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Abstract. Increasing the processor resources usability and boosting
processor compatibility and capability to support multi-executions mod-
els in a single core are highly needed nowadays to benefit from the recent
developments in electronics technology. This work introduces the con-
cept of a dynamic switching mechanism (DSM), which supports multi-
instruction set execution models in a single and simple processor core.
This is achieved dynamically by execution mode — switching scheme and
a sources —results locations computing unit for a novel queue execution
model and a well-known stack based execution model. The queue execu-
tion model is based on queue computation that uses queue-registers, a
circular queue data structure, for operands and results manipulations and
assigns queue words according to a single assignment rule. We present the
DSM mechanism and we describe its hardware complexity and prelimi-
nary evaluation results. We also describe the DSM target architecture.

Index Words: Hybrid processor, compatibility, design, dynamic switching
mechanism, FaRM computing algorithm.

1 Introduction

Generally, the motivation for the design of a new architecture arose from the
technological development, which changed gradually the architecture parameters
traditionally used in the computer industry. With this growing changes, the com-
puter architect is faced with answering the question what functionality has to be
put on a single chip, giving them an extra performance edge. Nowadays, as we en-
ter into an era of constant demand for faster and compatible processors as well as
different Internet and network appliances using different processor architectures,
it becomes extremely complicated and costly to develop a separate processor for
every execution model that satisfy this demand. Internet applications, which are
generally stackbased need high execution speed or high performance as defined
by the literature. However, recently the term “high performance” is questioned
again by many processor designers and computer users. Some consider that high
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performance means high execution speed or low execution time of some given
applications. Other define “high performance” differently. They consider that
processors which support several execution models are the favourite candidates
for high performance “award”, since switching from processor to processor lead
to difficulty and waste of time. This is true especially when users have different
applications written for different execution models (Stack and RISC model for
example). In this case, users are obliged to run these two applications separately
on different machines. In conventional machines, this problem was somehow
solved by a direct software translation techniques. However, these techniques
still suffer from slow translation speed. Sun Microsystems proposed another al-
ternative and designed its Stack-based Java processor, so that Java code can
execute directly [4, 5]. According to its designers, the JavaChip-I, for example, is
a highly efficient Java execution unit design. It delivers up to 20 times the Java
performance for x86 and other general-purpose processor architectures, as well as
up to five times the performance obtained by just—in —time(JIT) compilers. It
is evident that in term of reduced execution time (ET), the solution is better than
the indirect way (translation) or the JIT scheme, but in term of compatibility,
the processor still suffers from not being able to execute other codes. Therefore,
reduced ET, compatibility, and cost are questioned again. Supported another ex-
ecution model will eventually lead to more complex hardware. We realized, that
supporting different instruction sets can yield superior operational attributes to
those architectures that support a single instruction set. Our objectives are clear.
First, we knew that to reduce die size and improve performance, DSM (Queue
and Stack switching algorithm) would be implemented in the FaRM pipeline
as a finite state machine rather than a traditional microcoded engine. Second,
the solution would have to dynamically calculate Queue and Stack locations to
architectural registers called shared storage unit (SSU). Thus avoiding the need
for a translation stage. Finally, the resultant architecture would have to perform
16-bit fetches in order to fetch up to four instructions at once. To this end, we
proposed a Hybrid processor architecture that addresses this and other problems
as a pure-play architectural paradigm, which will integrate Stack and Queue ex-
ecution models right into the FARM core[l, 2].

In this work we introduce the concept and the architecture of a dynamic switch-
ing mechanism (DSM), which supports multi-execution models in a single and
simple processor core. This is achieved dynamically by execution mode—switching
scheme and a sources — results locations computing unit for a novel queue ex-
ecution model and a well-known stack based execution models.

This work has two major contributions:

— The first contribution is the proposal of a dynamic switching mechanism for
multi-execution models support. To evaluate its efficiency, we designed it in
register transfer level using Verilog HDL language. Then, we evaluated its
functional correctness and its hardware complexity when compared with the
Parallel Queue Qrocessor (PQP). Examples for FQM and FSM execution
models are also given.
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Fig. 1. Sample example of parallel execution in FARM Queue execution Model (FQM).
(a) Data flow graph of the expression X = (a+b)/(c*d). (b) QEM instruction sequence
using Level order traversal, and (c) Queue contents at each execution state.

— Our second contribution, which is related to the first one, is a detailed archi-
tectural description of the target hybrid processor system and its complexity
analysis

2 Hybrid Mode Execution Overview

The FARM architecture design is categorized by co-ordinates along a three-axis
system. The three dimensions of the design space are: (1) number of instructions
set supported by the architecture, (2) the storage scheme, and (3) the number
of operands permitted for each mode[2]. The FARM system is a highly 32-bit
processor that support a subset of the Queue instruction set (QEM) and Stack
instruction set (SEM)[1].

The QEM mode uses a first-in-first-out Queue data structure as the underlying
control mechanism for the manipulation of operands and results. In addition,
the QEM is analogous to the stack execution model (SEM) in that it has oper-
ations in its instructions set, which implicitly reference an operand Queue, just
as a stack machine has operations, which implicitly reference an operand Queue.
Each instruction removes the required number of operands from the front of the
Queue operand, performs some computations, and stores the result of compu-
tation into the Queue of operands at the specified offsets from the head of the
Queue. The Queue of operand occupies continuous storage locations. A special
register, called the Queue Head (QH), contains the address of the first operand
in the operand Queue. Operands are retrieved from the front of the Queue by
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reading the location indicated by the QH pointer. Immediately after retrieving
an operand, the QH is incremented so that it points at the next operand in the
Queue. Results are returned to the rear of the operand Queue indicated by the
Queue Tail (QT).

When switched for Stack-based mode, the switching circuitry and the functional
computing unit (FCU) perform the job of execution model switching. Hence, the
FCU calculates the sources and destination for corresponding instructions.

In FSM, implicitly referenced operands are retrieved from the head of the operand
stack and results are returned back onto the head of the stack. For example con-
sider a sub instruction. In SEM model, the sub instruction pops two operands
from the top of the stack (TOS), computes the difference and pushes the results
back onto the top of the stack. In QEM mode, the sub instruction removes two
operands from the front of the Queue (FOQ), computes their difference, and
puts the results at the rear of the Queue (ROQ) indicated by the RQP. In the
former case, the result of the operation is available at the TOS. In the later
case, the result is behind any other operand in the Queue. This will have an
enormous potential to effectively exploit pipelined ALU with a simple hardware,
which, due to their hardware structure, normal SEM obviously cannot guaranty.
For better understanding of the novel QEM, we show in Fig. 1 a sample exam-
ple that calculates a simple mathematical expression = (a + b)/(c * d). In the
above example, the QEM instruction sequences were generated using the level
order scan algorithm (LOST) published in our earlier work[2]. That is, in order
to get instruction sequence that can be correctly executed in FQM, the data flow
graph for the given expressing should be traversed from the deep level to the
top level and from left to right. In Fig. 1(c) the queue contents (later reffered
as shared storage unit) at each cycle are shown. As illustrated in Fig. 1(a) and
Fig. 1(b),the first four instructions are independent. Hence , they are processed
in parallel (g-satel). The second level in the data flow graph also has two in-
dependent instructions (+ and *). These two instructions are also executed in
parallel (g-state2). At the third level, only div instruction is generated and is
separately executed (q-state3). The result is finally stored into the PROG/DATA
memory (not shown in the figure).

3 DSM Mechanism Overview

The DSM mechanism is implemented in a so-named hybrid processor archi-
tecture (FARM)[1]. Before we describe the DSM mechanism and its functional
description, we first give a brief architectural overview about the FARM core
that adopts the DSM mechanism. The target processor is based on Consume-
produce Order Queue Computational Model(FQC) and Stack computational
model(FSC)[1]. The processor has six pipeline stages and is based on 16-bit in-
struction set architecture. It supports two execution modes: Queue mode (FQM)
and Stack mode (FSM). The basic block diagram of FaRM is given in Fig. 2.
The FARM core consists of the following units: (1) Instruction Fetch unit (FU),
(2) Decode Unit (DU), (3) FaRM Computation unit (FCU), (4) Issue Unit (IU),
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Fig. 2. Hybrid FARM system architecture.

(5) Execution Unit (EXE) and (6) Shared Storage Unit (SSU). The basic block
diagram of FaRMgs is given in Fig. 2.

Instruction Fetch: The fetch unit fetches 4¥16-bits instructions/cycle from the
program memory and inserts them into the fetch buffer.

Instruction Decode: Decodes the instruction opcode and operands. The DU
has four decode circuits (DC) and one Mode Selector Register (MS) that is set
to zero or one according the type of instruction being decoded.

FaRM Computing Unit: The FaRM Computation unit gathers information
mainly from the decode unit and uses them to compute the instruction sources
and destination locations for FQM and FSM models.

Issue stage: The Issue stage issues ready instructions to the execution unit.
Memory and registers dependency are checked by this unit/stage. This unit also
checks the sources availability for each instruction.

Execution Unit: The EXE executes issued instructions and sends the results
to the SSU or the data memory. The EXE consists of: (1) Arithmetic logical
unit (ALU), (2) Shift unit, (3) Set register unit, (4) Load/Store unit, (5) Move
and Compare unit and (7) Branch unit.

Write back Unit: The write back unit writes the result back to the PROG/DATA
memory or the shared storage unit (SSU). The SSU is a 32*256 registers and is
shared by both FQM and FSM execution models. In FQM, the SSU behaves as
a conventional register file-like. However, in FSM, the system organizes the SSU
access as a last-in-first-out.

4 DSM Architectural Details

As we earlier mentioned, the DSM system consists of a switching circuitry (SW)
and a dynamic computation unit (FCU). It is implemented in a hybrid processor
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Fig. 4. FARM programming Models:(a) Programming Model, (b) Example of FQM
and FSM assembly program

architecture. The FCU unit calculates on —the — fly the sources and destinations
for instructions in both FQM and FSM executions modes. A block diagram of
the DSM mechanism is illustrated in Fig. 3. The DSM detects the instruction
mode by decoding the operand of the switch instruction. After the mode de-
tection, it inserts a mode — bit for all instructions between the current and the
next switch instruction. Hence, the same operation can be used for both modes.
This will increase the resources usability and the overall system performance
(discussed later).

Dynamic switching example: In Fig. 4, we show the FARM programming
model and an assembly program example. The first instruction at a given pro-
gram should be always a ”switch” instruction. This instruction will guide the
decode unit to dynamically reprogram itself according to the switch instruc-
tion’s operand value (zero for FQM mode and one for FSM mode). Instructions
that follow switch instruction continue, then, execution in the FSM or FQM
until another switch instruction is found (refer to Fig. 4). The DSM (major
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Fig. 6. Various DSM states over hybrid execution modes.

hardware components) mechanism are illustrated in Fig. 5. This figure shows
the initial state of the decode buffer (DB)and mode switch (MS) register before
switch instruction is decoded. Fig. 6 shows the contents of the DB at different
states for different instructions.

4.1 Dynamic Computation Algorithm

Dynamic Computation Algorithm (DCA) has two mapping algorithms: (1) FARM
Queue Computing and (2) FARM Stack Computing.

FQM sources and destination computing: In order to have a correct execu-
tion, each instruction needs to know the values of the QH (Queue Head) and the
QT (Queue Tail). The above values are easy to know in serial Queue execution
model, since the QH is always used to fetch instruction from the operand queue
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Fig. 7. FQM and FSM computing circuits: (a) FQM computing circuit; (b) FSM com-
puting circuit
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(OPQ) and the QT is always used to store the result of the computation in to the
tail of the OPQ. However, in the parallel execution scheme the above pointers
are not explicitly determined. This is due to the fact that previous instructions
are simultaneously executed and may not be completed in order. Fig. 7(a) shows
the block diagram of queue computing circuits (FQC). The FQC is based on the
Produce-consume order Queue Computation Mechanism.

The QH calculation for an instruction I(n+1) is given by:

QH(n+1)=QH(n) + (consumed_data) (1)

Where, Consumed Data is the number of fetched operands of an instruction.
The QT calculation of an instruction I(n+1) is calculated by:

QT (n+1) = QT P(n) + (produced_data) (2)

Where, Produced Data is the number of the results generated by an instruc-
tion
FSM sources and destination computing: FARM Stack Mechanism (FSM)
is based on the pure stack Mechanism. For mapping the source and destination
FSM used only one register named Top. Fig. 7(b) shows the block diagram of
FaRM Stack (FSM) mechanism. The T'op pointer calculation for an instruction
(n£1)is given bellow:

TOP(n+1) =TOP(n) — consumed_data + produced_data  (3)

Here, we use £ because top pointer does not only increase but also decrease.
For load instruction Top pointer will increase and for store instruction Top will
decrease. After assigning instruction, the FSM sends instructions to the FARM
Computation Buffer (FCB).

Example for FQM Computing: To calculate the sources and destination
location for FQM execution, we use equation (1) and (2) to assigning the QH
and QT pointers value. To illustrate the idea, we use the simple expression
X = (a+b)/(c*d) as an example. The assembly code for the above expression
in shown in Fig. 4(b). In FARM programming model, the first instruction should
be always a switch type instruction. In this example, the operand of the switsh
is 0 which indicates that the being loaded program should be executed in FQM.
As a result, the mode-bit for all following instruction will be set to FQM mode.
Example for FSM Computing: We use formula 3 in Stack Computing to cal-
culate the TOP pointer value for each instruction. The assembly code of a simple
expression X = (a + b)/(c * d) is also shown Fig. 4. In this case, the operand
of switch instruction is one, which indicates a stack program instructions se-
quence. The DCA uses the stack mapping mechanism. For this case, the DCA
sets a ”setsignal” for each instruction (”1” indicates the stack instructions) and
requests the issue stage for sequential issue.
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Table 1. Hybrid FARM processor complexity (in flip-flops) evaluation results over
speed and area optimizations. The DSM mechanism is implemented on Decode and
FCA units. SOPT means speed optimizations; AOPT means area optimizations

|Description ||Unit Name|SOPT|AOPT|
Fetch Module FU 201 166
Decode Module DU 1039 | 975
Computation Module FCA 848 | 800
Issue module 1U 589 326
Execution module EXE 1140 | 1140
Shared storage module SSU 6545 | 5730

B Farvgs B eop O Farvgs B EQR
1200

Fig. 8. Hardware Complexity evaluation and comparison: (a) The left side figure shows
the area the comparison over Speed optimizations, (b) The right side figure shows the
area comparison over Area optimizations

5 DSM Implementation Evaluation

We designed the DSM mechanism in register transfer level using Verilog HDL.
In order to evaluate the effectiveness and the correctness of the mechanism, we
performed two types of evaluations: (1) Functional evaluation level, (2) Hard-
ware evaluation level.

Functional verification: We described the DSM in RTL level and used Verilog-
XL and Simvision simulators to evaluate the functional simulation result. We
captured the input and output signals changes for several cases.

Hardware level evaluation : The DSM and the whole system core were de-
signed in RTL level and correctly integrated and synthesized in a Altra STRATIX-
EP1S25F1020 device. The design results for area and speed optimizations are
shown in Table 1. Notice that the DSM is integrated in the DU and FCU units.
In order to know the real hardware complexity of the DSM, we compared the
units that integrated it with other units in a similar queue processor architecture
that do not include switching capability. From the above comparison, we found
that the DSM mechanism uses about 60% of DU and 40% of the FCU. Fig. 8
shows the comparison results of the area with a conventional Queue processor
core over speed and area optimizations respectively. From the above simulation,
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we noticed that the additional area for DSM mechanism is acceptable for both
speed and area optimizations. We found that the DU and the FCU use about
9.72% and 3.77% extra area when compared with conventional queue processor’s
decode and queue computation modules.

6 Concluding Remarks

In this paper, we have proposed a dynamic switching mechanism (DSM) for a
hybrid processor architecture that supports Queue and Stack computation modes
in a shared resources single processor core. This is achieved dynamically by
execution mode — switching scheme and a sources—results locations computing
unit. We have presented the novel aspects of the DSM mechanism as well as the
the architecture description of a hybrid processor system that adopts the DSM
mechanism.

We designed the hardware of the DSM and verify its functionality and overall
complexity. From the design and evaluation results, we proved that the DSM
mechanism can be used without enormous additional hardware when compared
with conventional queue processor core (about 9.72% for DU and 3.77% for FMU
extra hardware when compared with Queue processor core). We also conclude
that the overall performance of the hybrid FARM architecture, which is still in its
infancy, is acceptable. Hence, the DSM system increases the resources usability
and the overall performance of the FARM processor.

Our future work is to evaluate the whole system with real benchmark programs
and estimate the real complexity of the whole system.
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