
Pipelined Bidirectional Bus Architecture for Embedded
Multimedia SoCs1

Gang-Hoon Seo, Won-Yong Jung, Seongsoo Lee, and Jae-Kyung Wee

School of Electronics Engineering, Soongsil University, 156-743, Korea
wjk@ssu.ac.kr

Abstract. This paper proposes novel high-performance bus architecture for
memory-intensive embedded multimedia SoCs. It has a pipelined bidirectional
bus for high speed and small area. It has two separate bus called system bus and
memory bus, where memory-intensive IPs are connected to memory bus so not
to degrade system bus performance. To avoid starvation of low-priority
masters, the proposed bus exploits probability-based arbitration policy where
the arbitration probability of each master is determined in proportion to its
execution time. To increase transmission bandwidth, it also exploits bus
partitioning where several masters often access their slaves concurrently
without multilayer structure. The proposed bus is designed, implemented,
verified, and evaluated in hardware level. Simulation results show that the
proposed bus improves effective bandwidth by 2.8~3.6 times and
communication latency by 3.1~4.7 times when compared to AMBA bus.

1 Introduction

Recently, advances of integrated circuit technology have enabled development of
complex embedded systems into systems-on-chip (SoC) [1], where pre-designed IP
cores are stitched together through various communication links. Design of high
performance global communication architecture has become a key to successful
embedded SoC designs. On-chip buses [2]-[6] are often used for on-chip
communication between internal IP cores.

On-chip buses are classified into standard buses [2]-[5] and wrapper-based buses
[6]. Standard on-chip buses specify its own protocol over wiring connections between
IP cores. Any IP cores complying that protocol can be reused in other embedded SoCs
using same bus type. However, interface logic should be redesigned when different
bus type is used. Wrapper-based approaches use IP core interface protocol
independent of physical bus protocol, and they use hardware wrappers to handle core-
to-core communication. Hence, IP cores complying with the interface protocol can be
integrated into embedded SoC, even if their physical bus types are different.
However, complex wrapper architecture is required to reduce access latency. In

This work was supported by grant No. R01-2005-000-10540-0 from the Basic Research
Program of the Korea Science and Engineering Foundation.

practical applications, wrapper-based buses such as virtual component interface (VCI)
and open core protocol (OCP) are widely used.

Recently, embedded multimedia systems are often designed into SoCs based on IP
cores. Most multimedia applications store large amount of picture data in the external
memory. Therefore effective on-chip bus architecture is required to handle large
memory access. In this paper, novel wrapper-based on-chip bus architecture is
proposed for embedded multimedia SoCs. It has a separate memory bus so that it can
handle large memory bandwidth and frequent memory access. It has a pipelined
architecture to support multitasking on a single layer bus, i.e. in some cases several
masters can access several slaves simultaneously. It has a probability-based
arbitration policy to avoid starvation of low-priority masters.

2 Problems of Conventional Bus Architectures

AMBA bus [2] is one of the most popular on-chip bus architecture in IP-based
embedded SoCs. It consists of AHB bus and APB bus, where the former is designed
for high-performance operation and the latter is designed for low-performance
external devices. AMBA bus shows good performance in on-chip IPs. However, it
suffers from the following problems when applied to multimedia applications such as
MPEG.

AMBA bus shows serious performance degradation in external memory with long
or variable latency time. For example, MPEG system often requires external SDRAM
memory to store large picture data. Therefore, SDRAM is connected with AHB bus
due to huge memory access. However, SDRAM is accessed so frequently in the
multimedia applications, and it has long latency time from the master’s request. In
AMBA bus, other IPs cannot use the bus when one IP already occupies it. Therefore,
the IP accessing SDRAM occupies AHB bus during most of the operation time, and
other IPs hardly share AHB bus. This seriously reduces the efficiency of AMBA bus.
To overcome this problem, AMBA bus provides multilayer scheme to support multi-
masters-to-single-slave connection. However, as the number of masters increases, bus
area becomes large and wiring scheme becomes complicated. Furthermore, in the
multilayer scheme, complex arbiter hardware is required because AMBA bus has only
one arbiter that decides the priority of multi-masters.

Sonics bus [4] makes arbitration based on time schedule (TDMA). When SDRAM
is connected to Sonics bus, SDRAM interface can directly require a master to read or
write in order to prevent delaying due to long latency time of SDRAM. Sonics bus is
easier to optimize than AMBA bus, and IP reuse is also easier because it supports
OCP. However, very complicated SDRAM interface is required to increase bus
efficiency, and the very detailed design information of IPs is also required.

SAMBA bus [7] is a synchronous bi-directional bus with multitasking. It shows
better bus bandwidth over AMBA. It also reduces performance degradation due to
long arbitration latency. However, it shows long latency time to read data from
external memory, and it is not suitable for multimedia applications.

In segment bus [8], the response of slow slaves may cause severe performance
degradation because it remains idle while the master is waiting for the response. Split

transactions of segment bus are used to avoid such performance degradation.
However, in split transactions, the bus access right of the master is released after the
slave obtains the communication request. The slave has to initiate a new bus
transaction to transfer the response. Therefore, split transactions lead to an increase in
arbitration complexity. Also, it can not assure the compatibility of the developed IPs
with the conventional chip architectures.

3 Proposed Bus Architecture

3.1 Overview

In this paper, we propose a hierarchical bus structure for multimedia applications. Fig.
1 illustrates the proposed bus architecture. It exploits probability-based arbitration
policy to avoid starvation of low-priority masters, which is described in the next
section. It consists of two separate buses, i.e. system bus (SBUS) and memory bus
(MBUS). SBUS is a bi-directional bus with pipelined architecture to support
multitasking. MBUS is a multi-masters-to-single-slave single layer bus, and it has an
efficient communication protocol with external SDRAM memory. External SDRAM
memory and IPs with large memory access is connected to MBUS. When an IP
directly accesses SDRAM via MBUS, other IPs can communicate with each other via
SBUS, and it significantly reduces the performance degradation from memory access.
SBUS and MBUS communicate with each other via memory bus bridge (MBridge).

The proposed bus architecture has three types of arbiters. Local arbiter (LArbiter)
is attached to each master in SBUS. It performs arbitration based on TDMA. The
priority is calculated from the pre-design analysis of each master. Central arbiter
(CArbiter) performs channel control of SBUS. It grants approval of each master
according to the channel status when local arbiter requests channel access. Control
signals of LArbiters and CArbiter have short latency time, since they are separate
from command transfer signals, address transfer signals, and data transfer signals.
LArbiters and CArbiter are not integrated in order that additional masters can be

SYSTEM BUS

MBUS

MBridge

SDRAM

Slave Slave Slave

CArbiter
Master

Master Master MasterMArbiter

LArbiter

Master

LArbiter

Master

LArbiter

CArbiter : Central Arbiter
MArbiter : MBUS Arbiter
MBridge : Bridge of SBUS to MBUS

SYSTEM BUS

MBUS

MBridge

SDRAM

Slave Slave Slave

CArbiter
Master

Master Master MasterMArbiter

LArbiter

Master

LArbiter

Master

LArbiter

CArbiter : Central Arbiter
MArbiter : MBUS Arbiter
MBridge : Bridge of SBUS to MBUS

Fig. 1. Proposed bus architecture

easily inserted. MBUS arbiter (MArbiter) controls MBUS when a master in MBUS
accesses external SDRAM memory. When a master in SBUS accesses SDRAM, it
communicates with MBridge via SBUS, and then MBridge accesses SDRAM via
MBUS. MBridge acts as a slave in SBUS and a master in MBUS.

3.2 Probability-Based Arbitration Policy

AMBA bus exploits priority-based arbitration policy. Each master has its own
fixed priority, and a master with higher priority is selected among waiting masters.
Unfortunately, in AMBA bus, masters with lower priority sometimes fall into
starvation. For example, assume that (1) there are four masters Mi (i=1..4) where
lower i has higher priority, (2) their execution times are 30ms, 30ms, 20ms, and 20ms,
respectively, and (3) they send next bus requests at 30ms after they finish current
execution. As shown in Fig. 2 (a), when M1, M2, M3, and M4 send bus requests
simultaneously at t=0ms, M1 occupies the bus at t=0ms and M2 occupies it at t=30ms.
At t=60ms, M1 sends next request and it occupies the bus again. At t=90ms, M2 sends
next request and it occupies the bus again. In this way, M3 and M4 can hardly access
the bus and they fall into starvation, unless M1 and M2 stop sending their requests.

To avoid this problem, the proposed bus architecture exploits probability-based

M1 M2 M1 M2 M1 M2

M4(4)
M3(3)
M2(2)
M1(1)

M4(4)
M3(3)
M2(2)

M1(1)
M4(4)
M3(3)

M2(2)
M4(4)
M3(3)

M1(1)
M4(4)
M3(3)

M2(2)
M4(4)
M3(3)

M1(1)
M4(4)
M3(3)

0 50 100 150 t

masters
waiting for
arbitration

(priority)

masters
occupying

the bus

M1 M2
M3 M4

masters
requesting

the bus
M1 M2 M1 M2 M1

M2 is
always

selected

M1 is
always

selected

M2 is
always

selected

M1 is
always

selected

M2 is
always

selected

M1 is
always

selected

arbitration
policy

M1 M2 M1 M2 M1 M2

M4(4)
M3(3)
M2(2)
M1(1)

M4(4)
M3(3)
M2(2)

M1(1)
M4(4)
M3(3)

M2(2)
M4(4)
M3(3)

M1(1)
M4(4)
M3(3)

M2(2)
M4(4)
M3(3)

M1(1)
M4(4)
M3(3)

0 50 100 150 t

masters
waiting for
arbitration

(priority)

masters
occupying

the bus

M1 M2
M3 M4

masters
requesting

the bus
M1 M2 M1 M2 M1

M2 is
always

selected

M1 is
always

selected

M2 is
always

selected

M1 is
always

selected

M2 is
always

selected

M1 is
always

selected

arbitration
policy

(a) Priority-based arbitration

M1 M2 M3 M1 M4 M2

M4(2/10)
M3(2/10)
M2(3/10)
M1(3/10)

M4(2/7)
M3(2/7)
M2(3/7)

M1(3/7)
M4(2/7)
M3(2/7)

M1(3/5)
M4(2/5)

M3(2/7)
M2(3/7)
M4(2/7)

M3(2/5)
M2(3/5)

M1(3/7)
M4(2/7)
M3(2/7)

t

masters
waiting for
arbitration

(probability)

masters
occupying

the bus
M4

0 50 100 150

M1 M2
M3 M4 M1 M2 M3 M1 M4

masters
requesting

the bus

M1(3/7)
M3(2/7)

M1 is
selected
with 3/10
probability

M2 is
selected
with 3/7

probability

M3 is
selected
with 2/7

probability

M1 is
selected
with 3/5

probability

M4 is
selected
with 2/7

probability

M2 is
selected
with 3/5

probability

M4 is
selected
with 2/7

probability

arbitration
policy

M1 M2 M3 M1 M4 M2

M4(2/10)
M3(2/10)
M2(3/10)
M1(3/10)

M4(2/7)
M3(2/7)
M2(3/7)

M1(3/7)
M4(2/7)
M3(2/7)

M1(3/5)
M4(2/5)

M3(2/7)
M2(3/7)
M4(2/7)

M3(2/5)
M2(3/5)

M1(3/7)
M4(2/7)
M3(2/7)

t

masters
waiting for
arbitration

(probability)

masters
occupying

the bus
M4

0 50 100 150

M1 M2
M3 M4 M1 M2 M3 M1 M4

masters
requesting

the bus

M1(3/7)
M3(2/7)

M1 is
selected
with 3/10
probability

M2 is
selected
with 3/7

probability

M3 is
selected
with 2/7

probability

M1 is
selected
with 3/5

probability

M4 is
selected
with 2/7

probability

M2 is
selected
with 3/5

probability

M4 is
selected
with 2/7

probability

arbitration
policy

(b) Probability-based arbitration

Fig. 2. Probability-based arbitration policy

arbitration policy, where the arbitration probability of each master is determined in
proportion to its execution time. In the previous example, M1, M2, M3, and M4 get the
bus at t=0ms with the probability of 3/10, 3/10, 2/10, and 2/10, respectively, as
illustrated in Fig. 2 (b). Assume that M1 and M2 are determined to get the bus at t=0ms
and t=30ms, respectively. At t=60ms, M1, M3 and M4 wait for bus arbitration, and M3
and M4 still have chance to get the bus with the probability of 2/7 and 2/7,
respectively. Assume that M3 and M1 are determined to get the bus at t=60ms and
t=80ms, respectively. At t=110ms, M2, M3 and M4 wait for bus arbitration, and M4 still
have chance to get the bus with the probability of 2/7. Thus, starvation hardly occurs.
The probability-based arbitration is implemented by simple logic gates with
negligible hardware overhead.

3.3 Bus Partitioning for Concurrent Multiple Master-to-Slave Communications

In AMBA bus, several masters and slaves are connected to a common bus.
Consequently, when a master accesses a slave, other masters cannot access other
slaves even if each master tries to access different slave, as shown in Fig. 3 (a).

In the proposed bus architecture, we propose bus partitioning as illustrated in Fig. 3

Master1 Master2 Master3 Master4

Slave1 Slave2 Slave3 Slave4

Master1 Master2 Master3 Master4

Slave1 Slave2 Slave3 Slave4
(a) Non-partitioned bus

Master1 Master2 Master3 Master4

Slave1 Slave2 Slave3 Slave4

W1
OFF

P1 P2 P3 P4

W2
ON

W3
OFF

Master1 Master2 Master3 Master4

Slave1 Slave2 Slave3 Slave4

W1
OFF

P1 P2 P3 P4

W2
ON

W3
OFF

(b) Bus partitioning

M1 M2 M3 M4

001

“Slave”
Field

000 000 100

001 011 000 100

001 011 010 100

Address

001 000 100 000

001 100 000 000

001 100 011 000

1

1

0

Req OK?

0

W1

“Arbitration”
Field

“Connection”
Field

0

meaningless

0

W2

1

0

W3

0

Word

1 0 0 1

1 0 1 1

0 meaningless

…
…

…
…

…
…

…

…
…

…
…

…
…

…

M1

S1

M2 M3 M4

S2 S3 S4

M1

S1

M2 M3 M4

S2 S3 S4

M1

S1

M2 M3 M4

S2 S3 S4

M1

S1

X

M2 M3 M4

S2 S3 S4

X

M1

S1

M2 M3 M4

S2 S3 S4

M1

S1

M2 M3 M4

S2 S3 S4

X

M1 M2 M3 M4

001

“Slave”
Field

000 000 100

001 011 000 100

001 011 010 100

Address

001 000 100 000

001 100 000 000

001 100 011 000

M1 M2 M3 M4

001

“Slave”
Field

000 000 100

001 011 000 100

001 011 010 100

Address

001 000 100 000

001 100 000 000

001 100 011 000

1

1

0

Req OK?

0

W1

“Arbitration”
Field

“Connection”
Field

0

meaningless

0

W2

1

0

W3

0

Word

1 0 0 1

1 0 1 1

0 meaningless

1

1

0

Req OK?

0

W1

“Arbitration”
Field

“Connection”
Field

0

meaningless

0

W2

1

0

W3

0

Word

1 0 0 1

1 0 1 1

0 meaningless

…
…

…
…

…
…

…

…
…

…
…

…
…

…

M1

S1

M2 M3 M4

S2 S3 S4

M1

S1

M2 M3 M4

S2 S3 S4

M1

S1

M2 M3 M4

S2 S3 S4

M1

S1

X

M2 M3 M4

S2 S3 S4

X

M1

S1

M2 M3 M4

S2 S3 S4

M1

S1

M2 M3 M4

S2 S3 S4

X

(c) ROM contents and bus operation

Fig. 3. Bus partitioning for concurrent multiple master-to-slave communications

(b). The proposed bus is partitioned into N partitions, where N is the number of
masters. Each partition is connected via N-1 partition switches. When a switch is off,
partitions in the left and right of the switch act as two separate buses. Therefore, more
than two masters can access their slaves concurrently. In Fig. 3 (b), there are 4
masters (master1, master2, master3, and master4) and 4 slaves (slave1, slave2, slave3,
and slave4). The bus is divided into 4 partitions (P1, P2, P3, and P4), and they are
connected via 3 partition switches (W1, W2, and W3). When master1, master2, and
master4 try to access slave1, slave3, and slave4, respectively, the bus arbiter opens
W1 and W3, and it closes W2. Thus, the bus acts as three separate buses (P1, P2+P3,
and P4), and three masters access three slaves concurrently (master1→slave1,
master2→slave3, and master3→slave4).

Proposed bus arbitration is performed as follows. Assume the followings: (1) there
are M masters denoting masteri (i=1..M) and S slaves denoting slavei (i=1..S), (2) the
bus is divided into max(M, S) partitions denoting Pi (i=1..max(M, S)) and they are
connected via max(M, S) – 1 switches denoting Wi (i=1..max(M, S) – 1), (3) c
connections denoting Ci(mi, si) (i=1..c, c<M) are made currently, where Ci(mi, si)
indicates that mastermi is connected to slavesi. When mastermk tries to access slavemk,
it can get bus arbitration when Eqn. (1) is satisfied. Otherwise, mastermk should wait
for bus arbitration until Eqn. (1) is satisfied.

(mk > mi and sk > si) or (mk < mi and sk < si) for all connections Ci (i=1..c, c<M) (1)

When mastermk gets bus arbitration, the bus arbiter opens Wleft and Wright, and it
closes Wmid, where left, right, and mid are given as Eqn. (2)-(4).

left = min (mk, sk) (2)

right = max (mk, sk) (3)

mid = (left + 1) .. (right – 1) (4)

Practically, the proposed bus arbitration is implemented by simple ROM as
illustrated in Fig. 3 (c). ROM address is {M × log2(S+1)} bits and ROM word is
max(M, S) bits, where M and S are the number of masters and slaves, respectively.
‘Slave’ field indicates the slave ID in connection, and 0 means that the corresponding
master accesses no slave currently. ‘Arbitration’ field indicates whether the requested
access is possible or not. 0 means that such request is impossible and the requested
master should wait for next chance. ‘Switch’ field indicates the partition switch status,
and 0 means that the corresponding partition switch is off. When there are 4 masters
and 4 slaves, ROM size is only 12bit address × 4 bit word, which is quite small. Even
when there are 16 masters and 16 slaves, ROM size is only 80bit address × 16 bit
word, which is quite tolerable.

3.4 Bus Architecture

Fig. 4 shows the SBUS architecture for command signals, address signals, and data
signals. When a master transmits a request, LArbiter sends a ‘Request’ signal to
CArbiter. After CArbiter checks channel status, it sends ‘Done’ and ‘Accept’ signals

to the master. Simultaneously, channel gate signals of CArbiter control channel gates
with pipelined architecture. Dashed block in Fig. 4 is a transmission control unit for
command signals, address signals, and data signals. It consists of multiplexers, flip-
flops, and tri-state buffers. It exploits bidirectional transmission for wiring efficiency.
Pipelined structure with flip-flops is also employed for performance improvement and
accurate data transmission. Masters in SBUS communicate with SDRAM via
MBridge and access latency time is different for each master. Leftmost master in
SBUS has minimum latency time, so the master accessing SDRAM most frequently
should be assigned to partition1. Therefore, when designing SBUS, masters should be
assigned according to the descending order of SDRAM access frequency.

When LArbiter of a master sends ‘request’ signal to CArbiter, CArbiter looks up
its internal ROM. When its ‘arbitration’ field is 1, CArbiter sends channel gate control
signals to open or close partition switches. Partition switch is tri-state buffers in Fig.
4, and CArbiter directly controls it to reduce latency time. At the same time, it sends
‘accept’ signal to the master. Then, the master begins data transmission.

3.5 Bus Operation

There are two modes in SBUS bus protocols, i.e. request mode and response mode.
Request mode is used when a master sends data to a slave, and response mode is used
when a slave sends data to a master. These two modes have symmetrical structures
with command bus, address bus, and data bus. SBUS has four direct control signals.
DCS1 is ‘request’ signals from LArbiter to CArbiter. DCS2 is ‘accept’ signals from
CArbiter to master. DCS3 is ‘done’ signals from slave to CArbiter. DCS4 is channel
control gate signals (CGCS) from CArbiter to partition switch. Bit width of DCS1,

Slave1 Slave2 Slave3 Slave4

Partition1 Partition3 Partition4Partition2

···

···

F/F

Master1

Accepts

Requests

Done

Master2 Master3 Master4

Channel Gate
Control Signals

DATA

···

C
Ar

bi
te

r

Master1

TIMER
REG

Buffer
And

Extra logic LArbiter
···

Master2

TIMER
REG

Buffer
And

Extra logic LArbiter

Mbridge

Slave1 Slave2 Slave3 Slave4

Partition1 Partition3 Partition4Partition2

···

···

F/F

Master1

Accepts

Requests

Done

Master2 Master3 Master4

Channel Gate
Control Signals

DATA

···

C
Ar

bi
te

r

Master1

TIMER
REG

Buffer
And

Extra logic LArbiter
···

Master2

TIMER
REG

Buffer
And

Extra logic LArbiter

Mbridge

Fig. 4. SBUS architecture

DCS2, DCS3, and DCS4 are M bits, M bits, S bits, and 4P bits, respectively, where
M, S, P are the number of masters, slaves, and partitions, respectively.

Fig. 5 illustrates data flow of concurrent multiple master-to-slave communications
when master1 sends data to slave2 and master3 sends data to slave4. When master1
tries to send data to slave3, master1 sends ‘request’ signal to CArbiter (). CArbiter
checks if such arbitration is possible, and sends ‘accept’ signals to master1 (). At
the same time, CArbiter sends CGCS to open or close partition switches (). In this
case, partition gates W1, W2, and W3 are on, off, and off, respectively. After that,
data is transmitted from master1 to slave2 ().When master3 tries to send data to
slave4, master3 sends ‘request’ signal to CArbiter (). CArbiter checks if such
arbitration is possible, and sends ‘accept’ signals to master3 (). At the same time,
CArbiter updates CGCS to open or close partition switches (). In this case, partition
gates W1, W2, and W3 are on, off, and on, respectively. After that, data is transmitted
from master3 to slave4 (). When the transmission from master3 to slave4 finishes,
slave4 sends ‘done’ signal to CArbiter (). Then CArbiter updates CGCS to open or
close partition switches (). In this case, partition gates W1, W2, and W3 are on, off,
and off, respectively.

4 Simulation Results

To evaluate the performance of the proposed bus architecture, we designed both
AMBA bus and the proposed bus, and implemented them with Verilog HDL. They
were verified and simulated on hardware level, and their performances were evaluated
for comparison. We used SDRAM as external memory.

The number of masters, slaves, and partition are assumed as 3, 4, and 4,
respectively. We assumed that the workload of master1, master2, master3, and
master4 are 40%, 30%, 20%, and 10%, respectively. We used three test patterns, i.e.
uniform traffic pattern, non-uniform traffic pattern, and random traffic pattern. In the
uniform traffic pattern, each master accesses 4 slaves equally. Master1 equally
accesses slave1, slave2, slave3, and slave4 in 25%. Master2, master3, and master4

CArbiter

Slave1 Slave2 Slave3 Slave4

Master1 Master2 Master3 Master4

Command

Data

Address

LA : LArbiter

LA LA LA LA

Data Flow

Direct Control Signals

DCS1
DCS2

DCS4
DCS3

W1 W2 W3

CArbiter

Slave1 Slave2 Slave3 Slave4

Master1 Master2 Master3 Master4

Command

Data

Address

LA : LArbiter

LA LA LA LA

Data Flow

Direct Control Signals

DCS1
DCS2

DCS4
DCS3

W1 W2 W3

Fig. 5. Data flow of concurrent multiple master-to-slave communications

access slaves in a same way. In the non-uniform traffic pattern, each master accesses
adjacent slave more frequently than other slaves. Master1 accesses slave1 in 85% and
it equally accesses slave2, slave3, and slave4 in 5%. Master2 accesses slave2 in 85%
and it equally accesses slave1, slave3, and slave4 in 5%. Master3 and master4 access
slaves in a same way. In the random traffic pattern, each master accesses 4 slave
randomly. Bit width of data bus and address bus is 32 bits. TDMA is exploited as
priority scheme. In multimedia applications, large amount of picture data is
sequentially accessed in frame memory, so the transmission is modeled as burst mode
with 16 increments. Inter-communication interval is 3, 6, and 9. We used two
performance measures to evaluate the proposed bus architecture. Normalized
effective bandwidth is defined as the normalized value of (amount of transmitted
data) / (elapsed bus cycles) with AMBA bus. Average communication latency is the
average of latency cycles from bus request to bus accept.

Fig. 6 shows the simulation results. Both AMBA bus and the proposed bus are
designed in Verilog HDL and synthesized on Synopsys CAD tools supported by IC
Design Education Center. The bus operation is simulated in Synopsys CAD tools, not
in C++. Therefore, the simulation results consider all hardware effects including gate
delay, bus line delay, buffer operation, and pipelining. Note that the simulation results
of AMBA bus are identical regardless of traffic patterns. In AMBA bus, only one
master can access a slave at a time and there is no difference in bus performance
which slave a master accesses. We performed 320 bursts from every 4 masters to
every 4 slaves, and the amount of transmitted data is 320 (burst number) × 32 bits
(bandwidth) × 16 (16 increments burst) × 4 (masters) × 4 (slaves) = 327,680 bytes. In
this case, AMBA bus takes about 20,000 cycles. On the contrary, the proposed bus
takes about 7,250 cycles in the uniform traffic pattern. Consequently, the proposed
bus achieves 2.8 times speed-up in the uniform traffic pattern. Similarly, it achieves
3.6 and 2.8 times speed-up in the non-uniform traffic pattern and random traffic
pattern, respectively. As for average communication latency, the proposed bus
achieves 3.1, 4.7, and 3.3 times speed-up in the uniform traffic pattern, non-uniform

AMBA
Uniform Non-Uniform Random

Proposed

0

1

2

3

4

N
or

m
al

iz
ed

 E
ffe

ct
iv

e
B

an
dw

id
th

3 6 9

Inter-Communication Interval

AMBA
Uniform Non-Uniform Random

Proposed

0

20

40

60

Av
er

ag
e

C
om

m
un

ic
at

io
n

La
te

nc
y

3 6 9

Inter-Communication Interval

(a) (b)

AMBA
Uniform Non-Uniform Random

Proposed

0

1

2

3

4

N
or

m
al

iz
ed

 E
ffe

ct
iv

e
B

an
dw

id
th

3 6 9

Inter-Communication Interval

AMBA
Uniform Non-Uniform Random

Proposed

0

1

2

3

4

N
or

m
al

iz
ed

 E
ffe

ct
iv

e
B

an
dw

id
th

3 6 9

Inter-Communication Interval

AMBA
Uniform Non-Uniform Random

Proposed

0

20

40

60

Av
er

ag
e

C
om

m
un

ic
at

io
n

La
te

nc
y

3 6 9

Inter-Communication Interval

AMBA
Uniform Non-Uniform Random

Proposed

0

20

40

60

Av
er

ag
e

C
om

m
un

ic
at

io
n

La
te

nc
y

3 6 9

Inter-Communication Interval

(a) (b)
Fig. 6. Simulation results (a) Normalized effective bandwidth (b) Average communication
latency

traffic pattern, and random traffic pattern, respectively. In the simulation results, the
proposed bus shows best performance improvement in the non-uniform traffic pattern.
This is due to the fact that the bus partitioning shows better performance when a
master accesses its adjacent slaves more frequently than other slaves.

5 Conclusion

This paper proposes novel bus architecture for embedded multimedia SoCs. It
consists of two separate buses called system bus (SBUS) and memory bus (MBUS)
for effective memory access. It effectively handles huge memory bandwidth and
frequent memory access of multimedia applications, since most memory-intensive IPs
are connected to MBUS and they hardly disturb SBUS operations. The proposed bus
architecture exploits probability-based arbitration policy, and masters with low
priority hardly fall into starvation. It exploits bus partitioning to enable concurrent
multiple master-to-slave communications to increase transmission bandwidth. It
exploits pipelined bidirectional architecture to achieve high performance. It supports
VCI and OCP to reuse IPs easily. The proposed bus architecture is designed,
implemented, verified, and evaluated in hardware level. From the simulation results, it
shows 2.8~3.6 times speed-up in effective bandwidth and 3.1~4.7 times speed-up in
communication latency. Especially, it shows significant performance improvement
when each master accesses its adjacent slave than other slave, which is typical in
embedded multimedia SoCs.

References

1. Keating, M., Bricaud, P.: Reuse Methodology Manual for System-on-a-Chip Designs,
Kluwer Academic Publishers (1998).

2. ARM: AMBA Specification Overview, http://www.arm.com/ Pro+Peripherals/AMBA.
3. IBM: CoreConnect Bus Architecture, http://www.chips.ibm.com/products/coreconnect/docs/

cron_wp.pdf.
4. Sonics: Sonics µNetwork Technical Overview, http: http//:www.sonicsinc.com/Documents/

Overview.pdf.
5. OCP International Partnership: Open Core Protocol Specification, http://www.ocpip.org.
6. Anjo, K., Okamura, A., Motomura, M.: Wrapper-Based Bus Implementation Techniques for

Performance Improvement and Cost Reduction, IEEE Journal of Solid-State Circuits 35
(2004) 804-817.

7. Lu, R., Koh, C.-K.: SAMBA-bus: A High Performance Bus Architecture for System-on-
Chips, Proceedings of International Conference on Computer-Aided Design (2003) 8-12.

8. Plosila, J., Seceleanu, T., Liljeberg, P.: Implementation of a Self-Timed Segmented Bus,
IEEE Design and Test of Computers 20 (2003) 44-45.

