

Strategy

Fig. 5. The Initial Architecture of the Robot

3.4 The result from an experiment

We have performed two experiments in order to verify effectiveness of adaptation
of the robot implemented by AlchemistJ. The first experiment is a battle our
robot which has no adaptation capabilities(Robot X) and an enemy robot from
outside. We design our robot without adaptation capabilities but this robot has
’CircularManeuver’ component which plays ’Maneuver’ role and ’AdvancedTar-
geting’ component which plays ’Targeting Strategy’. ’CircularManeuver’ compo-
nent outperforms ’LinearManeuver’, and ’AdvancedTargeting’ component out-
performs ’RammingTargeting’ and ’LinearTargeting’. The enemy of this robot is
’Antigravity Robot’ which is one of the best robots. Fig. 6 shows that ’Antigrav-
ity Robot’ has a predominant winning average against a robot without adapta-
tion capabilities. On the basis of this experiment, we designed the next experi-
ment.

The second experiment is a battle between our robot with adaptation capa-
bilities(Robot A) and ’Antigravity Robot’. ’Robot A’ can reconfigure its archi-
tecture using components which plays ’Maneuver’ role and ’Targeting Strategy’
role such as ’LinearManeuver’ and ’RammingTargeting’. Fig. 7 shows the result
from the battle between two robots.

10

Experiment 1

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12

Battles(X 100)

W
in

n
in

g
 a

v
e
ra

g
e

Antygravity Robot(enemy) Our robot without adaptation(Robot X)

Fig. 6. The Result of the First Experiment

The result from the battle between ’Robot A’ and ’Antigravity Robot’ shows
that ’Robot A’ has a 60∼70% winning average against ’Antigravity Robot’. It
means that the dynamic reconfiguration with diverse ’Maneuver’ and ’Target-
ing Strategy’ components gives better performance than the maintenance with
only one moving component and one targeting component even though those
outperform other components.

Our approach has the exact difference from a sequence of if-then-else
statements. A sequence of if-then-else statements is hard-coded in source
code. Each if-then-else statement consists of a condition and an action. To
modify a condition or an action, a programmer must rewrite the source code,
compile it, shutdown the software system to be modified, re-link the compiled
component, and re-execute again. However, AlchemistJ provides the character-
istics to reduce the burden of a programmer. Of course, the programmer can
make a situation(condition)-behavior(action) lookup table and propose a mech-
anism for updating the table dynamically, but the mechanism is already another
version of AlchemistJ.

4 Related Work

The researches of Richard N. Taylor(University of California, Irvine)[12][11][2],
David Garlan(Carnegie Mellon University)[4][1][5], Jamie Hillman(Lancaster Uni-
versity)[8][7] provide the capability of dynamic reconfiguration. The capabilities
of dynamic reconfiguration proposed in each framework are different, but they
have similarity in terms of changing software structure in the architecture level.
All of the three frameworks cannot provide decision making and learning of the

11

Experiment 2

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12

Battles(X 100)

W
in

n
in

g
 a

v
e
ra

g
e

Robot with adaptation(Robot A) Antigravity Robot(enemy)

Fig. 7. The Result of the Second Experiment

adaptive behavior. Even though they mention its necessity, they cannot sug-
gest what technology and theory to use and to implement in practice. Except
Garlan’s research[5], they do not provide a implementation, but conceptually
mention only the necessity of it.

We proposed the AlchemistJ framework integrating three capabilities. Al-
chemistJ is implemented by Java, and comprises three packages to support recog-
nition of environment by defining interfaces for the monitor, decision making and
learning by Q-learning implementation, and dynamic reconfiguration using role-
and port-based software architecture.

5 Conclusions

Self-adaptive software recognizes environments, and determines the adaptation
behavior according to the situations it recognized. In addition, it can change its
own architecture in order to perform the adaptation behavior.

We proposed AlchemistJ as a software framework to support developing self-
adaptive software. This framework proposed in this paper supports the follow-
ings.

1. It prescribes interfaces to support the implementation for recognition of its
environment.

2. It employs reinforcement learning to the framework in order to support de-
cision making and learning of the adaptive behavior.

3. It prescribes role- and port-based software architecture and reconfiguration
principle in order to support dynamic reconfiguration at run-time.

In order to verify operations of the framework, we have implemented an
instance of self-adaptive robot software with Robocode, and examined the ability
of adaptation of software from two experiments.

12

Further study is the development of visualization tools and measurement
tools to improve the efficiency of the framework. Also we need to develop a repos-
itory for framework to maintain components. In AlchemistJ, we implemented a
simple and local repository which can only gives a component corresponding a
simple message. The more advanced repository should manage components with
more specific description and give components via online connection.

References

1. R. J. Allen, R. Douence, and D. Garlan. Specifying dynamism in software ar-
chitectures. In Proceedings of the Workshop on Foundations of Component-Based
Software Engineering, 1997.

2. E. M. Dashofy, A. van der Hoek, and R. N. Taylor. Towards architecture-based
self-healing systems. In Proceedings of the First Workshop on Self-Healing Systems,
2002.

3. K. R. Dixon, T. Q. Pham, and P. K. Khosla. Port-based adaptable agent archi-
tecture. In First International Workshop, IWSAS 2000, 2000.

4. D. Garlan, S.-W. Cheng, A. C. Huang, B. Schmerl, and P. Steenkiste. Rainbow:
Architecture-based self-adaptation with reusable infrastructure. IEEE Computer,
37(10):46–54, October 2004.

5. D. Garlan, B. Schmerl, and J. Chang. Using gauges for architecture-based monitor-
ing and adaptation. In the Working Conference on Complex and Dynamic Systems
Architecture, 2001.

6. M. M. Gorlick and R. R. Razouk. Using weaves for software construction and anal-
ysis. In Proceedings of the 13th International Conference on Software Engineering,
1991.

7. J. Hillman and I. Warren. Meta-adaptation in autonomic systems. In 10th IEEE
International Workshop on Future Trends of Distributed Computing Systems, 2004.

8. J. Hillman and I. Warren. An open framework for dynamic reconfiguration. In
26th International Conference on Software Engineering, 2004.

9. T.-H. Kim and Y.-G. Shin. Role-based decomposition for improving concurrency
in distributed object-oriented software development environments. In 23rd Inter-
national Computer Software and Applications Conference, 1999.

10. R. Laddaga. Active software. In H. S. Pual Robertson and R. Laddaga, editors,
First International Workshop on Self-Adaptive Software(IWSAS 2000), volume
1936 of Lecture Notes in Computer Science, pages 11–26. Springer, 2000.

11. P. Oreizy. Issues in the runtime modification of software architectures. Technical
report, Department of Information and Computer Science, University of California,
Irvine, 1996.

12. P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimbingner, G. Johnson, N. Medvi-
dovid, A. Quilici, D. S. Rosenblum, and A. L. Wolf. An architecture-based approach
to self-adaptive software. IEEE Intelligent Systems, 14(3):54–62, May 1999.

13. R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. Cam-
bridge, Massachusetts, The MIT Press, 1998.

14. C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, Cambridge
University, 1989.

15. C. J. C. H. Watkins and P. Dayan. Technical note: Q-learning. Machine Learning,
8(3-4):279 – 292, May 1992.

