Distributed Contextual Information Storage
using Content-Centric Hash Tables

Ignacio Nieto, Juan A. Botia, Pedro M. Ruiz, Antonio F. Gémez-Skarmeta

Departamento de Ingenieria de la Informacién y las Comunicaciones. Universidad de
Murcia, Spain*

Abstract. We analyze the problem of storing contextual information
across a set of distributed heterogeneous mobile devices. These devices
form a Mobile Ad Hoc Network (MANET) interconnected to Internet,
in which partitions may eventually happen due to mobility. We present
a new mechanism called Contextual Hash Table (CHT), which uses the
semantic of the contextual information to select which nodes will store
that information. Unlike previous general-purpose data replication algo-
ritms, CHT manages to store information in the area of the network in
which that information is most likely needed by neighboring nodes.

1 Introduction

Future mobile applications and services are expected to adapt and in-
teract with their environment, providing a richer set of services to end
users. This kind of applications are usually known as context-aware ap-
plications, or even ubiquitous applications. These applications use in-
formation about their environment (known as contextual information)
such us user preferences, location, device capabilities, etc. Based on this
information, they can provide a wide range of services like adapting con-
tents to the capabilities of the user’s device, providing information about
nearby objects, etc.

The management, adquisition, representation and storage of contextual
information, defined as any information about a user and its sorrounding,
becomes a central aspect of any ubiquitous computing platform. For
the representation and adquisition of context, we already developed an
Open Context Platform (OCP) which uses an ontology represented using
Ontology Web Language (OWL). In this paper, we focus on how to store
an access that contextual information in a distributed network consisting
of mobile heterogeneous devices.

Mobile Ad Hoc Networks (MANETS), consist of a number of mobile de-
vices equipped with a wireless interface, making them very flexible and
easy to deploy. These networks are distributed in nature, and do not rely
on any centralized entity. Nodes are free to move, and they use neigh-
boring nodes as relays, to send data to nodes which are not within their

* This work has been partially funded by the ENCUENTRO (00511/PI/04) research
project of the Seneca Foundation and the CICYT research project FUZZY-KIM
(TIC-2002-04021-C02-02) of the Spanish Government.

radio range. All these properties, make ad hoc networks an ideal candi-
date to support ubiquitous computing environments. MANETSs can also
connect to fixed networks like the Internet, creating a so-called hybrid
MANET. Howerver, the network may be partitioned and merged at any
time due to mobility. Thus, every service within the MANET must work
in a distributed way whether there is Internet connectivity or not.
Throughout the rest of the paper, we assume an ubiquitous computing
scenario consisting of a set of users and its corresponding devices. De-
vices are heterogeneous and may have different computing capabilities.
In addition, devices will form an hybrid MANET, providing connectiv-
ity among devices. As in any MANET), the network may get temporarily
partitioned, preventing the communications among some set of nodes.
Devices will be responsible of obtaining contextual information, and store
it within the network (eventually at different nodes). In addition, a de-
vice will be able to locate and access contextual information stored in
any other node. In this paper we introduce CHT, a novel approach based
on hash tables toefficiently deal with contextual information in such an
scenario.

2 Related work

Our concern here is related to information dissemination however, con-
text information is not needed to be known by everyone in the system.
Instead, this kind of information has to be available on demand (i.e.
context information refers to dynamical situtation of users and neither a
node needs to know the context fo all users nor all nodes need to know
the context of a single user). Hence, here we are not referring to dissemi-
nation to all nodes but to a few of them, appropiately selected. Moreover,
the kind of network we have is a mobile ad hot network (MANET). Both
of these facts (i.e. ad hoc and device mobility) introduce additional com-
plexity to the problem. However, there are examples in the scientific
literature which study gossiping [1] and multicast [5] in MANET. In our
context, data dissemination consists on storaging and accessing data by
name. This data tokens will be located in a concrete node (and perhaps
in a number of additional ones). These nodel will usually be mobile,
hence location of data tokens depend on location of hosting nodes. One
interesting approach using geographical information for dissemination
of information is the GLS (Grid Location Service) [10]. The GLS sys-
tem uses GPS information for location and information dissemination.
The approach we present in this article uses indoor location informa-
tion, based on the Wifi network of the building [14]. Recent work which
store and access data tokens by name can be found in [12,13]. Storing
and accessing data by name implies using a mechanism based on a hash
table [11]. The scenario that the authors are focused on consists on a
sensor network and they use a distributed has table inside a technique
called Data Centric Storage or DCS. In DCS, each node is target of some
data identified by means of a hash function. We will call this node the
home node of the data. Whenever an event is generated, the sensor that
detected it (we can think of this sensor as the “source” of the event)

sends this event to its home node, or the nearest node in case the home
node is not available. If a concrete contextual information needs to be
accessed, the hash function has to be applied to obtain its home node.
Both operations can be done in O(y/n).

We may also find several studies about data distribution and manage-
ment in Ad Hoc networks. Data caching in an Ad Hoc environment has
been treated in [3], where data transmitted in the network and the routes
used to transmit it are both cached in the path of the information. In
[4], an integrated data lookup and replication scheme is presented where
a predictive mechanism is used to predict likely group partitioning of
nodes. ADS [2] is a middleware service for Ad Hoc environments to share
and receive information from the neighbourhood applied to CARLA, a
M-Learning scenario. This approach relies on information markets, well-
known places where different kinds of information from multiple appli-
cations can be pooled and exchanged. Regarding to data replication, in
[6], a peer-to-peer service model for managing, searching, and stream-
ing partitioned media objects is described, paying special attention to
replication strategies for media segments. Data replication has also been
treated in works such as [8] as the right approach for managing data
avaliability in Ad Hoc networks, where the topology gets modified un-
predictably mainly due to the mobile nature of the nodes.

3 Problem statement

We are interested in ubiquitous computing scenarios in which users, user
different heterogeneous devices, and communicate among them wirelessly
without the need of any centralized authority. This scenario, which is the
most typical case, is characterized by its intrinsic mobility. Users will use
a MANET providing connectivity among them, and eventually to appli-
cations and services over the Internet. Although Internet connectivity
cannot be assumed to be always present. Our interest is in designing
efficent contextual information distribution algorithms for these kind of
scenarios.

3.1 Assumptions and requirements

The particular problem of information distribution in ubiquitous com-
puting scenarios based on MANETSs has some distinguishing features
from traditional scenarios. Hence, we work under the following assump-
tions. (1) We assume that user devices are heterogeneous in terms of
capabilities and computing capacity. They can be laptops, PDAs, mo-
bile phones, etc. (2) The environment is dynamic. Devices can show up
and leave the system at any time, even without prior notice (e.g. due to
network disconections, battery exhaustion, etc.). (3) Users are mobile.
They can freely move throughout the ubuiquitous scenario. This places
an important requirement onto our system, which should be able to deal
with that mobility of the users and the eventual partitions of the under-
lying network. (4) The underlying ad hoc network has limited resources.
The proposed solution shall try to minimize the consumption of network

resources by placing the information in appropriate locations. (5) Every
node in the system has an unique identifier.

Within the rest of this section we describe design alternatives for our
solution.

3.2 Design alternatives

As we stated before, our goal is to efficiently distribute contextual in-
formation. That is, information about entities, objects and locations of
the environmentin which the users are moving around. Every device in
the system will have an unique identifier. Contextual information will be
generated in a concrete node, and the system must assign a home node
where to store it.

There is a wide range of alternatives for distributing information in such
an ad hoc scenario with our requirements. One extreme is storing every
contextual information in the node that generated it, taking order O(1) in
terms of network messages. In this case, queries from the rest of nodes to
obtain this information will require a broadcast in the entire network (we
don’t know in which node the data is a priori). So the cost of accessing
the information requires O(n), where n is the number of nodes in the
network. That is, n messages are needed for the broadcast plus y/n for
sending the answer back to the querier, being /n the mean path length.
Another extreme in the range of solutions is storing all the contextual
information generated by any of the nodes replicated in every node in
the network. In that case, performing the storage of each data requires a
broadcast, which has a cost of O(n) in terms of the number of messages.
In this case, queries can be resolved locally in order O(1).

There are a number of other intermediate solutions based on the idea of
replicating the contextual data only in a set of nodes, but reaching a good
tradeoff is not an easy task. In addition, almost in all these cases, the
mechanisms require a broadcast operation, which tends to be costly for
these environments, even if broadcast reduction techniques like common
dominating sets (CDS) are used. Thus, we target a different approach
based on hash tables and a hierarchical structure to achieve a better
solution. In addition, by distributing the date based on their content,
we can better select home nodes to reduce the cost in most common
operation scenario.

As we mentioned, we will use a different approach based on a hash func-
tion to distribute the information across the nodes. Figure 1 shows a
typical layout of a set of devices in the MANET, grouped by their loca-
tion. In our example, we assume we are inside a building, and nodes are
distributed all over the building. Nodes form an Ad Hoc network that
may or may not have connectivity with external networks like the Inter-
net. If there exists such connectivity, then we may have also one SCPP
taking control of a group of areas (e.g. nodes in certain rooms). We will
denote by n; the diameter (expressed in number of nodes in the longest
path) of the area i. We also denote by N the diameter of the whole area
controlled by the SCPP. Every time we need to know the home node of a
given contextual information (in case we need to update this information
or we need to access it) we will call a hash function returning the home

Fig. 1. Typical layout of our environment using CHT.

node of this information. This operation can be performed in order O(1).
If the home node of that information lies in the same room or area we can
obtain the information with two messages (answer and response). Which
means in O(y/n;) transmissions of each intermediate node because /n;
is the mean path length for nodes within the area n;. In the worse case
in which the route to the home node is not kwnon, a limited broadcast
can be used, having a cost of O(n;) messages. Our hash function will be
designed so that contextual information will be placed close to the area
in which there are more nodes interested in. Thus, the access cost will
be reduced. In the unlikely case in which a node would be interested in
contextual information of other areas, the access time would be O(v/N)
in the average case and O(XN) in the worst case,in which we don’t know
a route to the destination and we need to flood the whole area.

4 CHT: Contextual Hash Table

This section describes in detail the CHT algorithm for distributing con-
textual information represented according to our Ontology Context Plat-
form (OCP). In section 4.1 we describe the algorithm in detail, showing
concrete examples. In adition, in section 4.2, we discuss the issue of
replication and we introduce some replication mechanisms for CHT to
guarantee the avaliability of data it handles even when mobility and node
failure rates increase.

4.1 The CHT algorithm

As we stated before, each node producing, consuming or storing contex-
tual information in the system will have one unique identifier. Provided
that our OCP works with OWL-represented onlogies, in which identiers
are URIs, our identifiers will have the following format:

URI = cht://resourceDescription@physicalLlocation

where resourceDescription is the description name of the node (a.k.a.
resource) that must be unique in the system. Additionally, physical-
Location is the name of the physical area in which the node is cur-
rently located. In case a node does not know its physical location, it
will use “unknownLocation” as default. Some examples of CHT URIs
are cht://backdropl@rooml and cht://printer2@labH44. Besides its
URI, each node in the system will generate a unique identifier expressed
as a long integer. This identifier will be temporal, and will be regen-
erated if the user changes from one location to another (i.e: the user
changes to another room in the building). Given that users are most in-
terested in the contextual information related to their current location,
our CHT will mostly consider the location as the most important piece
of contextual data, when selecting home nodes. Thus, contextual infor-
mation is expected to be stored in the same area in which the user is.
In fact, location is the most important contextual information in mobile
context-aware scenarios[9, 7]. Hence, the location of the user will be the
dominating factor when selecting its temporal identifier. So, the higher
order bits of the identifier will be taken from the location of the node
(e.g. identifier of the room obtained from the ontology). The rest of the
identifier will be formed from the context of the user or node, its URI
and/or the arriving order of the nodes to the room. This identifier (a long
integer, such as 25000) will be used as a reference to discriminate the
contextual information that must be stored at the user or node. That’s
to say, given the identifier returned from the hash function, the home
node for that contextual information will be the one whose hash value
equals or is closer to that identifier than any other node. According to
our requirements, the identifiers of two nodes that are in the same area
will always be closer than the identifiers of two nodes in different areas.

25 2205,2225
2100, 2135

w2 730 230,729,230 O

Fig.2. CHT operation.

Invoking the hash function with a cocrete contextual information will
give us a hash value dependent, as said before, on a concrete contextual
information and a source URI. We will use this value to identify the home
node of that information by means of a simple check of integer proximity,
computing the minimum:

mini<;<n abs(id — id;)

where id; is the identifier obtained from node 4, id is the hash value
obtained for the contextual information and N the total number of nodes.
Using an ordered distributed identifiers table, this could be done in small
time.

Figure 2 shows a concrete example of the CHT algorithm operation. Our
example consits of two interconnected rooms: “Lab-1” and “room H212”.
Each room has several nodes we have labelled from 1 to 9. Each node has
a unique URI and an identifier it generated when it entered the room.
Each node stores contextual information we have identified by its hash
value. Both identifiers and hash values are represented by long integers.
This way, node ¢ stores the information with hash value v if there is no
other node j with a nearer identifier to v. That is to say:

home — node(context) = i <= Ajlabs(j — v) < abs(i —v)

Notice that the six nodes of the room “Lab-1" have their identifier closer
to 1000 (the identifier value associated to that location) because the
location is the most important factor when assigning node identifiers.
Similarly, the three nodes of the room “room H212” have their identi-
fiers close to 2000. Down in the same figure we can see the hash values of
the information they currently store. In the situation depicted on the up-
per part in the figure, node 6 leaves room “Lab-1” to enter room “room
H212”. Before leaving the room, node 6 announces their neighbours of
its intentions, and transmits to them the contextual information that
must stay in the room. The node has at that moment three bits of infor-
mation: local information concerning its own preferences and the device
characteristics, data that has no more relevance for the nodes of the room
“Lab-17, and two contexts of interest for the nodes of the room (iden-
tified with hash values 1180 and 1210). These two bits of information
must be kept in the room, so node 6 distributes them to their nearby
nodes, nodes 3 and 4 respectively.

Upon entering the room “room H212”, node 6 modifies its URI from
sibile01@lab-1 to sibile01@H212, and its identifier also gets modified
from 1200 to 2225. Its contextual information, now adapted to show the
change in location (besides any other contextual change occurred in the
process), has now been labeled with hash value 2225. The node then
performs a broadcast to any other node in the new room announcing its
presence. The nodes then add its URI and identifier to their tables and,
checking their own contextual informations, node 7 notices the contex-
tual information with hash value 2205 it was storing is now nearer to the
new node, so it transmits this information to node 6.

With CHT integrated with OCP, the contextual information is relocated
as the users move throughout the building. By definition, neighboring
nodes will also have close identifiers. When a user leaves a room and en-

ters another (see Fig.2), it passes the room-dependent information (con-
textual information about objets, people or devices in the room) to other
nodes in the room, dropping this information if is not of its interest now.
When the node enters the new room it receives a new dynamic identifier,
and its new neighbours determine wich information should the new node
store. The node is now the new “nearby” node to some other nodes and
the home node of some contextual information. Similarly, the contextual
information of the room has changed with the entrance of the new node,
and this newly generated contextual information will be distributed and
replicated over the nodes of the network as exposed previously. With
CHT, the contextual information moves through the building continu-
ously as a distributed informational entity.

replicated infornation

2205,2225 2160,2135,2320,2329,2350

2100,2135 2205, 2225,2403,2417

00 24032417 2320,2329,2350,2100,2135
2320,2329,2350 2205,2225,2003,2417

Fig. 3. Data replication in CHT.

4.2 Replication of Contextual Information

To enhance the basic operation described so far, we use a replication
mechanism to guarantee that contextual information is not lost due to
node failures or network partitions. The CHT replication mechanism
consists of maintaining copies of the contextual information of every node
in their upper and lower nearby nodes (in terms of their identifiers). As
an example, consider the figure 3, where node 9 will store apart from its
own contextual information, that of nodes 6 and 8. This information will
be stored as “replicated information”, and kept apart from the contextual
information that has node 9 as home node. The “border nodes” (i.e: nodes
that have a minimum or maximum hash value so are missing a upper or
lower nearby node, like node 8) will replicate their information on their
only nearby node and the other only node with only one neighbour (the
node with maximum identifier will store the contextual information from
the node with minimum identifier and viceversa). As an example, figure
3 shows that node 8 has no upper nearby node, so it will replicate its
contextual information on nodes 6 (its lower nearby node) and 7 (the
node with minimum identifier). This mechanism works remarkably well
and shows great scalability as number of nodes in the system increases.
The replication schema must be taken into account specially when a node
enters or leaves the system. In the example shown in figure 3, when node
6 enters room H212, it stores its own contextual information now identi-
fied with hash value 2225, receives the contextual information identified
with hash value 2205 from node 7 as home node contextual information,

and stores the contextual information of nodes 7 and 9 as “replicated in-
formation”. Notice that node 6 will only receive the target information of
nodes 7 and 9 (specifically contextual informations identified with values
2100, 2135, 2320 , 2329 and 2350), not their replicated information (like
the replicated information node 9 stores from node 8, its upper nearby
node). Similarly, when a node exits a room, the nodes must drop or re-
distribute both their target contextual informations and their replicated
contextual information properly.

With this mechanism, if a node fails or leaves unexpectedly, its contextual
information is not lost, because their nearby nodes already possess that
information, and they only must set that replicated information as target
information if they are now the home nodes of that information. They
will detect it because the previous home node is no longer reachable. As
an example, we assume that node 9 in figure 3 dies unexpectedly due
to an energy failure. When the node failure is detected, the remaining
nodes inmediatly adjust their contextual identifier tables to reflect the
missing node, and nodes 7 and 8 (the nearby nodes of node 9) re-evaluate
the replicated information they are storing from node 9 (i.e: contextual
information labeled with hash values 2320, 2329 and 2350). All this con-
textual informations are now nearer to node 8 than 7, so node 8 happens
to be the new home node of them, so it sets them as target information,
dropping them from their replicated information area. Node 8 also sends
this three contextual informations to node 6, its lower nearby node, that
node 6 stores as replicated information.

Now we will calculate the chance of loosing a concrete contextual infor-
mation with our replication method. We will call N the number of active
nodes in some area of the system, and we may assume a probability of
p of a node failure without loose of generallity. In order for a contex-
tual information to get lost all three nodes carrying that information
(its home node and their two nearby nodes) must fail simultaneously.
The probability that this will happen is (%)3. As an example, with a N
value of 100 nodes and a failure probability of 5% we have a probability
of 1,25FE710 of a contextual information loose. This schema guarantees
with a high probability that our contextual information will be always
available to users, an important factor if we want to handle a trusted
distributed contextual storage and management system.

5 Conclusions and future work

In this paper we present a contextual information distribution algorithm
that distributes the information according its semantic content. CHT
(Contextual Hash Table) approachs the problem of information distri-
bution with a hash table strategy, where the information is distributed
according to its contextual significance. A replication mechanism guar-
antees that the information will always be available to other users, and
the hash table approach offers a balanced storage of the information and
a reduced access time, both for storage and recovery of the contextual
data.

References

1.

10.

11.

12.

13.

14.

N. Bauer, M. Colagrosso, and T. Camp. An efficient approach to dis-
tributed information dissemination in mobile ad hoc networks. Tech-
nical Report Technical Report MCS-04-01,, The Colorado School of
Mines, February 2004.

Matthias Brust, Daniel Gorgen, Christian Hutter, and Steffen
Rothkugel. Ads as information management service in an m-learning
environment. Knowledge-Based Intelligent Information € Engineer-
ing Systems, 2004.

Guohong Cao, Liangzhong Yin, and Chita R. Das. Cooperative
cache-based data access in ad hoc networks. Computer, vol. 37,
no. 2, pages 32-39, February 2004.

Kai Chen and Klara Nahrstedt. An integrated data lookup and
replication scheme in mobile ad hoc network. 2004.

M. Hauspie, A. Panier, and David Simplot-Ryl. Localized prob-
abilistic and dominating set based algorithm for efficient informa-
tion dissemination in ad hoc networks. In Proceedings of the 1st
IEEFE International Conference on Mobile Ad-hoc and Sensor Sys-
tems (MASS’04), Fort Lauderdale, Florida, USA, 2004.

Shudong Jin. Replication of partitioned media streams in wireless ad
hoc networks. In Proceedings of the 12th annual ACM international
conference on Multimedia, pages 396 — 399, New York, NY, USA,
October 2004.

F. Bennet D. Clarke J.B. Evans A. Hopper A. Jones and D. Leask.
Piconet: Embedded mobile networking. IEEE Personal Communi-
cations, 4(5), pages 42-47, 1997.

Goutham Karumanchi, Srinivasan Muralidharan, and Ravi Prakash.
Information dissemination in partitionable mobile ad hoc networks.
In Proceedings of the 18th IEEE Symposium on Reliable Distributed
Systems, page 4, Washington, DC, USA, October 1999.

R. H. Katz. Adaptation and mobility in wireless information sys-
tems. IEEE Personal Communications, 1(1), pages 6-17, 1994.
Jinyang Li, John Jannotti, Douglas S. J. De Couto, David R. Karger,
and Robert Morris. A scalable location service for geographic ad hoc
routing. In Proceedings of the 6th ACM International Conference on
Mobile Computing and Networking (MobiCom ’00), pages 120-130,
Boston, Massachusetts, August 2000.

W. W. Peterson. Addressing for random access storage. IBM Journal
of Research and Development, 1(2):130-145, 1957.

Sylvia Ratnasamy, Deborah Estrin, Ramesh Govidan, Brad Karp,
Scott Shenker, Li Yin, and Fang Yu. Data-centric storage in sensor-
nets. SIGCOMM 2002, February 1st, 2002.

Sylvia Ratnasamy, Brad Karp, Scott Shenker, Deborah Estrin,
Ramesh Govindan, Li Yin, and Fang Yu. Data-centric storage in
sensornets with ght, a geographic hash table. Mobile Networks and
Applications, 8:427-442, 2003.

Ignacio Nieto Carvajal Juan A. Botia Blaya Pedro M. Ruiz Antonio
F. Gémez Skarmeta. Implementation and evaluation of a location-
aware wireless multi-agent system. Proceedings of the International
Conference on Embedded and Ubiquitous Computing, 2004.

