
Exploiting Register-usage for Saving Register-file
Energy in Embedded Processors

Wann-Yun Shieh*, Chien-Chen Chen

Department of Computer Science and Information Engineering
Chang Gung University, Taiwan

259 Wen-Hwa 1st Road, Kwei-Shan Tao-Yuan, 333, Taiwan

TEL: 886-3-2118800-3336, FAX: 886-3-2118700
*Corresponding author: wyshieh@mail.cgu.edu.tw

Abstract. Low power register file design plays an important role in an
embedded processor. In this paper, we exploit register-usage in a program to
find out unused registers, and turn these unused registers into low power mode
by annotating power-controlling instructions. The whole work is performed by
applying the hardware/software co-design principle. For the hardware part, we
propose a voltage-scaling control logic to supply voltages for each register. For
the software part, we propose a power-controlling-code annotation approach to
determine the voltage scaling behavior for each register. Simulation results
show that the proposed approach outperforms the other related approaches in
terms of the energy-delay product.

1 Introduction

In recent years, low power register file researches are lacking even though many other
low-power hardware components, like BTB, ROB, TLB, etc, have been proposed. In
general, the energy consumption of register file in an embedded processor is quite
large. When we explore the sources of major energy consumption in register file, we
find that all registers in an embedded-processor always keep active mode (1Volt)
during program execution. This is because the registers must retain the values, which
are produced from computing process. However, not all registers need to stay in
active mode. The registers that need not to stay in active mode are called unused
registers. Unused registers have two types. The first ones retain the values temporarily
not to be used, and the second ones retain the values no longer to be used. These
unused registers become the major sources of wasted energy consumption during
program execution. Hence, finding out these unused registers in a program, and
turning these unused registers into low power mode, i.e., drowsy mode (0.3Volt) or
destroy mode (0 Volt), will result in large energy saving.

The objective of paper is to exploit register-usage in a program to find out unused
registers for register file, and turn these unused registers into low power mode without
large performance penalty. In order to achieve this objective, there are three important
issues:

mailto:wyshieh@mail.cgu.edu.tw

Issue 1: How to analyze register-usage in a program to find out unused registers?
Issue 2: How to control register voltages by different working modes?
Issue 3: How to limit energy and performance penalty?

The rest of this paper is organized as follows. Section 2 introduces and discusses
related works, such as the dynamic voltage scaling technology and the low-power
register file design. Section 3 proposes hardware/software co-design approach to
exploit register-usage in a program for register energy saving. Section 4 discusses
evaluation environment and evaluation results, including the metrics of register file
energy consumption, processor energy consumption, performance penalty and
energy-delay product. Section 5 gives conclusion and future works.

2 Related works

In this section, we discuss the development of the dynamic voltage scaling (DVS)
technique, which is a well-known approach in reducing hardware energy
consumption. Then we discuss some previous research about low-power register file
design.

2.1 Dynamic Voltage Scaling Technique

The dynamic voltage scaling (DVS) technique is widely used to reduce power
consumption or leakage energy for hardware components. The main idea of the DVS
technique is to dynamically control supply voltages to a hardware by its working
modes, including the active mode, the drowsy mode and the destroy mode, based on
the access behaviors.

Most previous researches about the DVS technique focus on hardware solutions by
utilizing hardware monitor to dynamically control the supply voltages. However, pure
hardware solution has its drawbacks. For example, it may increase more hardware
area due to the need of extra logic to control voltage scaling. In addition, the hardware
solution does not precisely analyze overall program execution behavior, e.g., register
usage; as a result, it cannot get much energy saving.

Due to these reasons, in recent years, the trend of the DVS technique has focused
on coupling with the hardware/software co-design principle. This kind of approaches
uses software analysis to get sufficient information from user programs, and then uses
these information to help hardware components to switch among different working
modes to get energy saving.

2.2 Hardware/Software Co-design for Register File

In [1], authors used the hardware/software co-design approach with the DVS
technique to reduce register file energy. They analyze loop sections in a program to
find unused registers, and then inserted power-controlling instructions before the
loops to turn unused registers into drowsy mode. The advantages of this approach are
easy analysis and simple implementation, because it focuses only on the loop

sections. Also, it can reduce power-controlling instruction annotations, which may be
the potential performance penalty. However, this approach, which did not consider
other non-loop sections in a program, may possibly get little energy saving for the
whole program.

3 Hardware/Software Co-design Approach

In this study, we propose another hardware/software co-design approach to exploit
register usage for register-file energy saving. The proposed approach can be
partitioned into the hardware part and the software part.

In the hardware part, we propose a voltage-scaling mechanism that contains two
major components: the connected power-state-register design and the voltage-scaling
control logic. The connected power-state-register is to record the power states (i.e.,
working modes) for multiple registers. The voltage-scaling control logic is to control
different supply voltages to registers by individual working modes.

In the software part, we propose a power-controlling code annotation method that
has two major components, including the power-controlling instruction design and the
power-controlling code generation. The power-controlling instruction is to write a
value into a power-state-register to change the working modes for multiple registers.
The power-controlling code generation is to analyze the register-usage in a program
and annotate power-controlling instructions into the program, based on a proposed
voltage-scaling strategy, to determine the register working modes.

3.1 The Hardware Part：Voltage-scaling Mechanism

Fig. 1 shows the voltage-scaling mechanism. When a power-controlling instruction
writes a new value into a connected power-state-register, the voltage-scaling control
logic will switch new supply voltage to corresponding registers.

Fig. 1. Voltage-scaling mechanism

3.1.1 Connected Power-State-Register Design
The design goal of the proposed power-state-register is to reduce power-controlling
instruction annotations for saving potential performance penalty. In conventional
design, each register is controlled by an individual 1- or 2-bit power-state-register,
causing that multiple sequential power-state-register updates require multiple
sequential power-controlling instruction annotations. Therefore we “connected” those
individual power-state-registers into a single multi-bit register, called the connected
power-state-register, for merging multiple sequential updates into just one annotation.
The number of the connected power-state-registers for a register file can be
determined by , where n is the total register number to be controlled, and m is
the default length of a connected power-state-register.

⎡ mn /2 ⎤

3.1.2 Voltage-scaling Control logic
The design goal of the voltage-scaling control logic is to control different supply
voltages by different working modes, including the active mode (1Volt), the drowsy
mode (0.3Volt), and the destroy mode (0Volt). In [1], authors proposed a control logic
by applying the “switch” characteristic of transistors to turning on/off the supply
voltages for each register. In this paper, we use the same control logic, but the power-
state-register is replaced by the proposed connected power-state-register, as shown in
Fig. 1.

3.2 The Software Part: Power-controlling Code Annotation

3.2.1 Power-controlling Instruction Design
The power-controlling instruction writes a value into the connected power-state-
register to control working modes for multiple registers. Through the connected
power-state-register design, each value-update (i.e., instruction annotation) requires
only few ISA modifications. We can directly use the instructions, e.g., ADD or SUB,
to change the value of a connected-power-state-register at the time that the working
modes of some registers should change. These instructions will be annotated in the
program execution code to control the working modes for each register.

Fig. 2 shows two examples to change the working modes of registers R0 and R1
through ADD and SUB instructions, respectively. In example 1, if we want to change
the working mode of R0 from the active mode to the drowsy mode, we can update the
value of the connected power-state-register (CPSRi) by annotating the instruction
“ADD CPSRi, CPSRi, 1”. This is because the bit-0 and bit-1 of the CPSRi control the
supply voltages to R0, and state “01” represents 0.3-Volt drowsy mode. Similarly, we
can annotate the instruction “ADD CPSRi, CPSRi, 3” to represent the change of
working mode from the active mode (00) to the destroy mode (11). Example 2, on the
other hand, shows how to change the working mode of R1 (i.e., bit-2 and bit-3) from
the drowsy mode (01), or from the destroy mode (11) to the active mode (00).

Fig. 2. Two examples of changing the working modes by ADD or SUB instructions

3.2.2 Power-controlling Code Generation
To precisely predict register-usages in a program, we take the trace file for analysis.
The reason to do so is that we can exactly measure how the power-controlling code
affects power consumption and performance penalty during program execution. First,
the program is partitioned into sections for register-usage analysis. In [1] authors take
the loop body as analyzed sections (we call it the Loop-based approach for
convenience). In this paper, we propose another two more straightforward partitioning
approaches, i.e., partition the program by fixed interval (called the FI-based
approach), and by basic blocks (called the BB-based approach), for sections not
limited to loops. Though these three approaches (FI-, BB-, and Loop-based) are
employed for simple analysis and easy implementation, they cannot precisely reflect
register-usage. A more “making-sense” option would be the approach that partitions
the program by register-live-ranges (we call it the RLR approach).

Fig. 3 shows the register-live-range graph for a piece of instruction sequences in
program basicmath of benchmark MiBench [3]. (In Fig. 3, we draw the live-ranges by
solid lines, as well as the access point of register contents by small circles.) From the
register-live-range graph, we found that the distribution of live-ranges is not so
uniform; there did exist “sparse” and “dense” sections. The sparse section, in fact,
represents the section that has more chances we can get energy saving from it, due to
large amounts of unused registers. On the other hand, the dense section represents the
section that the register pressure is heavy, and it is not worth to annotate extra power-
controlling instructions to enlarge either energy or performance penalties. Therefore,
in the RLR approach, only sparse sections will be taken for register-usage analysis.
The partitions of the sparse sections and the dense sections can be performed by
setting a scanning line across the register-live-ranges. When the scanning line scans
along each instruction, if intersection numbers is less than a threshold (IT), we call it

in a sparse section, and vice versa. After scanning the whole program, we get the
sparse and dense sections alternatively appeared in the register-live-range graph.

In a sparse section, there are two types of ranges can be considered for energy
saving. The first type, called the type-I range as shown in Fig. 3, means that the
corresponding register is temporarily unused, and we may change it to the drowsy
mode (the data will be kept for later use). The other type, called the type-II range,
means that the value in the corresponding register is no longer to be used, and we can
change it to the destroy mode. For both types of ranges, we will apply the same
energy cost function to judge whether it is worth to insert power-controlling
instructions.

sparse

dense

sparse

sparse

dense

sparse

Type I

Type II

Fig. 3. Example of register-live-ranges. The solid lines represent the live ranges, and a small
circle represents the access point for a value

The RLR approach performs well balance between energy-consumption saving and
performance penalty. First, by focusing only on the major sources of energy-
consumption in sparse sections (i.e., type-I and type-II ranges), we can earn larger
energy saving, but suffer less performance penalty. It is because only the sparse
sections require power-controlling instruction annotations, not the whole file. Second,
varying the IT threshold makes the size of sparse sections change differently; smaller
IT results in more small-size sparse sections (and vice versa). These small-size sparse
sections may not pass the energy cost function evaluation, and result in few
instruction annotations. Thus, they earn less energy saving, but also suffer less
performance penalty. (On the other hand, larger IT derives the opposite results.) The
choice of IT, in fact, can be evaluated by experiments. Finally, by applying energy
cost function evaluation to each instruction annotation, we can guarantee that any
energy saving for register file would not cause extra energy consumption in pipeline;
that is, minimize the side-effects for the whole processor energy.

We apply an energy cost function to each partitioned section to judge whether it is
worth to annotate power-controlling instructions. Though the registers can achieve
energy savings through working mode changes, the power-controlling instructions
annotated may cause extra energy consumption in pipeline. Therefore, an energy cost
function is used here to measure if energy saving of changing register working-mode
is greater than the energy penalty of annotating extra instructions. If yes, then a
voltage-scaling strategy will be activated to determine which working mode should a
register change to. If no, nothing happens in this section, and the next partitioned
section will be taken for analysis through the same processes.

4. Evaluation

In this section, we first present the evaluation configuration, including environment,
parameters, and evaluation flow. Then we show evaluation results, in the terms of the
register-file energy-consumption, the processor energy-consumption, the performance
penalty, and the energy-delay product. In addition, we show how to select suitable IT
threshold for the RLR approach.

4.1 Evaluation Environment

Table 1 shows evaluation environment, including the target processor, benchmark,
and approaches for comparison.

First, we use ARMulator to produce the trace files of benchmarks. Then the trace
files are fed into the power-controlling-code annotation process. In this process, we
would evaluate four approaches including FI, BB, Loop, and RLR –based approaches
by energy and performance analysis.

Table 1 Evaluation environment.

Simulator Simplescalar 4.0 [9]
Energy model Wattch 1.2 [4]
Target processor ARM with 5 pipeline stages [10]
Benchmark MiBench [3]
Approaches for comparison FI, BB, Loop, RLR

4.2 Evaluated Results

A. Flexibility of the RLR approach – the effect of the IT threshold
The IT threshold plays the role of balancing the trade-off between energy saving and
performance penalty. Different IT values would result in different influences.
Applying a large IT in the RLR approach makes more large-sparse-sections; that is,
suitable for energy-oriented applications. On the other hand, applying a small IT in
the RLR approach makes less sparse-sections; that is, suitable for performance-
oriented applications. Fig. 4 shows that, for example, when we set the value of IT to

8, we get larger energy saving and less performance penalty. We can derive the
similar results from the experiments for other benchmark programs in MiBench.
B. Register File Energy Consumption
Fig. 5 shows the register-file energy-consumption for the four approaches. In the FI-
based approach, we set the fixed-interval (i.e., n) by average length of basic blocks. In
the BB-based approach, we partition the programs by basic blocks. In the loop-based
approach, we partition the programs by loops. And, in the RLR-based approach, we
partition the programs by register-live- ranges, and set the value of IT to eight.

Fig. 5 shows that for register-file energy-consumption, the RLR approach
averagely outperforms the FI, BB, and Loop approaches by 21%, 18%, and 28%,
respectively. These improvements come from that the RLR approach considers not
only the type-I “temporarily-unused” register-live-ranges, but also the type-II “no-
longer-used” register-live-ranges, and the type-II situations can be proved as the
major wasted energy sources.
C. Performance Penalty
Fig. 6 shows the performance penalty for the four approaches. In Fig. 6, on average,
the loop-based approach outperforms the other approaches by 17% ~ 23%. This is
because the loop-based approach considers only the loop-sections in a program;
hence, it results in the fewest power-controlling code annotations. On the other hand,
the RLR approach performs better than the FI and BB -based approaches. This is
because it focuses only on the sparse sections instead of the whole program. Hence,
for the RLR approach, the number of power-controlling-code annotations can be
limited.
D. Energy-delay Product
The energy-delay product is a widely-used metric to balance benefits in energy saving
with any potential degradation in performance [2]. Fig. 7 shows the energy-delay
products for the four approaches, and each approach is normalized to the FI approach.
In Fig. 7, we find that the RLR approach would be a good choice among the others
when the value of IT equals to 8. (It outperforms the other approaches by 21% - 67%.)
This shows that the RLR approach gets a great balance between energy saving and
performance penalty.

Fig. 4. Effect of IT in the RLR approach for basicmath of MiBench

Fig. 5. Register-file energy-consumption for the four approaches

Fig. 6. Performance penalty for the four approaches

Fig. 7. Normalized energy-delay product for the four approaches

5. Conclusion

In this paper, we propose a hardware/software co-design approach for register-file
energy saving. On the hardware part, we propose a voltage-scaling mechanism,
including the connected power-state-register design and the voltage-scaling control
logic. On the software part, we proposed a power-controlling code annotation
mechanism, including the power-controlling instruction design and the power-
controlling code generation. We partition the programs into sections to analyze
register-usage. Simulation results show that the RLR-based approach outperforms the
other partitioning approaches in terms of the energy, and energy-delay product. In
addition, by varying the IT threshold in the RLR-based approach, the trade-off
between energy saving and performance penalty can be well balanced.

There are some future works in this paper. For example, energy and performance
penalty due to power-controlling code annotations could be reduced further by
hardware supports. We know that a “power-on” instruction is annotated before a
register value tends to be read or updated. In fact, we can catch this register-usage
information in early pipeline stages, e.g., ID stage, without compiler notification. By
forwarding a signal from the ID stage to a voltage-scaling control logic, we can power
up a register on time for later use. Detailed design has been under development.

References

1. J. L. Ayala,et al.: Power-Aware Compilation for Register File Energy Reduction.
International Journal of Parallel Programming, Vol. 31, No. 6 (2003)

2. W.Zhang, et al.: Reducing Instruction Cache Energy Consumption Using a Compiler-
based Strategy. ACM Transactions on Architecture and Code Optimization, Vol.1, No. 1
(2004)

3. M. R. Guthaus, et al.: MiBench: A free, commercially representative embedded
benchmark suite. IEEE International Workshop on WWC-4, (2001) 3 – 14

4. D. Brooks, et al.: Wattch: A Framework for Architectural-Level Power Analysis and
Optimizations. Proceedings of the 27th International Symposium on Computer
Architecture (2000) 83 – 94

5. J. L. Ayala, et al.: Reducing Register File Energy Consumption using Compiler Support.
Spanlish Ministry of Science and Technology under contract TIC 2000-0583-C02-02.

6. J. L. Ayala, et al.: Power-aware Register Renaming in High-Performance Processors using
Compiler Support. Spanlish Ministry of Science and Technology under contract TIC
2003-0708.

7. J. L. Ayala, et al.: Energy-Efficient Register Renaming in High-Performance Processors.
Spanlish Ministry of Science and Technology under contract TIC 2000-0583-C02-02.

8. J. Abella :On Reducing Register Pressure and Energy in Multiple-Banked Register Files.
Proceedings of 21st International Conference on Computer Design (2003) 14 – 20

9. www.simplescalar.com/docs/simple_tutorial_v4.pdf
10. Http://www.arm.com/documentation/Software_Development_Tools/index.html

http://www.simplescalar.com/docs/simple_tutorial_v4.pdf
http://www.arm.com/documentation/Software_Development_Tools/index.html

