Dynamically Selecting Distribution Strategies for
Web Documents According to Access Pattern*®

Wenyu Qu ', Di Wu 2, Kegiu Li 3, and Hong Shen !

! Graduate School of Information Science
Japan Advanced Institute of Science and Technology
1-1, Asahidai, Nomi, Ishikawa, 923-1292, Japan

2 Department of Computer Science and Engineering
Dalian University of Technology
No 2, Linggong Road, Ganjingzi District, Dalian, 116024, China
3 College of Computer Science and Technology
Dalian Maritime University
No 1, Linghai Road, Dalian, 116026, China

Abstract. Web caching and replication are efficient techniques for re-
ducing web traffic, user access latency, and server load. In this paper
we present a group-based method for dynamically selecting distribution
strategies for web documents according to access patterns. The docu-
ments are divided into groups according to access patterns and the doc-
uments in each group are assigned to the same distribution strategy.
Our group-based model combines performance metrics with the different
weights assigned to each of them. We use both trace data and statistical
data to simulate our methods. The experimental results show that our
group-based method for document distribution strategy selection can
improve several performance metrics, while keeping others almost the
same.

Key words: Web caching and replication, distribution strategy, cache replace-
ment algorithm, simulation, trace data, autonomous system (AS).

1 Introduction

In recent years, the effective distribution and maintenance of stored information
has become a major concern for Internet users, as the Internet becomes increas-
ingly congested and popular web sites suffer from overloaded conditions caused
by large numbers of simultaneous accesses. When users retrieve web documents
from the Internet, they often experience considerable latency.

Web caching and replication are two important approaches for enhancing
the efficient delivery of web contents, reducing latencies experienced by users.

* The preliminary version of this paper appeared in [8]. Corresponding author: K. Li
(keqiu_01@163.com).

A user’s request for a document is directed to a nearby copy, not to the origi-
nal server, thus reducing access time, average server load, and overall network
traffic. Caching [4] was originally applied to distributed file systems. Although
it has been well studied, its application on the Internet gave rise to new prob-
lems, such as where to place a cache, how to make sure that cached contents
are valid, how to solve replacement problems, how to handle dynamic web doc-
uments, etc. Replication was commonly applied to distributed file systems to
increase availability and fault tolerance [9]. Both techniques have complemen-
tary roles in the web environment. Caching attempts to store the most commonly
accessed objects as close to the clients as possible, while replication distributes
a site’s contents across multiple replica servers. Caching directly targets mini-
mizing download delays, by assuming that retrieving the required object from
the cache incurs less latency than getting it from the web server. Replication,
on the other hand, accounts for improved end-to-end responsiveness by allowing
clients to perform downloads from their closest replica server.

Although web caching and replication can enhance the delivery efficiency of
web contents and reduce response time, they also bring some problems, such as
maintaining consistency of documents, propagating content updates to replica
servers and caches, and so on. There are many ways to distribute copies of a
web document across multiple servers. One has to decide how many copies are
needed, where and when to create them, and how to keep them consistent. A good
distribution strategy would be an algorithm that makes these decisions. We argue
that there is no distribution strategy that is optimal for all performance metrics;
in most cases, we have to pay the cost of making some performance metrics
worse if we hope to make one or more of the others better. In this paper we
present a group-based method for dynamically selecting distribution strategies
for web documents according to access patterns. We divide the documents into
groups according to access patterns and assign the same distribution strategy
to the documents in each group. Further, we present a group-based model that
combines performance metrics with the different weights assigned to each of
them. Therefore, our method can generate a family of strategy arrangements
that can be adapted to different network characteristics. To realize our method,
we use a system model [8] in which documents can be placed on multiple Internet
hosts . Clients are grouped based on the autonomous systems (ASs) that host
them. ASs are used to achieve efficient world-wide routing of IP Packets [3].
In this model, each AS groups a set of clients that are relatively close to each
other in a network-topological sense. In this paper, we consider a more general
system model, in which an intermediate server is configured either as a replica
server, or a cache, or neither. Finally, we use both trace data and statistical data
to simulate our methods. The experimental results show that our group-based
method for document distribution strategy selection can outperform the global
strategy and improve several performance metrics compared to the document-
based method, while keeping the others almost the same.

The rest of the paper is organized as follows. Section 2 focuses on our group-
based method for dynamically selecting distribution strategies for web docu-

ments according to access patterns. The simulation experiments are described
in Section 3. Finally, we conclude our paper in Section 4.

2 Selection of Document Distribution Strategy

In this section, we first briefly outline the distribution strategies used in this
paper, and then we present a group-based method for dynamically selecting
distribution strategies for web documents according to access patterns.

2.1 Distribution Strategies

We considered the following document distribution strategies.

1. No Replication (NoRepl): This is a basic strategy that does not use any repli-
cation at all. All clients connect to the primary server directly.

2. Verification (CV): When a cache hit occurs, the cache systematically checks
the copy’s consistency by sending an If-Modified-Since request to the primary
server before sending the document to the client. After the primary server reval-
idates the request, the intermediate decides how to get the document for the
client.

3. Limited verification (CLV'): When a copy is created, it is given a time-to-live
(TTL) that is proportional to the time elapsed since its last modification. Before
the expiration of the TT'L, the cache manages requests without any consistency
checks and sends the copies directly to the client. After the TTL expires, the
copies are removed from the cache. In our experiments, we used the following
formula to determine the TTL. o = 0.2 is the default in the Squid cache [3].

T,=(1+a)T.-T, (1)

where T is the expiration time, T, is the cached time, and 7T; is the last modified
time. « is a parameter which can be selected by the user.

4. Delayed verification (CDV'): This policy is almost identical to the CLV strat-
egy, in that a copy is created, it is also given a TT'L. However, when the TTL
expires, the copies are not removed from the cache immediately; the cache sends
an If-Modified-Since request to the primary server before sending the copies to
the client. After the primary server revalidates the request, the intermediate
decides how to fetch the document for the client.

Ideally, we would have as many replica servers as ASs, so every client could
fetch the needed document from the replica server; this, in turn, would produce
good results on some performance metrics such as hit ratio and byte hit ratio.
However, on the other hand, it also would make other performance metrics, such
as consumed bandwidth and server load, worse.

5. SU50 (Server Update): The primary server maintains copies at the 50 most
relevant intermediate servers.

6. SU50 + CLV: The primary server maintains copies at the 50 most relevant
intermediate servers; the other intermediate servers follow the C'LV strategy.

2.2 A Group-Based Method for Document Distribution Selection

First we introduce a method to group the documents into P groups according to
their access patterns. The main factors that influence the access patterns are web
resource and user behavior. According to [7], we group the documents according
to the value of vy, which is defined as follows:

vqg = (ca + fa/ua)sa (2)

where ¢4 denotes the cost of fetching document d from the server, f; denotes the
access frequency of document d, uy denotes the update frequency of document
d, and s4 denotes the size of document d. We can see that when P is equal to the
number of the documents, i.e., when there is only one document in each group,
then our method is the same as the document-based method in [11]. Therefore,
from this point of view the method proposed in [11] can be viewed as a special
case of our method. For the case of P = 1, our method can be considered a global
strategy method, since all the documents are assigned to the same strategy.

Now we present our group-based model considering the total effect of the
performance metrics from a general point of view, e.g. we define the total function
for each performance metric according to its characteristics. The existing method
[11] defines the total function for each performance metric by summing the
performance metrics of each document. We argue that this method does not
always work well for some performance metrics such as total hit ratio.

Let S = {s;,j = 1,2,---,|S|} be the set of distribution strategies, G =
{Gj,7 = 1,2,--- |G|} be the set of groups, M = {m;,j = 1,2,--- ,|M|} be
the set of performance metrics such as total turnaround time, hit ratio, total
consumed bandwidth, etc. A pair arrangement (strategy, group) means that a
strategy is assigned to the documents in a group. We denote the set of all the

possible arrangements as A. We can define a function f for each metric my on
|G| 1G]

a pair a € A by Rgq = Zr’mj = ka(cqu), where Ry, is the aggregated
j=1 j=1

performance result in metric my, and 744; is the performance result in metric my,

for Gj .

Let w = {wyi,wa,--- ,wypr } be the weight vector which satisfies:
M
S wp=1w, >0,k =1,2,---,[M| (3)
k=1

We can get the following general model R} = mkin Wi Rq. We refer to R as the

total cost function for different weight vector w for an arrangement a .

Since there are a total of |S|I¢! different arrangements, it is not computation-
ally feasible to achieve the optimal arrangements by the brute-force assignment
method. The following result shows that it requires at most|G||S| computations

to obtain an optimal strategy arrangement for the documents in each group.

| M| |G| M| |G|
R’ = min E wi R, = min E Wy E Thai) = Min g g WETkai
@ GEA ¢ aeA (¢ as) acA c a
k k=1 j=1 k=1 j=1
|G| | M| |G| | M|
= min E E WkThaj = Min E (min E Wi Riaj)
acA 4 a€A 4 J
j=1k=1 j=1 k=1

From the above reasoning, we can obtain the total optimal arrangement by
computing the optimal arrangement for each group. Therefore, the computation
is the sum of that for obtaining the optimal arrangement for the documents in
each group, whereas the computation workload for the method in [11] is about
|D||S|, where |D| is the total number of documents. Thus, our method requires
less computation than the method in [11] by (|D| — |G])|S|. If we suppose that
there are 100 documents, and we divide the documents into 10 groups, we can
see that the computation can be reduced by 90%.

In our experiments we mainly considered the following performance metrics:
(1) Average Response Time per request (ART): the average time for satisfying a
request. (2) Total Network Bandwidth (TNB): the total additional time it takes
to transfer actual content, expressed in bytes per milli-second. (3) Hit Ratio
(HR): the ratio of the requests satisfied from the caches over the total requests.
(4) Byte Hit Ratio (BTR): the ratio of the number of bytes satisfied from the
caches over the total number of bytes.

For the case of £ = 1,2, suppose maxr = max Ry;, min = min Ry;. Before
J J

defining the total performance metric result function for the case of k = 1,2, we
should apply a transformation f(Ry;) = (Rk;j—min)/(max—min) on Ry; so that
f(Ryj) € [0,1]. Therefore all the performance metric results are in the interval
[0,1]. Otherwise it is not feasible to decide the weights for the performance
metrics. For example, in the case of ART = 150, TNB = 200, HR = 0.9, and
BHR = 0.9, let w = (0.45,0.45,0.05,0.05). In this case, we can see that HR
and BH R play little role in the total cost, although the weights of them are very

|D|
large. For ART and TN B, we define Ry, = Z f(Ry;)/|D|, k = 3,4.
j=1
For HR(k = 3), let R1; = f1(s;, G;) be the number of requests that hit in the

|D|
replica servers and the caches for the pair (s;, G;). We define Ry = Z R1;/NR,
j=1

where N R is the total number of requests.

For BHR(k = 4), let Ry; = fa(s;,G;) be the number of bytes that hit
in the replica servers and the caches for the pair (s;,G;). We define Ry =
|D]

Z Ry;/NBR, where NBR is the total number of requests bytes.
j=1

3 Simulation

In this section we use trace data and statistical data to simulate the methods
proposed in previous sections. In the simulation model, we assume that the
primary server has the privilege of updating the documents whose copies are
distributed or stored in the replica servers and the caches. A replica server al-
ways holds the document; a cache may or may not hold it. In the following
figures, “Per-Group” and “Per-Document” represent the performance results of
our group-based method and the existing document-based method.

3.1 Simulation with Trace Data

In this section we apply trace data to simulate our results. The trace-based
simulation method is similar to that introduced in [10]. In our experiments,
we collected traces from two web servers created by the Vrije Universiteit Am-
sterdam in the Netherlands (VUA) and the National Laboratory for Applied
Network Research (NLANR). Table 1 shows the general statistical data for the
traces.

Table 1. Statistics of Trace Data

Issue VUA NLANR
Start Date September 19, 1999(March 27, 2001
End Date December 24, 1999 | April 11, 2001
Duration (days) 96 16
Number of Documents 26,556 187,356
Number of Requests 1,484,356 3,037,625
Number of Creates 26,556 187,356
Number of Updates 85,327 703,945
Number of ASs 7,563 90

In this section we describe our experiment for assigning the same distribution
strategy to the documents in each group. The simulation results shown in Table
2 were obtained when the number of groups was 100 and 200 for VUA and
NLANR, respectively. We simulated a case in which there are two performance
metrics, ART and TNB.

From Figure 1 we can see that the results of our method approximate those of
the existing method when we group the documents into 117 and 211 groups for
VUA and NLANR, respectively. From our experiments, we conclude that there
is almost no improvement in result as the number of groups increases. However,
our method can significantly improve both the procedure execution time and the
memory management cost, as can be seen in Figures 2 and 3.

11 6.8

Average Response Time (Sec)

Procedure Execution Time (Sec)

Table 2. Performance Results for Per-Group Strategy

VUA NLANR

TNB(GB)|ART(Sec)[NB(GB)|TT (hours)
() 95.3 882 | 1622 | 537
() 110.2 695 | 175.7 | 5.8
(0.7,0.3) 126.5 6.24 196.7 5.83
(0.6,0.4) 136.5 586 | 2125 | 6.04
(0.5,0.5) 150.7 557 | 2565 | 627
()
()
()
()

w = (w1, ws)

0.9,0.1
0.8,0.2

0.4,0.6 167.4 5.33 283.5 6.62
0.3,0.7 178.2 5.20 314.5 6.89
0.2,0.8 191.7 5.11 346.8 7.05
0.1,0.9 205.6 5.05.1 379.4 7.24

VUA NLANR

—5— Per—Group —=— Per—Group
© - Per—Document © - Per—Document

o
T

o
o
T

Average Response Time (Sec)
[]
A
T

4L |
6.3 - -
ol |
6.2 - -
Sr N 6.1 -
a 6
50 100 50 200 250 200 250 00 350 400
Total Network Bandwidth (GB) Total Network Bandwidth (GB)
Fig. 1. Different Arrangements
VUuA NLANR
a5 T T T T 65 T T
60 =
a0F B
55 —
35 -
= 50 i
3
L
30 - =
E as| B
£
—=— Per—Group s —=— Per—-Group
25 _o-. Per—Document - 3 aof —_o— . Per—Document -
g
fin
2
=1 35 -
20 - =
g
£ sol |
15 -
25 - —
1045 — = B = - —o— 8 o
RS = = 200 o - o B o o — = —o— S -1
5 is
o 0.2 0.4 0.6 0.8 1 o 0.2 0.4 0.6 0.8 a1
Weights Weights

Fig. 2. Procedure Execution Time

3.2

In this section we use statistical data to simulate our methods. The parameters
shown in Table 3 are chosen from the open literature and are considered to
be reasonable [1,2,5,6]. We have conducted experiments for many topologies
with different parameters and the performance of our results was found to be
insensitive to topology changes. Here, we list only the experimental results for

65

60

50

Memory Management Cost (%)

40,

35

55

o

VUA

—S— Per—Document
o Per—Group

T e = e e Ml

0.2 o.a 0.6

R o.8
Weights

Fig. 3. Memory

NLANR
75

70

o
0]

—S— Per—Document
—= Per—Group

o]
o]

Memory Management Cost (%)

o
0]

R

5 -0 5-= o 8 -F

0.2 0.6

.4
Weights

Management Cost

Simulation with Statistical Data

one topology, due to space limitations.

Table 3. Parameters Used in Simulation

Parameter Value
Number of Nodes 200
Number of Web Objects 5000

Number of Requests 500000
Number of Updates 10000

Web Object Size Distribution

Pareto Distribution

ab® (g =1.1,b = 8596)

a—1

p(z)

Web Object Access Frequency

Zipf-Like Distribution
L (i=0.7)

Delay of Links

@
Exponential Distribution

p(x) =60"te "% (9 =0.06 Sec)

Average Request Rate Per Node

U(1,9) requests per second

From Figure 4 we can see that the results of our method approximate those
of the existing method when we group the documents into 89 groups. However,
our method can improve both the procedure execution time and the memory
management cost.

T T T T T T
R —=— Per-Group
\ © Per—Document

Average Response Time (Sec)
)
T

80 100 120 140 160 180 200 220 240

Moy Management Cost ()
Y
0
T

Fig. 4. Performance Results for Per-Group Strategy

4 Concluding Remarks

Since web caching and replication are efficient ways to reduce web traffic and
latency for users, more and more researchers have been paying a lot of attention
to this topic. In this paper, we presented a method for dynamically selecting
web replication strategies according to the access patterns. We also used both
web trace and statistical data to simulate our method. However, we can see
that there will be performance problems when more strategies are considered.
In the future, this work should be extended to the replication of other types of
objects, since we considered only static objects in this paper. The application of
our method to dynamical web documents also should be studied. Such studies
should lead to a more general solution to web caching and replication problems.

References

10.

11.

Aggarwal, C., Wolf, J. L. and Yu, P. S. (1999) Caching on the World Wide Web.
IEEE Transaction on Knowledge and Data Engineering, 35, 94-107.

. Barford, P. and Crovella, M. (1998) Generating representative web workloads for

network and server performance evaluation. Proc. of ACM SIGMETRICS’98,
Madison, WI, June, pp. 151-160.

Bates, T., Gerich, E., Joncheray, L., Jouanigot, J. M., Karrenberg, D., Terpstra,
M. and Yu, J. (1995) Representation of IP routing policies in a routing registry.
Technical Report, Zvon-RFC 1786, May.

Bestavros, A. (1997) WWW traffic reduction and load balancing through server-
based caching. IEEE Concurrency: Special Issue on Parallel and Distributed Tech-
nology, 15, 56-67.

Breslau, L., Cao, P., Fan, L., Phillips, G. and Shenker, S. (1999) Web caching and
zipf-like distributions: evidence and implications. Proc. of IEEE INFOCOM’99,
March, pp. 126-134.

Calvert, K. L., Doar, M. B. and Zegura, E. W. (1997) Modelling internet topology.
IEEE Comm. Magazine, 35, 160-163.

Krishnamurthy, B. and Rexford, J. (2001) Web Protocols And Practice. Addison-
Wesley, Boston.

Li, K. and Shen, H. (2004) Dynamically Selecting Distribution Strategies for Web
Documents According to Access Pattern, Proc. of the Fifth International Con-
ference on Parallel and Distributed Computing, Applications and Technologies
(PDCAT 04), pp. 554-557.

Loukopoulos, T., Ahmad, I. and Papadias, D. (2002) An overview of data repli-
cation on the Internet. Proc. of the International Symposium on Parallel Ar-
chitectures, Algorithms and Networks (ISPAN’02), Makati City, Metro Manila,
Philippines, 22-24 May, pp, 31-37.

Pierre, G. and Makpangou, M. (1998) CSaperlipopette!: a distributed web caching
systems evaluation tool. Proc. of 1998 Middleware Conference, The Lake District,
England, 15-18 September, pp. 389-405.

Pierre, G. and Steen, M. (2002) Dynamically selecting optimal distribution strate-
gies for web documents. IEEE Transactions on Computers, 51, 637-651.

