
Near Optimal and Energy-efficient Scheduling for 
Hard Real-time Embedded Systems** 

Amjad Mohsen and Richard Hofmann 

Department of Communication Systems and Computer Networks 
University of Erlangen, Martensstr. 3, 91058 Erlangen, Germany.  

Amjad.muhsen@infromatik.uni-erlangen.de, rhofmann@cs.fau.de 

Abstract. In this paper, we present a new energy-aware scheduling scheme for 
real-time applications using architectures that employ voltage scaling 
technologies. Both dynamic voltage scaling (DVS) and dynamic threshold 
voltage scaling (DVTHS) can benefit from this scheduling scheme. The start 
time of each task is adapted to enhance the efficiency of voltage scaling 
schemes while still satisfying the required time feasibility. The introduced 
scheduling scheme is able to escape local minima and it can generate near-
optimal schedules in terms of energy reduction. The scheduling paradigm is 
integrated into our automated and multiobjective system-level co-synthesis tool 
that performs system optimization. We report in this paper up to about 30% 
higher energy reduction compared to only performance-aware scheduling.   

1   Introduction 

The complexity of real-time embedded systems is increasing rapidly with a non-
stopping demand for higher performance. Especially for mobile systems, power 
consumption is a real challenge since these systems depend on a battery that can 
supply energy only for limited time. The steady move towards deep submicron 
technologies will make power rather dominate all other design constraints. Therefore, 
new methodologies and automated tools are required to handle design tradeoffs at all 
abstraction levels in order to sharply reduce the consumed energy. Without such 
methodologies that deal with all requirements and tradeoffs concurrently, designed 
systems will continue to dissipate unnecessary energy that can be saved by using 
more efficient and energy-aware design tools.  

A prominent approach which remarkably reduces total power/energy consumption 
is dynamic voltage scaling (DVS). DVS was proposed in order to trade performance 
for power without loosing the peak performance of the system [1]. Reducing the 
supply voltage by a factor of two in DVS-enabled systems reduces the consumed 
(dynamic) energy by a factor of four. As technologies continue to scale down, the 
leakage power will account to about 50% of the total consumed power or even more. 
Applying DVS alone can achieve only linear reduction in the leakage power.  An 
                                                           
** We are grateful indeed that DAAD (German Academic Exchange Service) supports this 

research since 2002. 



       

efficient scheme which can limit the leakage power is adaptive body biasing (ABB). 
In this scheme, the threshold voltage is modified based on demand according to the 
state of the system and its workload [2]. This scheme can cause exponential reduction 
in leakage power. 

Applying voltage scaling schemes to exploit slack intervals in the system can 
reduce the total power/energy dissipated in digital systems. However, the availability 
of enough slack intervals and their distribution, which are directly influenced by the 
time schedule of the tasks, are crucial efficiency issues for voltage scaling schemes. 
Additionally, it is essential to consider power profiles of the tasks in distributed 
embedded systems when deriving the schedule [4]. Therefore, additional 
power/energy reduction can be achieved when the time schedule is planned with these 
issues in mind. The time schedule should be modified to enable tasks which are major 
consumers of energy to exploit longer slack intervals when applying voltage scaling.  

This paper is organized as follows: The next section surveys some energy-aware 
related approaches. Section 3 reviews our energy-aware co-synthesis approach. 
Section 4 introduces basic concepts in voltage scaling schemes. In section 5, we 
present the proposed time scheduling algorithm. The obtained experimental results are 
presented and analyzed in section 6.  We conclude this paper in section 7.  

2   Related Work 

Many approaches were proposed to solve the scheduling problem while considering 
energy issues. Gruian and Kuchcinski introduced a task scheduling heuristic based on 
list-scheduling [3].  The scheme dynamically calculated priorities of the tasks and 
tried to choose the best supply voltage levels (assuming DVS-enabled architectures) 
that minimize the consumed energy.  The presented priority function was aware of 
energy aspect but might fail when the deadline was tight. To compensate for this 
drawback, a priority function tuning mechanism was used. 

A static voltage scheduling problem was proposed and formulated as an integer 
linear programming (ILP) problem in [4]. The tasks were assumed to have different 
average switching capacitance per cycle to consider processing elements’ power 
profiles. It was shown that considering the power profile when scaling the voltage 
could be a source of additional power reductions. Some other studies also reached a 
similar conclusion [5], [6]. However, these studies were done for single processor 
systems and did not show the effect of scheduling in the time domain on the 
performance of the voltage scheduler. 

Grajcar suggested a genetic list scheduling algorithm without tackling the power 
problem [7]. In this approach, each individual represented an encoded schedule and 
the individuals of a population are ranked based on their fitness. A similar approach 
was used by Schmitz et al. in [8] to achieve energy–efficient scheduling when using 
DVS-enabled architectures. Priorities of the tasks were encoded into priority strings 
which are iteratively optimized by an evolutionary algorithm. The list scheduler then 
determines the start execution time based on the optimized priorities. The authors 
suggested the genetic list-based scheduling algorithm inside a global mapping 
optimization loop which was based on genetic algorithms.  



       

Part of the proposed approaches may fail under stringent delay constraints. Others 
did not concretely tackle factors which have significant influence on total reduced 
energy such as continuous slack availability and distribution. We propose in this 
paper a near-optimum energy-aware scheduling scheme which modifies the time 
schedule iteratively in order to maximize the achieved energy reduction assuming that 
voltage scaling enabled architectures are used. The lengths of slack intervals available 
in the time schedule as well as their distribution are improved to achieve higher 
energy reduction. Different from previous approaches, our scheme has the ability to 
escape local minima. The scheduling algorithm is integrated inside our own 
automated genetic-based co-synthesis tool.  

3   Overview of System-level Co-synthesis  

System-level synthesis is considered here as mapping a behavioural description onto a 
structural specification. Functional objects have the granularity of algorithms, tasks, 
procedures, etc, while structural objects are processors, ASICs, buses, etc. In order to 
automate the synthesis process, system specification is captured into a system model. 

3.1   System Model 

The system is described here using two graphs: a task graph (TG), and an architecture 
graph (AG). Both graphs are automatically generated from SDL/MSC specification. 
The TG is a directed acyclic graph Fp(Ψ,Ω), where Ψ represents the set of vertices in 
the graph (ψi∈Ψ) and Ω is the set of directed edges representing precedence 
constraints and data dependencies (ωi∈Ω). Hard real-time constraint(s) Ti is/are 
forced on a node or a set of nodes as well as an absolute time constraint TT. The AG is 
FA(Θ,ℜ), where Θ  stands for the set of available architectures (θi∈Θ) and (ρi∈ℜ) 
represents possible connections between hardware components. For each component 
(θi∈Θ), a finite set of resource types (S) is defined. For each resource type (si∈ S) 
there is a set of associated ratios (Rs) that specify power-, delay-, and cost-scaling 
when using this type.  

3.2   Optimization Approach  

System-level synthesis requires optimizing three basic sub-problems: First, allocation 
(α) which selects a set of hardware components for implementation purposes. Second, 
mapping (β) which determines which single hardware resource is used to execute 
each task. Based on the allocation and mapping, the schedule of tasks is then 
optimized to achieve time feasibility and to maximize energy saving when applying 
voltage scaling. In our approach, a voltage schedule specifies the voltage levels 
required to execute each task. Therefore, the schedule (sc) includes a time and a 
voltage schedule. The time schedule is optimized to achieve time feasibility and to 
maximize simultaneously energy reduction when applying voltage scaling. 



       

The synthesis process is considered in our approach as a multiobjective 
optimization problem which can be stated as: minimize the function f(α,β,sc) = 
(f1(α,β,sc), f2(α,β,sc), f3(α,β,sc)) while all design constraints are satisfied. This 
formulation considers three objectives: performance (f1), power (f2), and cost (f3). The 
proposed synthesis methodology applies evolutionary algorithms (EAs) to optimize 
the allocation/binding (global optimization) based on the objective vectors (f1, f2, f3). 
The schedule is optimized for each individual separately as an integrated part of the 
global optimization loop. EAs are suitable for such optimization problems since they 
work in parallel on a population of individuals. Each individual encodes a potential 
implementation. Also, EAs work well on problems with large search spaces.  

The EA consists of an optimization loop inside which the principles of 
reproduction, crossover and mutation are applied on the population’s individuals. The 
purpose is to find iteratively better population based on a set of design objectives. 
Each individual is evaluated and assigned a fitness value based on the objective vector 
and fittest individuals are allowed to mate. Fitness values reflect the superiority of 
each individual in terms of all objectives. Computing fitness and performing selection 
are carried out by the widely used evolutionary optimizer, SPEA2 which is integrated 
to our synthesis tool. SPEA2 is an up-to-date optimizer which offers several merits 
over normal evolutionary approaches [9]. The optimization loop terminates when the 
pre-specified condition(s) is/are satisfied. A set of implementation alternatives which 
spans the Pareto-optimal front are produced. Each implementation alternative 
includes an allocation, a mapping, and a time- and voltage-schedule. The designer 
selects one of these design alternatives based on market requirements. 

4   Voltage Scaling 

Because of its quadratic relationship to power, voltage reduction has the most drastic 
means of reducing total consumed power/energy. DVS increases the energy efficiency 
of a device by dynamically adapting its speed and voltage as needed. However, in 
heterogeneous systems, the variation in the power profiles of the tasks when executed 
on different components influences the amount of energy reduction that can be 
achieved when scaling the voltage. This can be seen in the equation below:  

supplyVViE
supplyV
levelV

iE ==′
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

)(2

2
)( ψψ           (1) 

In the above equation, )( iE ψ′  refers to the energy consumed by task ψi after scaling 
the operating voltage to Vlevel (Vlevel ≤  Vsupply). )( iE ψ  stands for the energy consumed 
by this task at nominal voltage (Vsupply) based on a certain mapping. Therefore, the 
higher the consumed power and the lower the adopted voltage level to execute a task 
the more energy reduction is achieved.  

Voltage scaling schemes can also be applied to limit the amount of consumed 
leakage power in digital circuits. Dynamic threshold voltage (Vth) scaling (DVTHS) is 
a candidate scheme which dynamically adapts Vth by means of varying the body bias 



       

voltage (Vbs) in order to save leakage power. The relationship between Vbs and the 
consumed static power (Pstatic) is given below: 

jbs
VKVK

ddstatic IVeeKVP bsdd += 54
3      (2) 

In this equation, Vdd is the supply voltage, K3, K4, K5, are constant fitting parameters 
which are technology dependent, and Ij is the current due to junction leakage [2]. 

Voltage scaling is an efficient method to reduce the total consumed power/energy. 
Nevertheless, scaling the voltage has negative influence on circuit delay which can be 
formulated as follows [2]: 

( )( )α121

6

1 thbsbsdd

ddd

VVVKVK

VLK
D

−++
=       (3) 

In this equation, K1, K2, K6, and Vth1 are circuit dependent constants. Ld is the logic 
depth and α is the logic depth which is technology dependent (1.4 ≤  α ≤  2). Hence, 
voltage scaling mechanisms can only be applied if degradation in performance can be 
tolerated. Key efficiency factors for voltage scaling schemes are the availability of 
enough continuous slack intervals and the way in which these intervals are exploited. 
The proposed scheduling scheme which is presented in the next section handles these 
issues efficiently. It constructs a time schedule which considers future needs of 
voltage scaling schemes. Without any loss of generality, we examined the proposed 
algorithms by applying DVS only. 

5   Energy-Efficient Time Scheduling 

Scheduling in our case can be defined as determining the start time and the required 
voltage level(s) needed to execute each task. Precedence constraints and data 
dependencies must be fulfilled. Hence, the problem can be seen here as a two 
dimensional (2-D) optimization problem. The start time of each task ψi, τi(t), and the 
voltage level(s) V(τ) = {v1, v2, …, vn} should be optimized to maximize the 
power/energy reduction. In our approach, the time schedule is determined first with 
an eye on energy. Based on the derived time schedule, the voltage schedule is 
determined based on a global view of all tasks. So, the objective is to optimize the 
start execution time of each task such that more energy reduction can be achieved 
when applying voltage scaling schemes. In this section, the time scheduling is 
presented whereas the proposed voltage scheduling algorithm can be found in [10]. 

As mentioned previously, the available slack intervals and their distribution among 
the tasks are basic efficiency factors for voltage scaling schemes. Considering power 
profiles of different processing elements when executing different tasks makes the 
influence of slack distribution more crucial. Therefore, the time schedule has to be 
adapted such that tasks which are major consumers of energy exploit longer slack 
intervals. Moreover, tasks which consume more energy should have higher priority to 
scale their operating voltage when deriving the voltage schedule. The proposed 
scheduling algorithm considers all these issues as explained below. 



       

5.1   Scheduling Algorithm 

The proposed time scheduling algorithm considers future needs of voltage scaling 
schemes in order to maximize energy reduction. The algorithm has an iterative nature 
and it is based on the paradigm originally proposed by Kernighan and Lin (KL) for 
graph partitioning problem (min-cut partitioning) [11]. Based on ASAP and ALAP 
schedules, and the mobility value of each task, initial priorities are computed for all 
tasks. A list-based scheduler is then used to generate an initial feasible schedule. 
According to ASAP and ALAP, a task can be scheduled earlier or later as long as no 
data dependency or delay constraint will be violated. For example, task ψ8 can be 
scheduled between 12 and 22 in Fig. 3. 

The proposed scheduling algorithm iteratively selects a task and a scheduling step 
based on the ready list of an allocated hardware such that no delay constraint will be 
violated. The scheduling step that maximizes the energy reduction (when applying 
voltage scaling) is fixed for this task and the task itself is locked and disallowed to 
move later unless all tasks are locked. One task is moved at a time and each move 
leads to a new schedule. The new (temporal) schedule is repeatedly evaluated after 
scaling the voltage. After a set of m such moves, a subsequence of q ≤ m that 
maximizes the total energy reduction can be reached. The schedule is then changed to 
include these q moves. The process is repeated and all tasks are unlocked until no 
further improvement in terms of energy could be achieved. This scheduling approach 
has been chosen because KL is known to find good solutions in small CPU time and it 
has been successfully applied for long time in various placement and routing 
applications. At the same time, this methodology allows bad solutions to arise and 
then chooses the set of moves that leads to the maximum energy reduction. 

The entire scheduling algorithm is shown in details in Fig. 1. In this algorithm, 
Work_sched and Temp_sched are temporary schedules whereas UpToDate_sched 
represents the maintained up-to-date schedule. Power_gain[] stores the power gain for 
each iteration. The function MOVE_TASK(Work_sched, task(i), stepj,r) returns a new 
schedule after modifying Work_sched by scheduling task(i) into stepj,r; j represents a 
scheduling step and r stands for the selected ready list. The function POWER() takes a 
schedule and computes its power/energy consumption. The two arrays Sequence[] and 
Sched_step[] maintain the sequence of moved tasks and the corresponding scheduling 
steps, respectively. 

The iterative nature of the algorithm might appear to be a disadvantage. When all 
possible moves for each task are considered the time complexity will be O(n), where 
n is the total number of tasks and moves. At the same time, implementing DVS 
requires substantial algorithms to determine the required operating voltage and the 
corresponding speed/frequency. These algorithms affect the performance of the 
device and increase the overall consumed energy. In our approach, we emphasize that 
scheduling processes are off-line processes that optimize start time and voltage 
level(s) required to execute each task during the design phase. The planned voltage 
levels and the time schedule are stored in a table form for run-time use. As a result, 
the additional energy consumption related to the scheduling process is omitted and the 
run-time performance overhead due to this additional process is reduced to a 
minimum. However, voltage switching cost in terms of energy is still considered 
during run-time. 



       

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1.  Energy-aware time scheduling algorithm 

5.2   Illustration Example 

To demonstrate the influence of the proposed energy-ware time schedule consider the 
task graph presented in Fig. 2. Tasks’ mapping and other supporting information 
regarding worst case execution time (WCET) and power consumption are found in 
the table shown on the right hand side in the same figure. Fig. 3 shows an initial time 
schedule based on the information presented in Fig. 2. The time schedule is derived 
using a list-based scheduling algorithm and it is presented here as a Gantt chart. 

Columns 3 and 4 in the table shown in Fig. 1 give the WCET and the average 
power consumption for each task according to the given mapping, respectively. The 
start time for each task according to “as soon as possible” (ASAP) and “as late as 
possible” (ALAP) scheduling algorithms are given in columns 5 and 6, respectively. 
The mobility which is defined in column 7 of the same table is defined as the 

Input: Fp(Ψ,Ω), FA(Θ, ℜ), Mapping 
Output: Time Schedule: UpToDate_sched 

 
REPEAT 

Unlock all tasks; 
Work_sched = UpToDate_sched; 
C = 0; 
WHILE There is a movable task 
     C = C + 1; 
      Power_gain[C]  = -∞ ; 
     FOR each task(i) ∈  {movable tasks} 
 FOR each scheduling step in the ready list (stepj,r)            
      Temp_sched = MOVE_TASK(Work_sched, task(i), stepj,r); 
      Temp_gain = POWER(Work_sched) – POWER(Temp_sched); 
      IF Temp_gain > Power_gain[C]; 
             Power_gain [C] =  Temp_gain;  
             Sequence [C] = task(i); 
             Sched_step[C] = stepj,r;  
      ENDIF 
  ENDFOR 
     ENDFOR 
     Lock (moved tasks) 
     Work_sched=MOVE_TASK(Work_sched, Sequence [C], Sched_step[C]);  
     ENDWHILE  
     Select a sequence q based on Power_gain[]; 
     IF maximum cumulative power reduction (Po_R)> 0 
 Update the UpToDate_sched with the sequence; 
     ENDIF 

UNTIL Po_R < 0; 



       

difference between ALAP and ASAP. The priority of each task is calculated based on 
the mobility. Based on the table shown in the above figure, it can be seen that tasks 
which have major energy reduction effects (high power profiles), such as tasks ψ6, ψ8, 
and ψ9, have low priority. This means that they are scheduled in time after other 
higher priority tasks. As it can be seen in Fig. 3, task ψ6 has no slack at all while tasks 
ψ8 and ψ9 have both 6 slack slots assuming that the deadline is 26. No other task can 
make any benefit from voltage scaling schemes. 

 

 
Fig. 2.  Task graph and mapping example 
 

 

Fig. 3.  Initial schedule 

Consider now the time schedule in Fig. 4 where task ψ5 is scheduled before task 
ψ4, independent on their priorities. As it can be seen in the figure, additional 4 slack 
slots are now available for task ψ6 which causes higher energy reduction when 
applying voltage scaling. A more efficient time schedule from the energy point of 
view is shown in Fig. 5. In this figure, 9 time slots are now available to tasks ψ8 and 
ψ9. Task ψ6 has now 5 time slots which can be exploited when applying voltage 



       

scaling. In this schedule ψ7, for example, is scheduled before ψ1 although the later has 
higher priority. 

 

Fig. 4.  Modified schedule 

 
Fig. 5. An energy-efficient time schedule 

6   Experimental Results 

A set of benchmarks are used to prove the applicability and the efficiency of our 
approach in reducing the total consumed energy. The benchmarks include a set of 20 
publicly available benchmarks which are generated originally by using “Task Graphs 
For Free” TGFF [12] and obtained from [8]. 

Our 2-D scheduling methodology has been integrated to our automated co-
synthesis tool which is presented previously. For comparison purposes, another 
energy-efficient time scheduling algorithm was also implemented and integrated to 
our tool. This later time scheduling algorithm is called evolutionary list-based 
scheduling algorithm (ELSA). This algorithm is also based on a list scheduling 
algorithm. Priorities of tasks are optimized using an up-to-date evolutionary 
algorithm. An optimization objective is increasing the energy reduction when 
applying voltage scaling. Based on the optimized priorities, the list schedule 
determines the start execution time for each task. An energy-ware scheduling 
algorithm similar to ELSA was proposed in [8].  



       

In order to enable fair comparison, the 2-D and ELSA schemes were tested under 
the same conditions. To achieve this, we implemented ELSA and integrated it to our 
global optimization tool. At the same time, the same voltage scheduling algorithm 
was applied in all experiments. To further demonstrate the influence of energy-aware 
scheduling, another separate experiment was conducted. In this experiment, a 
traditional list scheduling algorithm was implemented to optimize the time scheduling 
without considering energy. We call this scheme the 1-D scheduling. Results of this 
experiment are shown in columns 2 and 6 of Table 1. Columns 3 and 7 present the 
energy reduction achieved when applying ELSA whereas energy reductions obtained 
when applying the 2-D scheme are shown in columns 4 and 8 for all the included 
benchmarks. Obtained energy reductions are reported here in percentage.  

Table 1.  Energy reduction in % obtained when using 1-D, ELSA, and 2-D scheduling 

Benchmark 1-D ELSA 2-D Benchmark 1-D ELSA 2-D 

tgff1 68.1 82.6 83.5 tgff11 24.3 30.1 33.6 
tgff2 36.4 43.9 49.1 tgff12 62.6 74.6 76.0 
tgff3 64.6 70.8 75.9 tgff13 60.9 72.0 73.2 
tgff4 82.6 88.0 90.1 tgff14 10.0 26.4 27.6 
tgff5 60.1 61.1 61.1 tgff15 14.1 27.4 27.9 
tgff6 83.5 87.8 90.1 tgff16 27.4 37.9 39.1 
tgff7 30.2 43.3 45.0 tgff17 40.0 58.8 63.1 
tgff8 76.6 76.7 77.0 tgff18 31.0 43.5 43.6 
tgff9 37.3 38.1 45.0 tgff19 47.0 58.3 76.7 
tgff10 19.6 31.7 33.7 tgff20 78.5 84.1 86.6 

 
The above presented results show that all benchmarks made benefit of the 2-D 

scheduling scheme, but in varying degrees. The maximum energy reduction (90.1%) 
is obtained for tgff4 and tgff6. The presented results indicate that the 2-D scheduling 
scheme can perform at least as good as the ELSA algorithm. Additional energy 
reduction of up to 18.4% could be achieved by the 2-D scheduling over ELSA. This 
can be related to fact that the 2-D scheduling scheme can escape local minima. It 
accepts unacceptable moves for the tasks as long as these belong to a scheduling 
sequence that maximizes the overall energy reduction. The results obtained when 
applying the 2-D scheme shows that up to about 30% higher energy reduction can be 
achieved over 1-D scheduling (TGFF19). ELSA can only achieve up to about 19% 
higher energy reduction compared to the 1-D scheduling scheme (tgff17).  

7   Summary and Conclusion  

This paper presented a new two-dimensional (2-D) scheduling scheme that is able 
to remarkably increase energy reduction obtained when applying voltage scaling. This 



       

scheduling scheme has the tendency to reach near-optimal schedules in terms of 
energy when applying voltage scaling. This is achieved by adopting the set of task-
moves that lead to a maximum cumulative energy reduction which enables the 
algorithm to escape local minima. Experimental results indicate that up to about 30% 
energy reduction could be achieved.   

A basic conclusion that can be drawn based on the experimental results is that it is 
essential to consider energy-related issues when optimizing the time schedule. Time 
feasibility should firstly be guaranteed but at the same time the schedule should be 
adapted based on certain optimization criterion to increase its energy-efficiency. 

References 

1. Pering, T., Burd, T., Broderson, R.: Dynamic Voltage Scaling and the Design of a Low-
Power Microprocessor System. In Power Driven Micro-Architectures Workshop, attached 
to ISCA’98, Barcelona, Spain, June, (1998). 

2. Martin, S., Flautner, K., Mudge, T., Blaauw, D.: Combined Dynamic Voltage Scaling and 
Adaptive Body Biasing for Lower Power Microprocessors under Dynamic Workloads. In 
Proceedings of the International Conference on Computer-Aided Design, ICCAD’02, 
(2002) 721-725.  

3.  Gruian, F., Kuchcinski, K., LEnS: Task Scheduling for Low-Energy Systems Using 
Variable Supply Voltage Processors. In Proceedings of Asia and South Pacific Design 
Automation Conference, ASP-DAC, January (2001) 449-455.  

4. Ishihara T., Yasuura, H.: Voltage Scheduling Problem for Dynamically Variable Voltage 
Processors. In Proceedings of the International Symposium on Low Power Electronics and 
Design, ISLPED, (1998) 197-202. 

5. Okuma, T., Ishihara, T., Yasuura, H.: Real-Time Task Scheduling for a Variable Voltage 
Processor. In Proceedings of the 12th International Symposium on System Synthesis, ISSS, 
(1999) 24-29. 

6. Manzak A., Chakrabarti, C.: Variable Voltage Task Scheduling for Minimizing Energy or 
Minimizing Power. In Proceedings of the International Conference on Acoustics, Speech, 
and Signal Processing, November (2000) 3239-3242. 

7. Grajcar, M.: Genetic List Scheduling Algorithm for Scheduling and Allocation on a 
Loosely Coupled Heterogeneous Multiprocessor System. In Proceedings of the 36th 
ACM/IEEE Conference on Design Automation, (1999) 280-285. 

8. Schmitz, M., Al-hashimi, B., Eles, P.: Energy-Efficient Mapping and Scheduling for DVS 
Enabled Distributed Embedded Systems. In Proceedings of Design, Automation and Test 
in Europe Conference and Exhibition, DATE, March, (2002) 514-521. 

9.   Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto 
Evolutionary Algorithm for Multiobjective Optimization. In Proceedings of Evolutionary 
Methods for Design, Optimization, and Control, CIMNE, Barcelona, Spain, (2002) 95-100.  

10. Mohsen, A., Hofmann R.: Efficient Voltage Scheduling and Energy-aware Co-synthesis for 
Real-time Embedded Systems. Tenth Asia-Pacific Computer Systems Architecture 
Conference, Singapore, October  24-26, 2005. 

11. Kernighan K., Lin, S.: An Efficient Heuristic Procedure for Partitioning Graph. Bell System 
Technical Journal, vol. 49, no. 2, (1970) 291-307. 

12. Dick, R., Rhodes, D., Wolf, W.: TGFF: Tasks Graphs for Free. In Proceedings of 
International Workshop on Hardware/Software Codesign, March, (1998). 

 


