An Effective Instruction Cache Prefetch Policy
by Exploiting Cache History Information

Soong Hyun Shin, Cheol Hong Kim, Chu Shik Jhon

Department of Electrical Engineering and Computer Science,
Seoul National University, Shilim-dong, Kwanak-gu, Seoul, Korea

shordan@panda.snu.ac.kr, kimch@panda.snu.ac.kr,
csjhon@panda.snu.ac.kr

Abstract. The hit ratio of the first level cache is one of the most im-
portant factors in determining the performance of embedded computer
systems. Prefetching from lower level memory structure is one of the
techniques for improving the hit ratio of the first level cache. This paper
proposes an effective prefetch scheme for the first level instruction cache
by exploiting cache history information. The proposed scheme utilizes
two factors to improve the prefetch efficiency: the disparity of block size
between memory hierarchies and continuous same page hits. According
to our simulations, the proposed prefetching scheme improves the per-
formance by up to 6.3%.

Keywords: computer architecture, embedded processor, instruction cache,
cache prefetching

1 Introduction

Minimizing the average data access time is crucial in designing embedded com-
puter systems. As the gap between processor cycle speed and memory access
time grows, access time to lower level memory structure has increased dramat-
ically. Accordingly, first level cache plays one of the most important roles in
determining the performance of computer systems.

Many researchers have examined how to improve the hit ratio of the first level
cache. Prefetching from lower level memory structure is one of the techniques
to improve the hit ratio of the first level cache. Prefetching can be implemented
by software or hardware. Software-based prefetching needs compiler supports to
insert prefetch instructions selectively by analyzing the program. However, it
is very difficult to predict the block to be prefetched precisely at compile time,
resulting in passing up many prefetching opportunities. Contrary to the software-
based prefetching, hardware-based prefetching can use run-time information to
predict the block to be prefetched. However, hardware-based prefetching schemes
require additional hardware overhead. In this paper, we propose a hardware-
based prefetching scheme to improve the hit ratio of the first level instruction
cache (iL.1) with little hardware overhead.

The hardware-based prefetching schemes are classified into sequential prefetch-
ing schemes and non-sequential prefetching schemes. Smith proposed sequential
prefetching scheme for the first time[l]. OBL (One Block Lookahead) scheme[1]
initiates prefetching only for the sequential block. There are three ways in
prefetching by OBL scheme: always-prefetch, prefetch-on-miss and tagged-prefetch.
The always-prefetch scheme prefetches the next block on each reference, so it
increases the number of cache lookups significantly. The prefetch-on-miss scheme
simply prefetches the next block only when one block is required due to a cache
miss. The tagged-prefetch scheme is a modified version of the prefetch-on-miss
scheme. It associates a tag bit with every memory block, and the tag bit is used
to avoid prefetching same block again. Dahlgren et al. proposed an adaptive se-
quential prefetching scheme, varying the prefetch degree (the number of blocks
to prefetch) dynamically[2]. In this scheme, the proportion of useful prefetches
to total prefetches is periodically calculated. The prefetch degree is controlled
according to the proportion. Jouppi suggested a FIFO stream buffer, which con-
tains prefetched blocks before they are brought into the cache, to avoid cache
pollution due to prefetching[3]. Each block in the buffer is brought into the cache
if it is referenced, then a new block is pushed into the FIFO stream buffer. The
cache pollution is avoided by using this buffer. However, if a cache miss occurs
and the requested block is not located in the head entry of the buffer, the buffer
is flushed and new sequences of blocks are fetched to the buffer, resulting in no
use of prefetched blocks. The fetch directed instruction prefetching scheme[4]
proposed by Reinman et al., one of the non-sequential prefetch schemes, utilizes
the branch predictor for predicting program stream. In this scheme, the prefetch
unit prefetches blocks according to the predicted program stream. Similar to
the fetch directed instruction prefetching scheme, the execution history guided
instruction prefetching scheme[5] proposed by Zhang et al. utilizes execution his-
tory. It is done by correlating execution history with cache miss history. Batcher
et al. proposed the cluster miss prediction scheme for embedded cpu instruction
caches[6]. The scheme is for real-time networking applications, so they profiles
the characters of the dedicated application traces.

In most prefetch schemes, there are two types of references to the lower
level memory structure; actual lookup and prefetch lookup. The actual lookup,
caused by a cache miss in the first level cache, services normal memory reference.
The prefetch lookup is caused by a predicted memory reference. If the prefetch
prediction is incorrect, the prefetch lookup is turned out to be unsuccessful.
These unsuccessful prefetch lookups increase the contention to the lower level
memory structure without any contribution to the hit ratio of the first level
cache.

For the iLL1, utilizing sequential prefetch is more effective than non-sequential
prefetch[7], but sequential prefetches increase the traffic to the lower level mem-
ory structure significantly. To reduce the traffic, we propose a prefetch scheme
which doesn’t request the prefetch lookup to the lower level memory structure
separately, but requests the missed block and the next block simultaneously
when a cache miss occurs. It is done by simply doubling the block fetch size.

Moreover, the proposed scheme improves the prefetch accuracy by tracing the
memory page access pattern of executed instruction sequence.

The rest of this paper is organized as follows. Section 2 describes the motiva-
tion of this paper. Section 3 presents the proposed prefetching scheme. Section
4 describes our evaluation methodology and shows detailed simulation results.
Section 5 concludes this paper.

2 Motivation

It is commonly regarded that the program control flows sequentially. Generally,
branch instructions occupy only 0 — 30% of total instructions[8][9]. Therefore,
most instructions are expected to be accessed sequentially in the iLL1. We try to
exploit benefits from this characteristic of the program. Fig.1 shows the proba-

o
©

Probability
o o o 0o o o o
= N w S (52 o ~

AAAAAAAAAA
1 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Relative distance between referenced blocks

o

Fig. 1. The probability according to the relative distance between instructions exe-
cuted. (Instruction cache block size=32B, Memory page size=4KB)

bility according to the relative distance between continuously referenced cache
blocks in the iL1, obtained from our simulations using SimpleScalar[10]. We
simulated 22 benchmarks from SPEC CPU2000[9]. The relative distance in the
graph denotes the distance between continuously referenced cache blocks in the
iL1. For example, in case that n + 1th instruction is referenced after nth in-
struction in the iL1, the relative distance is one if the n + 1th instruction is
within the next block to the block containing nth instruction. In this graph, we
excluded the probability of accessing same cache block (the relative distance is
zero). The probability (the nth and the n 4 1th instruction are within the same
block in the iL1) is meaningless with respect to prefetching, because the needed
block is already located in the iLL1. As shown in Fig.1, the probability that the
relative distance is one is over 70%. From this result, we realized that the next
block is referenced in the iLL1 with very high probability after one cache block
is referenced. Therefore, the hit ratio of the iLL1 is expected to increase if the
next block is prefetched from lower level memory structure when one block is

requested due to iLL1 cache miss. However, prefetching every next cache block is
very expensive, because it may increase the bus contention significantly.

To find the way to maximize the prefetch efficiency, we also observed the
relative distance between continuously referenced blocks in case that two blocks
are within the same page. As shown in Fig.2, the probability of accessing the
next block is 84% when executed instructions are within the same page. As
shown in Fig.2, if prefetch operations are permitted only when the same page is
accessed, the probability of accessing the next cache block is increased by 14%
(from 70% to 84%). We propose a prefetch scheme to utilize these characteristics
of applications.

0.9
0.8
0.7
0.6
05 |
04 |
03
02 |
01 |
0

Probability

1 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Relative distance between referenced blocks.

Fig. 2. The probability according to the relative distance between instructions within
the same page. (Instruction cache block size=32 B, Memory page size=4KB)

3 Prefetch on Continuous Same Page Access

The Prefetch on Continuous Same Page Access (CSPA) scheme, proposed in
this paper, initializes prefetch on misses if two conditions are satisfied: (1) the
number of continuous same page hits (CSPH) reaches the threshold value, and
(2) the block to prefetch isn’t the last sub-block in the block of the lower level
memory structure. Fig.3 depicts the proposed architecture. We assume two level
cache architecture.

The simplest way to predict same page hit is to count the CSPH. If the
CSPH exceeds the threshold value which we decide after simulations, we predict
that the next instruction is within the page containing the previous instruction.
The prefetching unit, placed between iLL1 and L2, counts the CSPH to decide
whether to prefetch or not. To count CSPH, the previous page # is recorded
and it is compared with current page #. If these are equal, the CSPH counter
is increased. The fetch enable signal is set when the CSPH counter reaches the
threshold value. (Fig.3(b)) This condition raises the probability of successful
prefetch (Fig.1, Fig.2).

‘ Processor ‘

fereemer |]]

‘ Instruction TLB H LeETd ‘ ‘ LEETd H DataTLB ‘

Instruction Cache Data Cache
Previous page # Block position
CSPH control logic search logic

Prefetching Unit

i

Level 2 Cache

[

Memory Bus

(a) Overview of the architecture

Current page # Missed block address

Fetch size
(b) Precise depiction of the prefetching unit

Fig. 3. Proposed architecture and the prefetching unit

Most prefetch schemes have two types of references; actual lookup and prefetch
lookup. For example, if the A00 (Fig.4(a)) block is required due to a cache miss
in the iL1, the A00 is transferred to the iL.1 and the AO01, the next block of the
missed block (A00), is prefetched by the prefetch lookup. For all prefetches, the
L2 cache is looked up separately to the actual lookup. If prefetching the block
is unsuccessful(the prefetched block is not referenced), the average memory ac-
cess time increases by the cost of the prefetch. Even if the prefetch is successful,
the memory traffic is not decreased because the prefetch lookup also looks up
the L2. To remove this disadvantage, we initialize prefetch requests only when
the missed block and the prefetched block are in the same block of lower level
memory structure. It is because the L2 block has several iL.1 blocks(generally, 4
sub-blocks) and it can service more quickly when requested iL.1 blocks are sat

L2 CACHE L2 CACHE

s A03 a0 | A [a2 [acs A04

(a) (b)

Fig. 4. Examples of allocation of a missed block and a prefetched block

(@) | Tag [Index | Block offset |

(b) [00000000000000000000000000011111]

(c) [00000000000000000000000011111111]

(d) [000000000000000000000000/111/00000]

(€) [000000000000000000000000000/1111]

Fig. 5. Example of block offset masks and a last sub-block mask

in the same L2 block. Were it not so, the L2 must be accessed again to find the
next sub-block. In CSPA scheme, two sub-blocks, A00 and AO01, are requested
simultaneously by the iL.1 when the A00 is requested due to a miss in the iL.1. If
the prefetching block is successful, the prefetch lookup cost disappears and the
memory traffic is decreased by removing prefetch lookup. In this scheme, if these
two blocks aren’t located in the same block (Fig.4(b)), fetching isn’t initialized.
In this case, only A03 block (without A04) is transferred to the iL.1, because L2
has to be looked up again to find the block containing the A04.

As described, the CSPA scheme requests the missed block and the next block
simultaneously when a cache miss occurs and two conditions(as described above)
are satisfied. It is done by simply doubling the block fetch size. To make it
possible, we assume that the fetch size signal(Fig.3(b)) controls whether the
L2 returns one sub-block or two sub-blocks.

It is easily noticed whether missed block is the last sub-block of the L2 cache
block. The block offset of the L2 cache is divided into two fields: the lower field is
a part overlapped by the block offset of the iLL1, the upper field is the other part
that indicates the sub-block in the L2 cache. Fig.5 shows an example. Memory
address is divided into a tag, an index, and a block offset (Fig.5(a)). Fig.5(b)
and Fig.5(c) depict the block offset masks of iL.1 and L2, respectively. In this
example, the iLL1 cache block size is 32 bytes and the L2 cache block size is 256
bytes, that is, the bit widths of block offset are 5 and 8, respectively. The lower
field of L2 block offset mask, shown in the Fig.5(e), is not used in the L2. L2 cache
is searched by the upper field (Fig.5(d)) to find the sub-block which is requested

by the first level cache. If the higher field is filled with ’1’, the requested block is
the last sub-block of the L2 cache block. As shown in the Fig.5(d), if we apply
XOR to the block offset of the iLL1 and L2, the result is the last sub — block
mask, indicated the upper field.

Consequently, through this operation, if the missed block is not the last sub-
block, the double block enable(Fig.3(b)) is set. If all two enable signals, the fetch
enable and the double block enable, are set, fetch size is set and the prefetch
unit requests two blocks from the L2 cache(Fig.3(b)).

4 Performance Evaluation

4.1 Simulation Model

In order to determine the performance of the proposed prefetching scheme, we
simulatated various benchmarks using SimpleScalar simulator[10]. Simulated ap-
plications are selected from SPEC2000 suite[9]. Simulated system parameters are
shown in Table 1.

Table 1. System Parameters

System Parameter Value

Processor 2-way superscalar processor

Level 1 instruction cache 16KB, 4way, 32bytes cache line, 1cycle latency
Level 1 data cache 16KB, 4way, 32bytes cache line, lcycle latency, write-back
Level 2 cache unified, 256 KB, 8way, 256bytes cache line, 8cycle latency
Memory latency 32cycle latency + 1 cycles/8bytes

4.2 Simulation Results

At first, we simulated to determine the threshold value for the CSPH. Fig.6 shows
the iLL1 cache miss ratio and normalized execution time for various threshold
values. The execution time is normalized to no-prefetch scheme. In the graph,
"CSPA-n’ means that the threshold value is n. As shown in Fig.6, the CSPA-1,
CSPA-2, and CSPA-4, show better performance than the others. We choose '4’
for the threshold value among 1, 2, and 4 because the total number of prefetched
instructions in the CSPA-4 scheme is less than the others. If the threshold value
is too high, the performance degrades. As shown in Fig.6, as the threshold value
increases, the iLL1 miss ratio and the execution time increase. It is because, the
successful prefetch ratio increases slightly as the threshold value increases, but
the un-duplicated ratio decreases conspicuously as shown in Fig.7. The successful
prefetch ratio is the proportion that prefetched block is used in the iLL1 before
it is evicted from the iLL1, and the duplicated prefetch ratio is the proportion
that prefetched block is useless because the block is already located in the iLi1.

12 0.995

. 1 099
r (]
0985 £
=
g 08 o0 8
2 o6 1 0975 g
8 1097 g
g
= 04t | 0965 g
109% 5
02 z

1 0955

0

095
CSPA_1 CSPA2 CSPA4 CSPA8 CSPA 16 CSPA 32 CSPA 64

‘ 1 IL1 missratio —e— execution tirve‘

Fig. 6. Level 1 instruction cache miss ratio and normalized execution time. The exe-
cution time is normalized to no-prefetch scheme

I—IW

CSPA1 CSPA2 CSPA4 CSPAB CSPA16 CSPA 32 CSPA 64

Proposition(%6)
~
ul

‘ —O— un-duplicated ratio —m— successful raio‘

Fig. 7. The un-duplicated ratio and the successful ratio of prefetch for various prefetch
configurations.

It is because while the CSPH increases (instructions within the same page are
referenced continuously), the probability increases that the prefetched blocks are
already referenced. Besides we found the probability of accessing the next block
is 84% when executed instructions are within the same page, as shown in the
Fig.2, and the successful prefetch ratio of the CSPA is 82 — 84%. It means that
the CSPA utilizes the sequential characteristic of benchmarks so effectively to
maximize the prefetch efficiency and the successful prefetch ratio doesn’t increase
any more.

We compare the CSPA with the no-prefetch scheme and the prefetch-on-
miss scheme, because the CSPA needs hardware overhead comparable to that
of these two schemes, and other schemes like[4], [5], and [6] uses tables to keep
informations which are heavier than the hardware cost of CSPA. In the iL1,
the sequential prefetch scheme outperforms the non-sequential scheme[7] and
hardware cost of sequential prefetch is less than that of non-sequential prefetch.

Fig.8 and Fig.9 show the execution time and the miss ratio in the il.1. As
shown in Fig.8, the performance of the CSPA is superior to other schemes. The

w B OO N ®
T

Cycles (* 1000000000)

[SEEEN)

e [| [T ,

eon gap vortex equake fma3d apsi AVG

‘D prefetch-on-miss @ CSPA O nc»prefetch‘

Fig. 8. The execution time for SPEC2000 benchmarks

Miss ratio(%)

parser eon gap vortex equake

‘D prefetch-on-miss @ CSPA O mprefelch‘

Fig. 9. The miss ratio for SPEC2000 benchmarks

CSPA outperforms the no-prefetch by 3.3% on the average and especially in the
benchmarks, crafty and equake, the performances increase 5.3% and 6.3%,re-
spectively. The CSPA also outperforms the prefetch-on-miss by 2.4% on the
average. The miss ratio of the no-prefetch is 1.14% and that of the CSPA is
0.82%. The CSPA reduces miss ratio by 0.3%. Though the miss ratio of the
prefetch-on-miss is less than that of the CSPA, the execution time of the CSPA
is better. It is because the prefetch-on-miss performs prefetches 14% more than
the CSPA, as shown in Fig.10. It is shown well in the benchmarks, gcc, crafty
and vortex. As compared with the prefetch-on-miss scheme, the miss ratio of
the CSPA is higher by 0.1% and the execution time is less by 2%. The reason of
this conflicting result is that the CSPA reduces the total number of prefetch by
15.6%.

5 Conclusions

We have proposed the prefetch on continuous same page access scheme, which
utilizes the disparity of block size between iL.1 and the lower level memory struc-
ture and continuous same page hits. The simulation shows that the CSPA scheme

Count # (* 10000000)
o = N w B (%, o ~ o
—

L —— R
gee crafty parser eon gap vortex equake fma3d apsi AVG
O prefetch-on-miss @ CSPA

Fig. 10. The total number of prefetch for SPEC2000 benchmarks

outperforms the no-prefetch policy by 3.3% on the average. The CSPA outper-
forms the prefetch-on-miss, and moreover it reduces the total number of prefetch
by 14%. Simulation results show that the CSPA scheme is the most effective iL.1
prefetching scheme among three compared schemes.

References

1. Smith, A.: Cache memories. ACM Computing Surveys 14 (1982) 473-530

2. Dahlgren, F., Dubois, M., Stenstrém, P.: Fixed and adaptive sequential prefetch-
ing in shared memory multiprocessors. In: International Conference on Parallel
Processing. (1993) 56-63

3. Jouppi, N.P.: Improving direct-mapped cache performance by the addition of a
small fully-associative cache and prefetch buffers. In: International Symposium on
Computer Architecture. (1990) 364-373

4. Reinman, G., Calder, B., Austin, T.: Fetch directed instruction prefetching. In:
International Symposium on Microarchitecture. (1999) 16-27

5. Zhang, Y., Haga, S., Barua, R.: Execution history guided instruction prefetching.
In: International Conference on Supercomputing. (2002) 199-208

6. Batcher, K., Walker, R.: Cluster miss prediction with prefetch on miss for embed-
ded cpu instruction caches. In: International Conference on Compilers, Architec-
ture, and Synthesis for Embedded Systems. (2004) 24-34

7. Hsu, W.C., Smith, J.E.: A performance study of instruction cache prefetching
methods. IEEE Transactions on Computers 47 (1998) 497-508

8. Lee, C., Potkonjak, M., Mangione-Smith, W.H.: Mediabench: A tool for evaluat-
ing and synthesizing multimedia and communicatons systems. In: International
Symposium on Microarchitecture. (1997) 330-335

9. SPEC: (SPEC CPU2000 Benchmarks) http://www.specbench.org.

10. Burger, D., Austin, T.M., Bennett, S.: Evaluating future microprocessors: the
simplescalar tool set. Technical Report TR-~1308, Univ. of Wisconsin-Madison
Computer Sciences Dept. (1997)

