Loop Distribution and Fusion with Timing and
Code Size Optimization for Embedded DSPs *

Meilin Liu!, Qingfeng Zhuge', Zili Shao?, Chun Xue', Meikang Qiu', and
Edwin H.-M. Sha!

! University of Texas at Dallas
Richardson, Texas 75083, USA
{mx1024100, gfzhuge,cxx016000, mxq012100, edsha}@utdallas.edu
2 Hong Kong Polytechnic University
Hung Hom, Kowloon, Hong Kong
cszlshao@comp.polyu.edu.hk

Abstract. Loop distribution and loop fusion are two effective loop trans-
formation techniques to optimize the execution of the programs in DSP
applications. In this paper, we propose a new technique combining loop
distribution with direct loop fusion, which will improve the timing per-
formance without jeopardizing the code size. We first develop the loop
distribution theorems that state the legality conditions of loop distribu-
tion for multi-level nested loops. We show that if the summation of the
edge weights of the dependence cycle satisfies a certain condition, then
the statements involved in the dependence cycle can be distributed; oth-
erwise, they should be put in the same loop after loop distribution. Then,
we propose the technique of maximum loop distribution with direct loop
fusion. The experimental results show that the execution time of the
transformed loops by our technique is reduced 21.0% on average com-
pared to the original loops and the code size of the transformed loops is
reduced 7.0% on average compared to the original loops.

Keywords: Loop Fusion, Loop Distribution, Embedded DSP, Code Size,
Scheduling

1 Introduction

Timing performance and code size are two major concerns for embedded systems
with very limited on-chip memory resources [9]. Since loops are prevalent in
multimedia processing, digital signal processing, etc., loop transformations such
as loop fusion, loop distribution are needed to optimize the execution of the
loops in embedded DSP applications [8,1-3, 5].

Loop distribution separates independent statements inside a single loop (or
loop nest) into multiple loops (or loop nests) [8,1,3,2,5]. Loop distribution
can be used to break up a large loop that doesn’t fit into the cache [2,3,8,1].

* This work is partially supported by TT University Program, NSF EIA-0103709, Texas
ARP 009741-0028-2001, NSF CCF-0309461, NSF 11S-0513669, Microsoft, USA.

It can also improve memory locality by fissioning a loop that refers to many
different arrays into several loops, each of which refers to only a few arrays.
Loop distribution can also enable other loop optimization techniques such as
loop fusion, loop interchanging and loop permutation [8,1,3,5].

Loop fusion, on the other hand, groups multiple loops to increase the instruc-
tion level parallelism, and correspondingly reduces execution time. There are a
lot of previous works using loop fusion to optimize the execution of loops [2,
3,8,1,4,5,7]. But sometimes loop shifting or retiming is needed to enable loop
fusion, which will cause the code size expansion because of the generation of the
prologue and epilogue. The maximum loop fusion technique (Max_LF) proposed
in [4] can maximize the opportunities of loop fusion, but it cannot be applied in
the cases where strict memory constraint applies.

A combination of loop distribution and loop fusion can find an optimization
solution with both reduced execution time and restricted code size if the loop
properties are fully understood. Therefore, it is very important to revisit and
formalize the loop distribution and loop fusion theorems on graph models, and
find an effective way to combine these two oppositely directed optimization tech-
niques. In this paper, we propose a technique of mazimum loop distribution with
direct fusion (MLD_DF), which performs mazimum loop distribution, followed by
direct loop fusion. The technique significantly improves the timing performance
compared to the original loops without jeopardizing the code size.

Loop distribution is an important part of our technique of maximum loop
distribution with direct fusion (MLD_DF). But loop distribution is not simple.
All the data dependences have to be preserved when breaking one single loop
into multiple small loops. The authors of [2,3,5] stated that loop distribution
preserves dependences if all statements involved in a data dependence cycle in
the original loop are placed in the same loop. We show that dependence cycle is
a restriction for loop distribution for one-level loops only. For multi-level nested
loops, dependence cycle is not always a restriction for loop distribution. If the
summation of the edge weights of the dependence cycle satisfies a certain condi-
tion, then the statements involved in the dependence cycle can be distributed.

In this paper, we propose general loop distribution theorems for multi-level
loops to state the legality conditions of loop distribution based on the under-
standing of loop properties on graph models. Then, we show how to conduct
maximum loop distribution for N-level loops based on the loop distribution the-
orems. We then propose the technique of maximum loop distribution with direct
fusion (MLD_DF). The experimental results showed that the execution time of
the transformed loops by our MLD_DF technique can be improved 21.0% on
average compared to the original loops when there are eight functional units.

The rest of the paper is organized as follows: We introduce the basic concepts
and principles related to our technique in Section 2. In Section 3, we propose
the loop distribution theorems to guide loop distribution. We propose the tech-
nique of maximum loop distribution with direct fusion (MLD_DF') in Section 4.
Section 5 presents the experimental results. Section 6 concludes the paper.

2 Basic Concepts

In this section, we provide an overview of the basic concepts and principles
related to our technique.

2.1 Data Flow Graph

We use a multi-dimensional data flow graph(M DF@G) to model the body of one
nested loop. A MDFG G = (V, E,d,t) is a node-weighted and edge-weighted
directed graph, where V is the set of computation nodes, F C V x V is the
set of edges representing dependences, d is a function from E to Z"™, represent-
ing the multi-dimensional delays between two nodes, where n is the number of
dimensions, and t is a function from V to positive integers, representing the
computation time of each node.
fori=0, N
for j=0, M

DIi,j]=B[i-1,j+1]*C[i-1,j-1];
endfor

for j=0, M
Alijl=DIi j]*0.5;
for i=0, N endfor
for j=0, M for j=0, M
D[i,j]=B[i-1,j+1]*C[i-1,j-1]; B[i,j]=Ali.j]+1;
Ali,j]=D[i,j]*0.5; endfor
B[i j]=ALij]+1; for j=0, M
Cli.jJ=Ali]+2; Cli.jJ=Alij1+2;

endfor
endfor

endfor
endfor

) (a) (b) R) d)
Fig.1. (a) A loop extracted from a Wave Digital Filter. (b) The corresponding Data
Flow Graph. (c) The distributed loop. (d) The loop dependence graph of the distributed
loop.

The execution of each node in V exactly once represents an iteration, i.e.,
the execution of one instance of the loop body. Iterations are identified by a
vector ¢, equivalent to a multi-dimensional index. Inter-iteration dependences
are represented by vector-weighted edges. For any iteration j, an edge e from u
to v with delay vector d(e) means that the computation of node v at iteration
J requires the data produced by node u at iteration j — d(e). An edge with

delay (0,---,0) represents a data dependence within the same iteration. A legal
MDFG must have no zero-delay cycle, i.e., the summation of the edge weights
along any cycle can not be (0,---,0).

The program shown in Fig. 1(a) is extracted from a wave digital filter and
its corresponding data flow graph is shown in Fig. 1(b).

2.2 Loop Dependence Graph

Loop dependence graph (LDG) is a higher-level graph model compared to the
data flow graph [4]. It is used to model the data dependences between multiple
loops. A multi-dimensional loop dependence graph (MLDG) G = (V, E,d,0)
is a node-labeled and edge-weighted directed graph, where V' is a set of nodes

representing the loops. £ C V' xV is a set of edges representing data dependences
between the loops. d is a function from E to Z", representing the minimum data
dependence vector between the computations of two loops. o is a function from
V' to positive integers, representing the order of the execution sequence. All the
comparisons between two data dependence vectors are based on the lexicographic
order in this paper.

fori=0, N
for j=0,M
[Aliil=cli-2j+1; | (L)
endfor
for j=0, M
\ BIi,jI=All,j+1]+Ai,j]+Cli-Ll; \(Lz)
endfor
for j=0, M
[CHil=Bl+AG+2AT*T; | (L3)
endfor

endfor

. (2) . . (b}
Fig. 2. A loop and its corresponding LDG

The loop dependence graph of the loop in Fig. 2(a) is shown in Fig. 2(b).
There are three nodes V' = {L1,L2,L3} in the loop dependence graph that
represent the three innermost loops in the program. The loop dependence edges
are B = {e; : L1 — L2, eo : L1 — L3, e3: L2 — L3, e4 : L3 — L2, e5 :
L3 — L1}. The data dependence vectors are {(0,—1),(0,0)} between nodes L1
and L2, {(0,—2),(0,—1)} between nodes L1 and L3, {(0,0)} between nodes L2
and L3, {(1,0)} between nodes L3 and L2, and {(2,—1)} between nodes L3
and L1. According to our MLDG definition, é(e;) = (0,—1), d(e2) = (0,—2),
6(e3) = (0,0), d(eq) = (1,0), 6(es) = (2, —1).

In a loop dependence graph, a fusion-preventing dependence is represented
by an edge e with edge weight d(e) < (0,0, ---,0). The fusion-preventing depen-
dence edges for the LDG shown in Fig. 2(b) are e; and es.

A backward edge in the loop dependence graph is defined as an edge from a
node labeled with a larger number to a node labeled with a smaller number. For
example, in the loop dependence graph shown in Fig. 2(b), node L1 represents
the first inner loop of the loop shown in Fig. 2(a), which is labeled with 1
according to the execution sequence. Node L3 represents the third inner loop of
the loop shown in Fig. 2(a), which is labeled with 3. According to the definition,
in the loop dependence graph shown in Fig. 2(b), the backward edges include
the edge from node L3 to L1, and the edge from L3 to L2.

3 Theorems of Loop Distribution

In the process of loop distribution, we must maintain all the data dependences
to ensure that we won’t change the semantics of the original program. To guar-
antee the correctness of loop distribution, we propose several theorems to guide
loop distribution. In this paper, we only consider the loops with uniform data

dependences. A lot of DSP applications fit in this category. In the following, the
general theorems for the N-level nested loops is proposed.

Theorem 1. Given a N-level perfect nested loop and its corresponding data flow
graph, after loop distribution, if the shared outer loop level is J, J < N —1, then
the backward edge e in the LDG G = (V,E,d,0) of the distributed loop must
satisfy that (01(e),---,05(e)) > (0,---,1).

If we distribute the loop on the (J + 1)-th loop level, then the distributed
loop has J-level shared outer loop. A backward edge e in a LDG represents
loop-carried data dependence. The first J elements in an edge weight vector
(61(e),---,ds(e)) represent the dependence distance of the shared outer loop.
If (61(e),---,05(e)) of a backward edge e in the LDG of the distributed loop
is a non-positive value, then true data dependences are changed to anti-data
dependences by loop distribution. Thus, loop distribution becomes illegal. Ob-
viously, the code shown in Fig.3(b) computes differently from the code shown
in Fig.3(a). Ali, j] is dependent on BJi, j — 1], which is a true data dependence
in the original program as shown in Fig.3(a). If we directly distribute the loop
shown in Fig.3(a), then this true data dependence becomes an anti-data depen-
dence in the distributed loop as shown in Fig. 3(b). Therefore, any legal LDG
of an N-level nested loop (distributed loop) must have a positive value on the
first J elements of the weight vectors of the backward edges.

for i=0, N
i for j=0,M
for i=0, N Al j]=B[i,j-11*2;
for j=0,M endfor
Al j]=B[i,j-1]*2; for j=0,M
BI[i jl=Ali.j]+5; BIi,j]=Al[i j]+5;
endfor endfor
endfor endfor

a
Fig. 3. An illustration example

Fig. 1(c) shows the distributed loop of the original program shown in Fig. 1(a).
Because the backward edges e; : L3 — L1 and e5 : L4 — L1 in the LDG shown
in Fig. 1(d) have the edge weight (1,-1) and weight (1,1) respectively, i.e., the
backward edges e; and es both have positive value on the first element, the
correct execution of the original loop is able to be preserved in the distributed
loop.

When there are dependence cycles existing in the data flow graph of a loop,
it’s important to know whether the computations involved in a dependence cycle
can be distributed or not. In the following, we show that the nodes in the depen-
dence cycles of the LDG of a N-level nested loop can be completely distributed
when the necessary condition in Theorem 2 is satisfied. A loop is completely dis-
tributed when each loop unit after distribution only has one array assignment
statement.

Theorem 2. Given a N-level perfect nested loop and its corresponding data flow
graph G = (V, E,d,t),

1. if there is no dependence cycle in the data flow graph G,

2. or if for any dependence cycle ¢ = {vy — vy — -+ = v, — v1} in G, the
summation d(c) of the edge weights of cycle ¢ satisfies that (d1(c),---,dj(c)) >
0,---,1),J <N -1,

then the loop can be completely distributed on the (J + 1)-th level loop until the
N-th level.

Due to the space limit, we do not give a formal proof here. It directly follows
from Theorem 1, since all the data dependences in the LDG of the distributed
loop come from the data dependences of the original loop. Theorem 2 also shows
that if we can distribute the loop at the J-th (J < N) loop level for a N-level
loop, we can distribute this N-level loop at the innermost loop level.

For example, there is one cycle in the data flow graph of the 3-level loop shown
in Fig. 4(a). The summation of the edge weights of the dependence cycle ¢ in the
corresponding data flow graph has the property that di(c) = 1. According to
theorem 2, we can distribute the loop at the second loop level. The distributed
loop is shown in Fig. 4(b). There is one-level shared outer loop in the distributed
loop. Also we can distribute the innermost loop of this 3-level loop, and the
distributed loop is shown in Fig. 4(c).

for i=0, N
for j=0,M
for k=0, S
Alij,KI=C[i-1,j K]+7;
endfor for i=0, N
endfor for j=0, M
for j=0,M for k=0,S
for k=0, S AliLj.K]=C[i-1,j,K]+7;
for i=0, N BIi,j,k]=Ali,j,k]*3; endfor
for j=0,M endfor for k=0, S
for k=0,S endfor BI[i.j.K]=A[i.j,k]*3;
Alij,k]=C[i-1,j,K]+7; for j=0,M endfor
BI[i,j,K]=A[i,j K]*3; for k=0,S for k=0,
C[i.j,KI=B[i.j.KI+5; C[i.jK]=B[i.j,K]+5; C[i.j K]=B[i,j,K]+5;
endfor endfor endfor
endfor endfor endfor
endfor endfor endfor
(a) (b) (c)

Fig. 4. (a)A 3-level nested loop. (b) The distributed loop with 1-level outer shared
loop. (c) The distributed loop with 2-level outer shared loop.

Theorem 3 identifies the dependence cycle in the data flow graph that pre-
vents the statements involved in the dependence cycle from distribution.

Theorem 3. Given a N-level nested loop and its corresponding data flow graph
G = (V,E,d,t), for any dependence cycle c = {vy —» vg — -+ = v, —v1} inG,
such that the summation of the edge weights d(c) satisfies that (d1(c),---,dj(c)) =
(0,---,0), the statements involved in dependence cycle ¢ must be placed in the
same loop after the loop is distributed on the (J + 1)-th loop level.

If we distribute the statements in a dependence cycle ¢ with (dy(c),---,ds(c)) =
(0,---,0), then there will be a dependence cycle ¢ with (di(c),---,ds(c)) =
(0,---,0) in the correspondent LDG of the distributed loop. For a legal pro-
gram, all the edges e involved in a dependence cycle ¢ in the LDG must have the
property (di(c),---,ds(c)) > (0,---,0). So the backward edge e’ in the cycle ¢
must have (dy(e'),---,ds(e’)) = (0,---,0), which is contradictory to Theorem 1.
When the first J elements of the summation of the edge weights of a cycle are
all zeros, it indicates that all the statements in the cycle have to be computed
within one loop. In other words, all the statements involved in a dependence
cycle ¢ with (di(c),---,d(¢)) = (0,---,0) must be put into one loop after the
loop is distributed on the (J 4 1)-th loop level.

4 Loop Distribution and Loop Fusion

In this section, we first use an example to show how to conduct maximum loop
distribution for N-level nested loops based on the loop distribution theorems
proposed in Section 3. Then, we propose the technique of maximum loop distri-
bution with direct fusion (MLD_DF).

4.1 Maximum Loop Distribution

for i=0, N
for j=0,M
for k=0,S
for i=0,N BJi,j K]=A[i-1jk];
for j=0, M endfor
for k=0,S for k=08
AlijKI=D[i k-2]; COMB0G DL k-1
B[i,j KI=A[i-1j K]; DIi,j KI=C[i,j,k]+7;
CIi,j,k]=BIi,j.K]+D[ij k-1]; endfor
D[KI=C[iL.kI+7; for k=05

AlijKI=D[ijk-2];

endfor endfor

endfor endfor
endfor endfor

(a) b)
Fig.5. (a)An example loop. (b) The distributed loop.

To conduct maximum loop distribution for a multi-level loop on the inner-
most loop level, we first remove the edges e with weight (dq(e),---,dn_1(e)) >
(0,---,1) from the LDG of the given loop. Thus, if the summation d(c) of
the edge weights of a cycle ¢ in the LDG satisfies that (di(c),---,dny—_1(e)) >
(0,---,1), then cycle ¢ is broken. Then, we merge each cycle ¢ with (dy(c),---,dn-1(c)) =
(0,---,0) into one node. This is used to guarantee that the statements involved
in the dependency cycle whose summation of the edge weights satisfies that
(di(c),---,dn-1(c)) = (0,---,0) will be put into the same loop after loop distri-
bution. Then, we can reorder the nodes by the topological order to ensure that
the edge weight d(e) of a backward edge e in the LDG of the distributed loop has
positive value on its first N — 1 elements, i.e., (d1(e),---,dn—1(€e)) > (0,---,1).

Fig. 6. The graph transformation process of the maximum loop distribution algorithm

Every node in the transformed graph corresponds to a loop unit in the distributed
loop.

We use a 3-level nested loop as shown in Fig. 5(a) to show the graph trans-
formation process of maximum loop distribution for N-level nested loops. There
are two cycles ¢, ¢y in its corresponding data flow graph as shown in Fig. 6(a).
The summation of the edge weights of the first cycle ¢ = {V} — V5 — V3 —
Vi — V1 } satisfies that d(c1) = (1,0, 2), so cycle ¢; will be broken after the edges
e with (dy(e),dz(e)) > (0,1) are removed. The summation of the edge weights
of the second cycle co = {V3 — V; — V3} has the property that d(c2) = (0,0, 1),
so cycle ¢y will be merged into one node according to the basic idea of maximum
loop distribution since (d1(c), dz2(c)) = (0,0). Thus, we get a DAG G’. Then, we
perform topological sort on graph G’ and obtain the node-reordered graph G*
shown in Fig. 6(d). Each node in the graph G* corresponds to one loop unit in
the distributed loop. According to the sorted nodes, we can generate the code
of the distributed loop as shown in Fig. 5(b). Then we can get the LDG of the
distributed loop as shown in Fig. 6(e). Fig. 6 shows the graph transformation
process.

4.2 Maximum Loop Distribution with Direct Loop Fusion

Direct loop fusion is to fuse two or more loops into one loop when there are
no fusion-preventing dependences between these loops. Our direct loop fusion
technique is based on the loop dependence graph, and it is mapped to the
graph partitioning technique [3,5]. To apply direct loop fusion, we partition
the loop nodes in the LDG into several partitions so that loop nodes connected
by a fusion-preventing dependence edge are partitioned into different partitions.
Thus, we guarantee that there is no fusion-preventing dependence existing be-
tween the nodes inside one partition and all the loop nodes inside one partition
can be directly fused.

The technique of maximum loop distribution with direct fusion (MLD_DF)
is to perform maximum loop distribution followed with direct loop fusion, such
that the timing performance of the loops is increased without the increase of the
code size. We first apply maximum loop distribution on a given loop. After we
perform maximum loop distribution, we partition the loop nodes in the LDG of
the distributed loop such that there is no fusion-preventing dependences existing

between the nodes inside one partition and all the loop nodes inside one partition
can be directly fused [3]. Then, direct loop fusion is applied.

5 Experiments

This section presents the experimental results of our technique. We simulate a
DSP processor with eight functional units. We compare the code sizes and the
execution time of the original loops with those of the fused loops produced by
the technique of maximum loop distribution with direct fusion (MLD DF). The
execution time is defined to be the schedule length times the total iterations.
The schedule length is the number of time units to finish one iteration of the
loop body. For the sequentially executed loops, the execution time is the summa-
tion of the execution time of each individual loop. The standard list scheduling
algorithm is used in our experiments.

LDGI1, LDG2, and LDG3 refer to the examples presented in Figure 2, 8, and
17 in [6]. LDG4 and LDGS5 refer to the examples shown in Figure 2(a) and Figure
6(a) in [4]. Each node of an LDG is a DSP benchmark. The DSP benchmarks
include WDF (Wave Digital filter), IIR, (Infinite Impulse Response filter), DPCM
(Differential Pulse-Code Modulation device), and 2D (Two Dimensional filter).
We estimate the code size in memory by the number of instructions.

Table 1. The code size and the execution time of the original loops and the transformed
loops by the MLD_DF technique

Original MLD_DF
Program [#Node| Size| Time #NodeSize Time [Time Impro.Size Red.

LDG1 4 15 |9*N*M 4 15 |9*N*M 0% 0%

LDG2 7 84 BE*N*M| 2 74 R6*N*M 27.8% 11.9%

LDG3 7 102 38*N*M| 3 94 RY*N*M 23.7% 7.8%

LDG4 3 36 23*N*M| 2 34 17*N*M 26.1% 5.6%

LDG5 4 42 R9*N*M| 2 38 RI*N*M 27.6% 9.5%
Improvement - - 21.0% 7.0%

In Table 1, the column ” Original’ contains three fields: the number of loop
nodes (#Node), the code size (Size), and the execution time (Time). The Column
"MLD_DF’ contains five fields: the number of loop nodes (#Node), the code size
(Size), the execution time (Time), the improvement of the execution time (Time
Impro.), and the reduction of the code size (Size Red.). The Column ” Original’
shows the number of the loop units, the code size and the execution time of
the original loop. The Column ” MLD_DF” shows the number of the loop units,
the code size, the execution time, the improvement of the execution time of
the fused loop by the MLD_DF technique and the reduction of the code size of
the fused loop by the MLD_DF technique. Here, N is the total number of the
iterations for the outermost loop, and M is the total number of the iterations
for the innermost loop.

Although the maximum loop fusion technique (Max_LF) proposed in [4] can
always achieve a shorter execution time than the technique of maximum loop dis-
tribution with direct fusion (MLD_DF), it increases the code size. In many cases,

this technique cannot be applied because of the memory constraint. Compared
to the Max_LF technique, the MLD _DF technique takes advantage of both loop
distribution and loop fusion, so it reduces the original execution time and also
avoids the code-size expansion. The experimental results showed that the timing
performance of the fused loop by our MLD_DF technique can be improved 21.0%
on average compared to the original loops, and the code size is reduced 7.0% on
average compared to the original loops.

6 Conclusion

The maximum loop fusion technique (Max_LF) proposed in [4] can maximize
the opportunities of loop fusion, but it also increases code size. In this paper, we
developed the technique of combining loop distribution and loop fusion to achieve
a shorter execution time with a reduction of the code size. The experimental
results showed that the timing performance of the transformed loops by our
MLD_DF technique can be improved significantly compared to the original loops,
and the code size of the transformed loops is also reduced compared to the
original loops.

References

1. R. Allen and K. Kennedy. Optimizing Compilers for Modern Architectures: A
Dependence-based Approach. Morgan Kaufmann, 2001.

2. K. Kennedy and K. S. Mckinley. Loop distribution with arbitrary control flow. In
Proc. of the 1990 conference on Supercomputing, pages 407 — 416, Nov. 1990.

3. K. Kennedy and K. S. Mckinley. Maximizing loop parallelism and improving data
locality via loop fusion and distribution. In Languages and Compilers for Parallel
Computing, Lecture Notes in Computer Science, Number 768, pages 301-320, 1993.

4. M. Liu, Q. Zhuge, Z. Shao, and E. H.-M. Sha. General loop fusion technique
for nested loops considering timing and code size. In Proc. ACM/IEEE Interna-
tional Conference on Compilers, Architectures, and Synthesis for Embedded Systems
(CASES 2004), pages 190-201, Sep. 2004.

5. K. S. McKinley, S. Carr, and C.-W. Tseng. Improving data locality with loop
transformations. ACM Transactions on Programming Languages and Systems
(TOPLAS), 18(4):424 — 453, July 1996.

6. E. H-M. Sha, T. W. O’Neil, and N. L. Passos. Efficient polynomial-time nested
loop fusion with full parallelism. International Journal of Computers and Their
Applications, 10(1):9-24, Mar. 2003.

7. S. Verdoolaege, M. Bruynooghe, and F. Catthoor. Multi-dimensional incremental
loop fusion for data locality. In Proc. of the Application-Specific Systems, Architec-
tures, and Processors, pages 14—24, 2003.

8. M. Wolfe. High Performance Compilers for Parallel Computing. Addison-Wesley
Publishing Company, Inc., 1996.

9. Q. Zhuge, B. Xiao, and E.-M. Sha. Code size reduction technique and implemen-
tation for software-pipelined DSP applications. ACM Transactions on Embedded
Computing Systems(TECS), 2(4):590-613, Nov. 2003.

