
Checkpointing for the Reliability of Real-Time

Systems with On-Line Fault Detection

Sang-Moon Ryu and Dong-Jo Park

Korea Advanced Institute of Science and Technology
373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea

smryu@kaist.ac.kr, djpark@ee.kaist.ac.kr

Abstract. The checkpointing problem in real-time systems equipped
with on-line fault detection mechanisms is dealt with from a reliability
point of view. The reliability analysis is performed with the assumption
that transient faults occur in accordance with a Poisson process and
are detected immediately by the detection mechanisms. And the best
equidistant checkpointing strategy that maximizes the reliability of the
system against transient faults is derived.

1 Introduction

Transient faults in semiconductor devices are becoming more significant because
of increased density, low supply voltage, fast switching signals and so on [1].
Checkpointing is a well known technique to overcome transient faults in com-
puter systems. It means periodically saving the state of a task in a safe storage
place. When the manifestation of a transient fault is detected, the state of the
affected task will be restored to the state stored at the latest checkpoint. This
process is called rollback-recovery. The specific points at which checkpointing
is performed are called checkpoints and the length of the time between two
successive checkpoints is said to be a checkpoint interval.

Many papers dealt with the problems of checkpointing in real-time systems
from various points of view [2–6]. In this paper, the reliability problem of equidis-
tant checkpointing, which relies on the use of a constant checkpoint interval, in
a single task real-time system under transient faults is explored. The transient
faults are assumed to occur according to a Poisson process and be detected by
on-line detection mechanisms [7, 14–16] with no latency. The reliability of the
system with equidistant checkpointing is analyzed and the best checkpointing
strategy is derived, which achieves the maximum probability of successful task
completion with given parameters such as task execution time, available slack
time, checkpointing and recovery overheads.

The following assumptions were made in this work, which were used in other
literature:

– Transient faults occur according to a Poisson process with rate λ, which is
common in many papers dealing with transient faults [2–5, 8, 10–13].
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Fig. 1. The task (a) before inserting checkpoints (b) after inserting checkpoints.

– The effect of a transient fault disappears during the corresponding recovery
operation.

– The manifestation of transient faults is perfectly detected by the detection
mechanisms [3–5, 10]. If necessary, the fault detection coverage [14] may be
taken into account after the reliability model is obtained.

– Checkpointing is possible anywhere in the task with a constant checkpoint
interval [5]. In practice, it might be difficult to accomplish. But the result of
analysis with equidistant checkpointing can give an insight into how check-
points should be inserted to improve the reliability of a system.

– Checkpointing and recovery overheads are same and remain constant [5].

2 Reliability Analysis

If Nc checkpoints are inserted uniformly into the task whose worst case execution
time, relative deadline, slack time, and checkpointing/recovery overhead are Te,
Td, Ts, and Tc, respectively, as shown in Fig. 1(a), the task is divided into Nc

subsections creating Nc time-slots as illustrated in Fig. 1(b). Each time-slot is
composed of a part of normal execution and a checkpointing operation, and its
length is Te

Nc
+ Tc. Due to the checkpointing overheads, the available slack time

of the task is reduced from Ts to Ts − NcTc.
With on-line fault detection mechanisms, the recovery process can be per-

formed immediately after a fault occurrence as shown in Fig. 2. To tolerate tran-
sient faults that may occur during either checkpointing or recovery operation,
at least two secure storage places should be provided and used for checkpointing
alternately. The storage place where the earlier state was saved should be used
for the current checkpointing operation and the other one where the more recent
state was saved should be reserved for a recovery operation in case of a fault
occurrence during the current checkpointing operation.

Transient faults can be classified into two types: One type is those which
may occur during normal task execution or during checkpointing operations
(fault type ‘E’ and ‘C’ in Fig. 2), and the other type is those which may oc-
cur during recovery operations (fault type ‘R’ in Fig. 2). Transient faults of the



Fig. 2. Checkpointing with on-line fault detection.

former type will be counted to Nf and transient faults of the latter type will
be counted to Nr. Then the sum of Nf and Nr is the total number of transient
faults that may occur in [0, Td]. As shown in Fig. 2, let the time elapsed since the
last checkpointing when a fault occurs during normal execution or checkpointing
operations be denoted by tf,i, i = 1, 2, · · · , Nf , and the time elapsed since the
beginning of a recovery operation when a fault occurs during the recovery oper-
ation be denoted by tr,l, l = 1, 2, · · · , Nr and define Tt as Te

Nc
+Tc. Then the time

intervals tf,i and tr,l can be thought of as independent identically distributed
(i.i.d.) random variables with exponential distributions on intervals [0, Tt] and
[0, Tc], respectively.

Now we derive the probability of task completion in the presence of transient
faults. Since theoretically the number of faults of type ‘E’ or ‘C’ in interval
[0, Td] ranges from 0 to ∞, Nf ranges from 0 to ∞ as well. A fault of type
‘R’ can be brought about only after a fault of type ‘E’ or ‘C’ occurs. Therefore
Nr can range from 0 to Nf . The probability, P (Nc), that the task completes its
execution in the presence of transient faults is

P (Nc) = Pr{success with no fault}

+

∞
∑

Nf=1

Nf
∑

Nr=0

Pr{success with Nf and Nr faults} .

Since we assumed that faults occur in accordance with a Poisson process, the
probability of successful task completion with no fault is

Pr{success with no fault} = e−λ(Te+NcTc) . (1)

The probability of successful task completion with Nf and Nr faults is the
product of three probabilities: the probability that no fault occurs in Nc time-
slots for task completion, the probability that Nf and Nr faults occur before
the task completes its execution, and the probability that the time lost by these
faults is small enough for the task to meet its deadline.

Pr{success with Nf and Nr faults} = Pr{no fault in Nc time-slots}



· Pr{lost time by Nf and Nr faults is small}

· Pr{Nf and Nr faults occur} . (2)

The first probability in the right side of (2) is the same as the probability in (1).
In the following, we derive the second and the third probabilities in the right
side of (2).

In order for the task to meet its deadline, Nc checkpointing operations, Nf

recovery operations should be done within the slack time Ts in spite of the loss
in time caused by the faults. If we define Tns as Ts − NcTc − NfTc and Sfr as
∑Nf

i=1 tf,i +
∑Nr

l=1 tr,l, the probability that the lost time by these faults is small
enough for the task to meet its deadline can be expressed as

Pr{lost time by Nf and Nr faults is small} = P (Sfr ≤ Tns) . (3)

In order to get the probability in (3), we have to find out the probability
density function (pdf) of Sfr. It is already known that the sum of exponential
random variables has the Erlang distribution [17]. If Ti’s, i = 1, 2, · · · , n, denote
i.i.d. exponential random variables, and Sn denotes the sum of these exponential
random variables, i.e., Sn = T1 + T2 + · · · + Tn, the corresponding pdf’s are,
respectively,

fTi
(x) = λe−λx, x ≥ 0 (4)

and

fSn
(x) =

(λx)n−1

(n − 1)!
λe−λx, x ≥ 0 . (5)

From the definition of the characteristic function of a random variable [17], the
characteristic functions of Ti and Sn are, respectively,

ΦTi
(ω) =

λ

λ − jω
(6)

and

ΦSn
(ω) =

(

λ

λ − jω

)n

. (7)

The characteristic function of Sfr can be derived from those of tf,i and
tr,l. Since the time intervals tf,i and tr,l are random variables with exponential
distribution on intervals [0, Tt] and [0, Tc], their pdf’s are, respectively,

ftf,i
(x) =

{

λe−λx

1−e−λTt
, when 0<x<Tt

0, otherwise

and

ftr,l
(x) =

{

λe−λx

1−e−λTc
, when 0<x<Tc

0, otherwise .



Then the characteristic functions of tf,i and tr,l are, respectively,

Φtf,i
(ω) =

λ

λ − jω

1 − e−λTtejTtω

1 − e−λTt

and

Φtr,l
(ω) =

λ

λ − jω

1 − e−λTcejTcω

1 − e−λTc
.

Since the characteristic function of the sum of two random variables is the prod-
uct of the characteristic functions of these random variables, the characteristic
function of Sfr is

ΦSfr
(ω) =

(

Φtf
(ω)

)Nf (Φtr
(ω))

Nr ,

which is

ΦSfr
(ω) =

(

λ

λ − jω

)Nf+Nr 1

(1 − e−λTt)Nf

1

(1 − e−λTc)Nr

·

Nf
∑

i=0

(

Nf

i

)

(

−e−λTt
)i

ejTtωi ·

Nr
∑

l=0

(

Nr

l

)

(

−e−λTc
)l

ejTcωl

=

(

λ

λ − jω

)Nf+Nr 1

(1 − e−λTt)Nf (1 − e−λTc)Nr

·

Nf
∑

i=0

[

(

Nf

i

)

(

−e−λTt
)i

Nr
∑

l=0

(

Nr

l

)

(

−e−λTc
)l

ej(iTt+lTc)ω

]

.

Then the pdf of Sfr can be derived by using the relationship among (4), (5),
(6) and (7) as

fSfr
(x) =

1

(1 − e−λTt)Nf (1 − e−λTc)Nr

·

Nf
∑

i=0

[

(

Nf

i

)

(

−e−λTt
)i

Nr
∑

l=0

(

Nr

l

)

(

−e−λTc
)l

f(x − iTt − lTc)

]

,

where

f(x) =
(λx)Nf +Nr−1

(Nf + Nr − 1)!
λe−λx, x ≥ 0 .

Now that the pdf of Sfr is obtained, the probability in (3) can be calculated.
Finally, the third probability in the right side of (2) is derived, which can be

decomposed as

Pr{Nf and Nr faults occur} = Pr{Nf faults occur}

· Pr{Nr faults occur |Nf faults occur} .



Fig. 3. Possible cases for Nf faults.

Fig. 4. Possible cases for Nr faults.

The probability that a fault occurs and damages a time-slot of length Tt is
1 − e−λTt . Among Nc fault-free time-slots, the Nf faults of type ‘E’ or ‘C’ can

occur in
(

Nc+Nf−1
Nf

)

ways as illustrated in Fig. 3. Therefore the probability that

Nf faults occur before the task completion is

Pr{Nf faults occur} =

(

Nc + Nf − 1

Nf

)

(

1 − e−λTt

)Nf

.

The Nf faults of type ‘E’ or ‘C’ would bring about Nf times of recovery
operations. Among the Nf recovery operations, Nr operations are damaged by
the Nr faults of type ‘R’. The probability that Nr recovery operations are dam-
aged is (1− e−λTc)Nr , and the probability that Nf −Nr recovery operations are
performed normally is e−λ(Nf−Nr)Tc . Since the Nr faults may occur among the
Nf damaged time-slots in

(

Nf

Nr

)

ways as shown in Fig. 4, the probability that Nr

faults of type ‘R’ occur given that the Nf faults of type ‘E’ or ‘C’ have occurred
is

Pr{Nr faults occur |Nf faults occur} =

(

Nf

Nr

)

(

1 − e−λTc
)Nr

e−λ(Nf−Nr)Tc .

Consequently the probability, P (Nc), that the task completes its execution
even in the presence of transient faults is

P (Nc) = e−λ(Te+NcTc)



1 +

∞
∑

Nf=1

Nf
∑

Nr=0

Pfr(Nc, Nf , Nr)



 ,

where

Pfr(Nc, Nf , Nr) =

(

Nc + Nf − 1

Nf

)(

Nf

Nr

)

e−λ(Nf−Nr)Tc
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Fig. 5. P (Nc) when λ = 0.001, Te = 100 and Tc = 1.

·

Nf
∑

i=0

[(

Nf

i

)(

− e−λTt

)i Nr
∑

l=0

(

Nr

l

)

(

−e−λTc
)l

∫ Tns

0

f(x − iTt − lTc) dx

]

and

f(x) =
(λx)Nf +Nr−1

(Nf + Nr − 1)!
λe−λx, x ≥ 0 .

3 Numerical Examples

Figures 5 and 6 show the graphs of P (Nc) with different values of Ts and λ,
respectively. In theses figures, only the terms up to Nf = 5 were calculated
for each value of P (Nc). The probability of task completion in [0, Td] increases
as the available slack time increases. And excessive checkpointing can result in
adverse effect. This is because transient faults may occur during checkpointing
operations, and more checkpoints than necessary may expose the task to more
transient faults and cause the net slack time to decrease leading to the lack of
extra time for recovery operations in case of fault occurrences.

4 Best Checkpointing Strategy

From Figs. 5 and 6, it is apparent that there exists the best number of check-
points which maximizes the probability of successful task completion for the
given parameters, such as execution time, checkpointing overhead and available
slack time. In practice, the value of λTd is much smaller than 1. Therefore the
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Fig. 6. P (Nc) when Te = 100, Tc = 1 and Ts = 20.

value of P (Nc) is mainly dominated by the term resulting from Nf = 1 and
Nr = 0, and can be approximated as

P (Nc) ≈ e−λ(Te+TcNc)
[

1 + Nc

(

1 − e−λ(Ts−Tc−TcNc)
)

e−λTc

]

.

Since it is reasonable that the total checkpointing overhead, NcTc, is less than
the execution time of the task, we have e−λTcNc ≈ 1−λTcNc + 1

2 (λTcNc)
2. And

the probability P (Nc) can be approximated once more as

P (Nc) ≈ e−λTe

[

1 + (b − a − bc)Nc + (
a2

2
− ab)N2

c +
a2b

2
N3

c

]

, (8)

where a = λTc, b = e−λTc and c = e−λ(Ts−Tc)).
Then, by temporarily assuming Nc to be continuous and by solving the equa-

tion which results from taking the derivative of the right side of (8) with respect
to Nc and letting it be zero, we can obtain two candidates for the value of Nc

that maximizes P (Nc):
⌊

(2b − a) −
√

(2b − a)2 − 6b(b − a − bc)

3ab

⌋

and
⌈

(2b − a) −
√

(2b − a)2 − 6b(b − a − bc)

3ab

⌉

.

The best number of checkpoints is one of the above candidates which leads
to the larger value of P (Nc). In Figs. 5 and 6, the points corresponding to the
best number of checkpoints for each case are marked by a circle.



5 Conclusion

In this paper, we considered the best equidistant checkpointing strategy for real-
time systems from a reliability point of view with the assumption that transient
faults are detected with no latency by on-line detection mechanisms. The relia-
bility analysis shows that the reliability of the system can be improved as much
as expected by providing the required slack time with the tasks of the system,
and the best number of checkpoints hardly depends on the occurrence rate of
transient faults.
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