
Load Balanced Allocation of Multiple Tasks in a
Distributed Computing System

Biplab Kumer Sarker1, Anil Kumar Tripathi,2

Deo Prakash Vidyarthi3, Laurence Tianruo Yang4 and Kuniaki Uehara5

1 Faculty of Computer Science, University of New Brunswick, Fredericton, Canada
2 Institute of Technology, Banaras Hindu University, Varanasi, India

3 Jawaharal Nehru University, New Delhi, India
4 Department of Computer Science, St. Francis Xavier University, Canada

5 Graduate School of Science and Technology, Kobe University, Japan
sarker@unb.ca1 anilkt@bhu.ac.in2 dpv@mail.jnu.ac.in3

lyang@stfx.ca4 uehara@kobe-u.ac.jp5

Abstract. A Distributed Computing Systems (DCS) calls for proper
partitioning of tasks into modules and allocating them to various nodes
so as to enable parallel execution of their modules by individual different
processors of the system. A number of algorithms have been proposed
for allocation of tasks in a Distributed Computing System. Most of the
models proposed in literature consider modules of a single task for static
allocation, for the purpose of allocation onto a DCS. Moreover, they did
not consider the architectural capability of the processing nodes and the
way of connectivity among them. This work considers allocation of dis-
joint multiple tasks with their corresponding modules and proposes a
parallel algorithm for a realistic situation wherein multiple disjoint tasks
with their modules compete for execution on an arbitrarily connected
DCS based on well-known A* technique. The proposed algorithm also
considers a load balanced allocation for the purpose. The paper justi-
fies the effectiveness of the algorithm with the experimental results by
comparing with previously reported works.

1 Introduction

In a distributed computing systems, processing nodes networked together, par-
ticipate in various computational tasks to achieve minimum turn around time
of the submitted tasks. The problem becomes more complex when the commu-
nicating modules in a task itself are assigned to different processing nodes to
achieve the goal. Therefore, the inter module communication cost(IMC) needs
to be minimized to obtain the minimum turn around time. On the other hand,
the capacity of computational load for each processing node is needed to be con-
sidered for the whole system to maximize its throughput. This problem has been
studied as task allocation or mapping problem in the literatures [2-6, 8-11]. Since
the problem is NP-hard [2, 9] and thus many heuristic solutions are possible for
this problem.

2

Most of the algorithms for Task Allocation (TA) problem proposed by the
scientists and researchers [2, 6] so far, do make one or more assumptions. These
consider a single task partitioned into corresponding modules for the execution
and the repercussion of a single task allocation on a DCS. Whereas in reality, a
DCS receives number of tasks from time to time for the execution. Factually, a
DCS facilitates concurrent execution of modules belonging to various unrelated
tasks [7, 12, 13]. The modules of any particular task, having IMC, do coopera-
tively execute and do not depend on the modules of the other tasks. This leads
to the situation wherein, a processing node may be assigned modules belonging
to different tasks. It is to mention that the real issue of task allocation must
not ignore the possibility of multiple modules assignment of various tasks to the
processing nodes in a dynamic fashion [7].

Considering these view and furthermore, taking into account the architec-
tural capability of the processing nodes and the optimality of the solution guar-
anteed by A* based TA [2], in this paper we present a parallel algorithm for load
balanced allocation in a DCS.

The paper is organized as follows. The next section discusses the load param-
eter for multiple tasks which is used in our case as a cost function to minimize
turnaround time. This is the basis of effectiveness of the allocation. In section 3,
the A* algorithm for task allocation is proposed. Three examples are also illus-
trated in this section. In the next section, the comparative observations with the
existing algorithms are presented. Section 5 also justifies the effectiveness and
scalability of our algorithm. Finally, the work is concluded indicating the future
directions.

1.1 Assumptions

As the task allocation problem remains to be NP-hard, various heuristic solutions
are proposed with one or more assumptions [2]. This work also makes certain
assumptions that are as follows.

1. The processing nodes in the DCS are heterogeneous. The tasks are disjoint
and have no inter-task communication. Only the modules within a task have
interdependencies and communication requirements.

2. Execution and communication matrices for the task graphs are assumed
to be given. These matrices are different for every task and calculated in units
of time. While partitioning the task into modules, we assume that the memory
requirements of the modules are also calculated.

3. The assumption of the availability of interconnection graph accommodates
nonregular type of interconnection networks.

Here, in this paper, the word ‘processor’ and ‘processing node’, ‘assignment’
and ‘allocation’ have been used to refer the same.

2 Load

The tasks submitted into a DCS are partitioned into suitable modules and then
these modules are to be allocated to the processing nodes. Each task can be

3

represented by a Task Graph (TG) = (Vt, Et), where (1) Vt is a set of vertices,
each of which represents a module of the task m1,m2, ...,mn and (2) Et ⊆ Vt×Vt

is a set of edges each of which represents the Inter Module Communication
(IMC) between the two modules at the end of the edge. We can also represent
the network of processors p1, p2, ..., pn in a DCS as a Processor Graph PG =
(Vp, Ep); where vertices represent the processors and the edges represent the
communication links between processors (see Fig.2). The goal of TA is to allocate
the Task Graphs (TG) to a network of processors in a DCS (i.e. to PG) to achieve
the minimum turn-around time of tasks [2].

A processor’s load comprises of all the execution and communication costs
associated with its assigned modules of the task [6]. The time required by the
heaviest-loaded processor will determine the entire tasks’ completion time. So,
the TA problem must find a mapping of the set of m modules of l tasks to n
processors so as to minimize tasks completion time. Our goal is to allocate the
modules in such a way that does not cause any processing node to be overloaded
because an overloaded node may affect adversely in the turn around time of the
tasks in a heterogeneous DCS.

The load in a processing node p is calculated as follows

k∑

l=1

mi∑

i=1

Xilp.Milp +
n∑

q=1
q 6=p

k∑

l=1

mi∑

i=1

m∑
j=1
j 6=i

(Cijl + CCpq).Milp.Mjlq (1)

where, CC pq = Cfi.L
i
pq

Xilp = execution cost of ith module of task l on processing node p
Cijl = Inter-Module Communication(IMC)Cost between ith and jth module of
task l
Milp = assignment matrix of ith module of lth task on processing node p

Milp =
{

1 ifmodule mi of task l is assigned to processor p
0 otherwise

Mjlq = assignment matrix of jth module of lth task on any other processing
node q

Mjlq =
{

1 ifmodule mj of task l is assigned to processor q
0 otherwise

Li
pq= connection matrix of two processors p and q, describing the links (direct/

single indirect/ double indirect etc.) of connection paths among the processing
nodes in Processor Graph (PG).
Cfi= coefficient matrix which has n entries describing the IPC (Inter Proces-
sor Communication) costs for the links of connection paths among the process-
ing nodes. For example, Cf1=5 (for direct connection between the processors),

4

Cf2=10 (for processors which are indirectly connected by one link), Cf3= 20
(for processors which are indirectly connected by two links) etc.

The first part of the above equation 1 is the total execution cost of the
modules of all the tasks allocated on a processing node p. The second part is
the communication overhead on p with the modules of the tasks allocated on
the other processing node such as q in the DCS. The ith entry of the coefficient
matrix Cfi corresponds to communication between two processors via i links. If
processors p and q are not directly connected, we find L2, multiply it by Cf2,
(2nd field of Cf), and check whether this comes out to be non-zero; if it does, we
replace L1 in calculation with L2; if not, we find out L3and multiply it with Cf3

and check whether the product comes out to be non-zero. We continue like this
until we find a non-zero value and then replace Li in calculation with this (it
is to be mentioned that we shall find a non-zero value within n multiplications,
where n is the no. of processing nodes).

2.1 Global Table(GT)

To allocate the modules optimally so that no processor becomes overloaded, the
load on each of the n processing nodes needs to be computed. By finding the
processing node with heaviest load, the optimal assignment out of all possible
assignments will allot the minimum load to the heaviest loaded processor. Thus
it is necessary to consider realistic view that only a finite number of modules
can be allocated to a processor depending on the architectural capability of
the processing nodes in a DCS. Consequently, earlier algorithms [2, 5, 6] have
continued to assume that all the modules will be eventually allocated no matter
how large the memory requirements are, and/or how many modules a processor
can accommodate and what is the current status of the system due to the existing
allocation. These algorithms do not consider the requirement of allocation of
modules of multiple tasks. In the proposed algorithm, we have shed off these
unrealistic assumptions and make use of a data structure STATUS associated
with every processor, which has two fields showing: the maximum number of
modules that can be allocated to the processor and the memory capacity of the
processor.

Whenever a module is chosen for allocation onto a processing node, the STA-
TUS is checked and it is ascertained whether the processor can accommodate
the module at hand. If not, another processor is chosen if available. The conse-
quence might be that a certain module is not allocated at all. This data structure
is implemented by constructing a Global table (GT) to maintain the track of
maximum number of modules that can be allocated to a processing node de-
pending upon its memory capacity. This is a dynamic table, which keeps the
information of the remaining memory of nodes and the number of modules can
be allocated on the nodes. Whenever a new task arrives, this GT is to be con-
sulted and to be modified. Here, we present the basic structure of the GT. In
this table, it is shown that there are 4 processing nodes in a DCS. The number of
modules, the processing nodes can accommodate are 4, 3, 4, and 5, respectively,

5

and the memory capacity of the nodes are 10, 8, 9 and 12 respectively. After
some modules are assigned the other column of the processing nodes will be filled
up by the corresponding numbers which is shown in the illustrative examples in
sec. 4.

Table 1. The structure of the GT.

Pnode Mmod Mcap Modassign Rmod Rmem

p1 4 10

p2 3 8

p3 4 9

p4 5 12

Here, Pnode= Processing node of the DCS
Mmod =Maximum number of modules can be assigned
Mcap = Maximum memory capacity of a Pnode

Modassign = Modules assigned of each task
Rmod = Remaining number of modules can be assigned
Rmem = Remaining available memory

3 Proposed Algorithm for TA

In the A* algorithm [1, 2], for a tree search, it starts from the root, usually
is called the start node (usually a null solution of the problem). Intermediate
tree nodes represent the partial solutions, and leaf nodes represent the complete
solution or goal. A cost function f computes each node’s associated cost. The
value of f for a node n, which is the estimated cost of the cheapest solution
through n, is computed as

f(n) = g(n) + h(n) (2)

Where, g(n) is the search-path cost from the start node to the current node
and h(n) is a lower-bound estimate of the path cost from current node to the
goal node (solution), using any heuristic information available. To expand a node
means to generate all of its successors or children and to compute the f value
for each of them. The nodes are ordered for search according to the cost; that
is, the algorithm first selects the node with the minimum expansion cost. The
algorithm maintains a sorted list, called OPEN, of nodes (according to their
f values) and always selects a node with the best expansion cost. Because the
algorithm always selects the best-cost node, it guarantees an optimal solution
[2].

To compute the cost function, g(n) is the cost of a partial assignment at node
n which is the load on the heaviest loaded processing node (pi); this is done using

6

the equation 1. For the computation of h(n), two sets Ap (the set of modules that
are already assigned to the heaviest loaded p) and U (the set of modules that are
unassigned at this stage of the search and have one or more communication links
with any module in set Ap), are defined. Each module mi in U will be assigned
either to p or any other processor q that has a direct or indirect communication
link with p. So, two kinds of costs with each mi’s assignment can be associated:
either Xilp(the execution cost of mi of task l on p) or the sum of communication
costs of all the modules in set Ap that has a link with mi. This implies that to
consider mi’s assignment, it is to be decided whether mi should go to p or not
(by taking the minimum of these two cases’ cost).

To support the run-time allocation of tasks to processors, we construct a
manager-worker style parallel algorithm whose pseudo-code is given in sec. 3.1.
One processor called the manager is responsible for keeping track of the assigned
and unassigned tasks using a Global Table (GT) which is consulted and updated
during every allocation. It always consists of the information about the total
memory of the processing nodes and the remaining memory after assignment,
no. of assigned modules and the remaining no. of modules can be assigned.

3.1 The Algorithm

1. As a ‘Manager’ node, processor P0 maintains the status of the Global Table
(GT) for each processing node(P1, P2, ..., Pn) termed as ’worker’ in terms of
available memory (M) and the modules that are already assigned to it.

2. ‘Manager’ node maintains a list S of unallocated tasks with all modules (all
tasks are in S at the beginning) and a list OPEN, empty at the beginning.
Another list V is maintained by taking one Task ta from S and put it in
another list V and reset OPEN.

3. The ‘workers’ checks possible allocation of modules in V using the A*(2)
algorithm and verifying STATUS of them by P0; then allocate them; if not
possible, deallocate the partially allocated modules of the task and move onto
the next task, modifying the STATUS in between and update the Global Table
(GT)by the Manager.)

4. If S is not empty yet, go to step 2.
5. Stop (end of allocation).

4 Implementation Results

In this section, we present three small examples with various number of TGs
and PGs to justify the proposed algorithm with respect to allocation and status
of the global table.

Case 1
For case 1, we have considered a set of three tasks shown as TGs partitioned

with their corresponding modules T1(m11, m21, m31, m41), T2(m12,m22,m32),
T3(m13,m23,m33) and a DCS as PG, consists of four processors (p1, p2, p3, p4)

7

interconnected as shown in Fig. 2. Here, the IMC costs shown as in the figure
represent the communication costs between the modules of the tasks in time
unit. For example, the communication cost between m11 (the first module of
task T1) with m21 (the second module of task T1) is 10 unit. The adjacency ma-
trix Li

pq of processing nodes are assumed to be given which represents how the
processing nodes are connected among each other. For example, the processing
nodes p2 and p3 are not directly connected, so L1

p2p3 = 0. But they are connected
with at least one indirect link (through p1 or p4). So, L2

p2p3 = 1.

m 11

m 21

m 41

m 31

10
50

20

5

m 12

m 22 m 32

m 13

m 23

m 33

10
5

40

p1 p2

p3 p4

T ask Graph(T 1) T ask Graph(T 2) T ask Graph(T 3) Proc essor Graph(PG)

Fig. 1. Example of task graphs T1, T2 and T3 with their modules and a DCS as pro-
cessor graph.

The Results for case 1
Total cost (communication and execution) at all the processing nodes is 500

units. Time required by the algorithm was 0.06 seconds. Note that the results
are conducted in a single processor machine.

Table 2. The final status of the GT using A* for case 1.

Pnode Mmod Mcap Modassign Rmod Rmem

p1 4 10 m21m41m22 1 1

p2 3 8 m12m32m23 0 2

p3 4 9 m13m33 2 2

p4 5 12 m11m31 3 5

Case 2
The algorithm is implemented with other two cases. In case 2, a DCS consists

of five tasks partitioned with their corresponding modules T1(m11,m21,
m31,m41,m51), T2(m12, m22, m32, m42), T3(m13,m23,m33,m43), T4(m14,m24,m34,
m44,m54,m64,m74), T5(m15, m25, m35, m45, m55, m65,m75,m85) and a set of five

8

 m11 m12 m13

 m42

 m21 m41 m22 m32 m23 m33

 m31 m51 m43

 Task T1 Task T2 Task T3

 m24 m14 m34

 m25 m15 m35

 m44 m54 m64

 m55 m45 m85

 m74 m65

m75

 TaskT4 Task T5

 P1 P3

 P2 P5

 P4

 Processor Graph (PG)

Fig 3. Task Graphs (TG) and Processors Graph (PG)

Case 2

Fig. 2. Example of task graphs T1, T2, T3, T4 and T5 with their modules and a DCS
as processor graph.

processing nodes (p1, p2, p3, p4, p5) interconnected in some fashion (Fig. 2).

The Results using case 2
Total cost at all the processing nodes is 1585 unit. Time required by the

algorithm was 0.17 seconds.

Table 3. The final status of the GT using A* for case 2.

Pnode Mmod Mcap Modassign Rmod Rmem

p1 10 50 m21m51m12m42 m33m43m14m34 m64m74 0 19

p2 9 40 m41m22m13m24 m25m85 3 21

p3 7 35 m32m23m44 m45m65 2 21

p4 6 30 m11m31m54m15 2 14

p5 4 10 m35m55m75 1 2

Case 3
A set of 8(eight) tasks with their corresponding modules T1(m11,m21,m31,m41),

T2(m12,m22,m32,m42,m52), T3(m13,m23,m33,m43,m53,m63), T4(m14,m24,
m34,m44), T5(m15, m25, m35, m45, m55), T6(m16,m26,m36,m46,m56,m66), T7(m17,
m27,m37,m47), T8(m18, m28, m38, m48, m58) and a set of 6(six) processors (p1, p2, p3,
p4, p5, p6) have been considered. Due to space limitation, here, we present only
the final status of allocation using GT.

The Results using case 3

9

Total cost at all the processing nodes is 1380 unit. Time required by the
algorithm was 0.19 seconds.

Table 4. The final status of the GT using A* for case 3.

Pnode Mmod Mcap Modassign Rmod Rmem

p1 10 50 m21m51m12m42 m33m43m14m34 m64m74 0 19

p2 9 40 m41m22m13m24 m25m85 3 21

p3 7 35 m32m23m44m45 m65 2 21

p4 6 30 m11m31m54m15 2 14

p5 4 10 m35m55m75 1 2

Table 5. The final status of the GT using EA* for case 1.

Pnode Mmod Mcap Modassign Rmod Rmem

p1 4 10 m21m41m22m32m23m33 -2 1

p2 3 8 m12m13 1 2

p3 4 9 4 2

p4 5 12 m11m31 3 5

Table 6. The final status of the GT using EA* for case 2.

Pnode Mmod Mcap Modassign Rmod Rmem

p1 10 50 m21m51m12m42 m23m43m14m34 m25m85m74 -1 19

p2 9 40 m41m22m13 m24m55 4 21

p3 7 35 m32m33m44 m45m65 2 21

p4 6 30 m11m31m54 2 14

p5 4 10 m15m65m75 1 2

5 Comparative Observations

The TA algorithms that consider only modules of one task do not consider
the limitation of memory and the number of modules that can be assigned to
a particular processor. This is so because these algorithms are not meant for
assignment of modules belonging to the multiple disjoint tasks. Such a single
task assignment problem is easier to solve because of this reason.

10

Table 7. The final status of the GT using EA* for case 3.

Pnode Mmod Mcap Modassign Rmod Rmem

p1 10 70
m11m21m41m52m13m33m63m14m34m44m15

m55m16m46m66m17m47m18m44m18m58
-10 35

p2 8 50 m31m23m24m35 m26m27m38 1 23

p3 6 40 m53m36m37m38 2 20

p4 7 35 m43m25m45m56 3 16

p5 6 40 m32 2 22

p6 6 33 m12m22m42 3 8

However, we can execute the Single Task Allocation (STA) algorithms [2, 5,
6] multiple time ones for each task using the GT data structure to record the
status of allocation and the system as done in our proposed algorithm (sec. 4).
Now we compare the status of allocation and the execution time requirements of
the method used in EA* and our proposed allocation algorithm. The STA based
on A* [2] referred to as EA* in the subsequent discussion has been executed
multiple times and the run times have been obtained. So, in the experiment, we
have executed the tasks one by one for the cases 1, 2 and 3 without considering
the processor connectivity (how the processor are connected i.e. with direct con-
nection/indirect connection etc., because it is not possible to do so in EA*) for
the EA* as described in the algorithm of [2]. In the work [6], another modified
version of EA* is proposed but still it was developed for single task allocation
with their modules by using the same idea of [2]. In [5], an algorithm has been
presented to reduce the search space using the idea of [2, 6]. Therefore, here we
present the comparative results with the algorithm proposed in [2], as all the
other STA algorithms are basically based on this.

If we look at the results shown in the Tables 5, 6 and 7 for allocation of tasks
using EA* for the cases 1, 2 and 3, respectively, it is observed that balanced load
allocation can not be achieved. In all the cases, presented in the tables, some
processing nodes are overloaded (indicated by ‘-’ sign) according to the V th

column of the GT considering their existing architectural capabilities. Thus, it
is justified that the EA*, in the form, as reported in [2, 5, 6], can not be used for
the allocation of multiple tasks. Here, A* is used to refer our A* based algorithm
proposed in section 4. Furthermore, since we did not get good results using EA*
in terms of allocation, hence we did not present here the running time and the
total cost required by EA*.

5.1 Experimental Results

It is observed from results using A* in section 4 that the time taken by our
algorithm is not very effective considering the small number of tasks and their
corresponding modules. But the fact is that the experiments were conducted in
a single machine to make comparisons with the earlier algorithms.

11

Fig. 3. Execution time using number of tasks = 60(approx.)

Therefore, to investigate the effectiveness and the scalability of our proposed
algorithm we further experimented with large number of task graphs with cor-
responding modules. For simulation purpose we use Sun Fire 12K, 8 processors
based Distributed Multiprocessor systems and Message Passing Interface (MPI)
as programming environment. In the Fig. 3, 4 and 5, the x-axis represents the
no. of tasks and y-axis represents the execution time in seconds. It is observed
from the figures that for an amount of large number of tasks, our parallel algo-
rithm performs better (Fig. 5) than the other two (Fig. 3 and 4) with respect
to the execution time with an increasing number of processors. In Fig. 3, the
’pink’ colored line represents the execution time for 60(approx.) tasks using 8
processing nodes and it is greater than the time required by all other processors.
Fig. 4 represents the time required by our algorithm while number of tasks is
equal to 100. Here also the ’pink’ colored line indicates the number the running
time taken by 8 processing nodes and it is still greater than the time required
by the other processing nodes. Fig. 5 shows the time required while there is a
large number of tasks is assigned i.e. the number of tasks is equal to 400 by
the processing nodes. The results show that until the number of tasks is 200,
the result is same using 8 processing nodes(’pink’ colored line) with the time re-
quired by other processors but as soon as the number of tasks increases(beyond
200), the timed required by 8 processors also decreases compared to the time
required by other processors. Thus, we can say that for a large number of tasks
our algorithm can perform well and scalable with the large number of increasing
tasks. Note that the no. of tasks with their corresponding modules is generated
randomly for these experiments.

12

Fig. 4. Execution time using number of tasks = 100.

6 Conclusion and Future Work

Our proposed algorithm has attributed the efficiency in allocating multiple tasks
by optimizing a good load balanced among the processing nodes in a heteroge-
neous DCS. By realizing the dynamic situation of a system we have introduced a
data structure Global Table and an algorithm which allocates the multiple tasks
with their modules in such a way so that no processor becomes overloaded due to
the allocation by considering their status based on their architectural capability.

Furthermore, we have conducted experiments for a large number of tasks with
the corresponding modules. Comparing the results, obtained using our algorithm,
it is evident that our proposed algorithm can provide effective solution in terms
of scalability for the TA problem for a large number of tasks coming onto a
DCS. As for future work we will concentrate on implementation of our proposed
algorithm for a real time DCS.

References

1. N.J. Nilson, Problem Solving Methods in Artificial Intelligence. McGraw Hill In-
ternational Edition, 1971.

2. C.C. Shen and W.H. Tsai, “A Graph Matching Approach to Optimal Task As-
signment in Distributed Computing System Using A Minimax Criterion”, IEEE
Transactions on Computers, vol. C-34, no. 1, pp. 197-203, 1985.

3. A.K. Tripathi, D.P. Vidyarthi and A.N.Mantri, “A Genetic Task Allocation Algo-
rithm for Distributed Computing System Incorporating Problem Specific Knowl-
edge”, International Journal of High Speed Computing, vol. 8, no. 4, pp. 363-370,
1996.

13

Fig. 5. Execution time using number of tasks = 400.

4. A.K. Tripathi, B.K. Sarker, N. Kumar and D.P. Vidyarthi, “A GA Based Multiple
Task Allocation Considering Load”, International Journal of High Speed Comput-
ing, vol. 11, no. 4, pp. 203-214, 2000.

5. M. Kafil and I. Ahmed , “Optimal Task Assignment in Heterogeneous Distributed
Computing System”, IEEE Concurrency, vol. 6, no. 3, pp. 42-51, 1998.

6. Ramakrishnan, H.Chao, and L.A.Dunning, “A Close Look at Task Assignment in
Distributed Systems”, Proceedings of IEEE Infocom-91, pp. 806-812, 1991.

7. D.P.Vidyarthi, A.K.Tripathi and B.K.Sarker, “Allocation Aspects in Distributed
Computing System”, IETE Technical Review, vol. 18, no. 6, pp. 279-285, 2001.

8. P.Y.R.Richard Ma, E.Y.S.Lee and J. Tsuchiya, “A Task Allocation Model for
Distributed Computing Systems”, IEEE Transactions on Computers, vol. C-31,
no. 1, pp. 41-47, 1982.

9. S.H.Bokhari, “On the Mapping Problem”, IEEE Transactions on Computers, vol.
C-30, pp. 207-214, March, 1981.

10. Pradeep K. Sinha, Distributed Operating System, IEEE Press, Prentice Hall of
India Ltd., 1998.

11. A.S.Tanenbaum, Distributed Operating Systems, Prentice-Hall, Englewood Cliffs,
1995.

12. A.K.Tripathi, B.K.Sarker, N.Kumar and D.P.Vidyarthi, “Multiple Task Allocation
with Load Considerations”, International Journal of Information and Computing
Science (IJICS), vol.3, no.1, pp. 36-44, 2000.

13. D.P.Vidyarthi, A.K.Tripathi and B.K.Sarker, “Multiple Task Management in Dis-
tributed Computing System”, Journal of the CSI, vol. 31, no. 1, pp. 19-25, 2001.

