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Abstract. Cycle-accurate simulators are basic tools to evaluate perfor-
mance improvements of computer architecture. Before confirming of the
architecture improvements using cycle-accurate simulation, the simula-
tor itself should be validated. However, off-the-shelf processors have been
continuously improved, though the cycle-accurate simulators were not
reflected the improved features. Simulation results show that the differ-
ence between the IPC (Instruction Per Cycle) of the modified model for
ARM1136 (Sim-ARM1136) and the IPC of the original model for ARM7
(Sim-Outorder) is 19%, on average, which is large enough to mislead the
impact of architecture improvements.

1 Introduction

Every architect try to improve the performance of microprocessors to achieve
a high speed, low power consumption, and large bandwidth, by examining a
real silicon takes a lot of resources, cost and time. Practically, however, we can
not explore all architectural alternatives on the silicon, and most researchers,
especially in academia, do not analyze the impact of their idea in the silicon
level. Instead, they disbranch useless alternatives using architecture simulators
[1][2][3][4][5]. According to detail of the simulation level, the architecture simu-
lators can be classified into two classes : instruction-accurate and cycle-accurate.
Instruction accurate simulators aim at instruction level performance evaluation,
which does not includes the detailed cycle information, and the correctness is
limited within the instruction level. Compared to the instruction accurate simu-
lators, cycle accurate simulators are focused on the lower level that requires the
performance evaluation as well as correctness check.

About a year ago, we had been trying to deploy an existing processor simu-
lator for architecture explorations. However, insufficient degree of details made



Fig. 1. Sim-ARM1136 GUI

us hesitate to utilize the existing simulators as they are. We worried about the
abstraction errors that may draw wrong conclusions when evaluating new tech-
niques [6].

Cycle-accurate simulators are powerful tools to evaluate a performance sen-
sitive architecture alteration with time and cost efficiency, while these tools
must be validated against the processor architecture. Usually, cycle-accurate
simulators tend to trade-off between exactness and simulation speed, and more-
over, many improved features are added on off-the-shelf microprocessors, which
weaken a rationale of outdated cycle-accurate simulator as an architecture evalu-
ation tool. For example, the cycle-accurate simulator (called Sim-Outorder) from
Simplescalar-ARM [5] was shown to be cycle-accurate by comparing the ARM 7
[7] silicon [8]. However, ARM 1136 [9] has a lot of different features from ARM
7 : number of pipeline stages, organization of execution units, write buffers, and
so on. Nevertheless, many researchers use existing simulators not even modify-
ing pipeline structure and functions in each pipeline, when they evaluate their
embedded processor designs. In this paper, we will discuss the inaccuracy that
arises from the use of an existing cycle-accurate simulator without modifications,
and compare with modified simulator that reflects many architecture updates.

To discuss this issue, we modified Sim-Outorder from Simplescalar[10] to re-
flect the off-the-shelf processor (ARM1136) [9] features. The modified model is
called Sim-ARM1136 in this paper. We selected Sim-Outorder from Simplescalar
to compare with, because it is known as one of the most popular cycle-accurate
simulators for the computer architecture research. To validate Sim-ARM1136,
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Fig. 2. Overall Pipeline Structure of Sim-ARM1136

we compare Sim-ARM1136 outputs with the RTL (register transfer level) simu-
lation results of ARM1136. For convenience of operation, graphic interface was
prepared on Sim-ARM1136, shown in Figure 1, and the user interface provided
cycle-by-cycle validation against ARM1136 RTL by running some test programs.

In the next section, we describe Sim-ARM1136, focusing on the difference
from Sim-Outorder. Section 3 describes the methodology that we used in this
study. Section 4 shows the simulation results, and Section 5 concludes this paper.

2 Sim-ARM1136 Enhancements

In this section, we briefly describe Sim-ARM1136 enhancements compare with
Sim-Outorder based on Simplescalar. Following features are the enhancement of
Sim-ARM1136, and ARM1136 naturally.

– Pipeline stage modification

Sim-Outorder has 6-stage pipeline : fetch, decode, issue, execution, writeback,
and commit. While Sim-ARM1136 is composed of 8-stage pipeline : fetch1,
fetch2, decode, issue, execution1, execution2, execution3, and writeback as shown
in Figure 2. Fetch and branch prediction consumes two cycles, resulting in two
fetch stages, and execution is divided into three cycles.

In Sim-Outorder, one execution stage plays a role of multiple execution stages
by setting latency and allowing multiple instructions in an execution unit. How-
ever, this structure can not support data forwarding in the execution stage.
In Sim-ARM1136, we explicitly divide one execution stage into three execution
stages for three kinds of execution units : Integer pipeline, MAC (Multiply and
Accumulate) pipeline, and LS (Load/Store) pipeline.

Integer pipeline consists of Shift, ALU, and Saturation. If an instruction
includes an operand to be shifted, the operand is shifted in the Shift stage. The
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ALU stage calculates the operands and the Saturation stage saturates the output
from the ALU stage, if necessary. MAC pipeline consists of MAC1, MAC2, and
MAC3. In the MAC1 stage and the MAC2 stage, operands are multiplied. In the
MAC3 stage, the output from the previous stage is accumulated. The LS pipeline
has ADD, DC1, and DC2. In the ADD stage, load/store address is calculated. If a
shift operation is required to calculate the address in a load/store instruction, the
shift operation in the Shift stage of the Integer pipeline should precede load/store
instruction. In other words, if a shift operation is necessary for a load/store, the
load/store instruction is implicitly split into two instructions. One goes through
the Integer pipeline and the other goes through the LS pipeline. The data cache
is accessed in the DC1 and DC2 stages.

The commit stage is merged into the writeback stage. We also modify the
branch misprediction resolution mechanism to be appropriate for the modified
pipeline structure.

– Interlock and data forwarding

In Sim-Outorder, instructions are issued after all data dependencies are re-
solved, while in Sim-ARM1136, instructions are issued regardless of data de-
pendencies. In Sim-ARM1136, data dependencies are checked in every execution
stage. If the required data dependency is not resolved, the instruction can not
proceed until complete the resolution of the data dependency. Figure 3 shows
the resolution of dependencies to proceed to the next stage. The dependency
by the CPSR (Current Program Status Register) is also checked to match the
condition code flags.

– Hit under miss

When Sim-Outorder is set to run in in-order, multiple data cache misses can
go out to fetch data from memory by absence of second level cache in ARM1136.



In case of a cache miss occurs, subsequent data cache access can fetch data only
if there is a free entry in load store queue. In Sim-ARM1136, only one data
cache miss can fetch data from memory. If there is more than one cache misses,
pipeline stalled until there remains only one cache miss.

– Memory interface

In modern processors, there is a write buffer between a first level cache and
memory, whose purpose is to decouple stores from the pipeline. In Sim-Outorder,
the entry of the write buffer is not limited. To reflect ARM1136 features, Sim-
ARM1136 has an 8-entry write buffer, which may affect performance much. CWF
(Critical Word First) is also modeled in Sim-ARM1136.

We also implemented 64-bit wide internal bus between the pipeline and the
first level cache, which support two-word transfer at a time in case of LDM
(LoaD Multiple) or STM (STore Multiple) operations.

– Static branch prediction

In Sim-Outorder, there are only dynamic branch predictions, while in Sim-
ARM1136, static branch prediction as well as dynamic branch prediction is
modeled also. ARM1136 uses bimodal prediction for dynamic branch predic-
tion, and forward taken/backward untaken for static branch prediction. In the
first fetch stage, dynamic prediction is performed and BTAC (Branch Target
Address Cache) is accessed that is similar to BTB (Branch Target Buffer). In
the second fetch stage, static prediction is performed if a miss occurs in the
BTAC.

– Other miscellaneous enhancements

In the cache model of Sim-Outorder, there is no option for turn off the write
allocation policy, while in ARM1136, a cache line for a read operation should be
allocated in the cache.

MAC pipeline can not process MAC instruction for every cycle. At least one
cycle stall is required between adjacent MAC instructions, and if the former MAC
instruction is 64-bit operation, two cycle stalls is required. Data dependency and
forwarding of the MAC instructions were implemented also, but we think the
model of MAC instructions need to be detailed in Sim-ARM1136.

3 Methodology

We built the many enhancement of ARM1136 in Sim-ARM1136 as described,
we discuss a validation process of Sim-ARM1136 and compare the accuracy of
Sim-ARM1136 to that of Sim-Outorder in this section.

1). Simple test programs are made to verify the latencies and enhanced
features in ARM1136 TRM[9] with Sim-ARM1136. These program



Table 1. Processor Parameters

Parameter Value

Issue Policy In-order
Branch Predictor Bimodal, 128-entry
BTB (Branch Target Buffer) 128-entry
Instruction Cache 16KB, 32B line size, 4-way set associative
Data Cache 16KB, 32B line size, 4-way set associative
Cache Latency 1 cycle
Memory Latency 8 (first chunk), 12 (second), 16 (third), 20 (fourth)

includes the validation of ALU execution, MAC execution, interlock
forwarding, hit under miss, and branch prediction/recovery.

2). Execution of Dhrystone (1-iteration) using ARM1136 RTL, Sim-
ARM1136 and Sim-Outorder.

3). We assume the enhanced features of simulator are evaluated and
stabilized if it provides similar improvement/degradation across
other validated environments. In order to validation the stability
of the simulators, we repeat procedure 2) by turning off the branch
predictor. Turning off the branch predictor in ARM1136 RTL sim-
ulation can be done, by changing a status register value.

4). Procedure 2) and 3) are repeatedly done on Dhrystone (100-iteration)
5). Six applications are selected from the EEMBC benchmark suite,

and compare the applications on ARM1136 RTL and Sim-ARM1136
with 1-iteration.

6). We compare the IPC of Sim-ARM1136 to that of Sim-Outorder on
all the applications with default number of iterations by running
the EEMBC benchmark suite. We could not run the applications
on ARM1136 RTL, due to the running default iterations in the RTL
simulation requires excessively long time.

Other processor parameters are complying with the ARM1136 features that
detailed in Table 1. Please note that Sim-Outorder only accepts ARM7 binaries.
For an appropriate comparison, we use ARM7 binaries compiled by the RVCT
(RealView Compilation Tools) [12] as an input for all three simulators (RTL
simulation, Sim-Outorder, and Sim-ARM1136).

4 Simulation Results

4.1 IPC Comparison : ARM1136 vs. Sim-Outorder vs.
Sim-ARM1136 (Dhrystone)

When running Dhrystone 1-iteration, the IPC (Instruction Per Cycle) from the
ARM1136 RTL simulation is 0.19 as shown in Figure 4. In this case, the IPC
from Sim-Outorder and that from Sim-ARM1136 is 0.22 and 0.20, respectively.
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Fig. 4. IPC Comparison (Dhrystone)

Table 2. IPC Comparison between ARM1136 and Sim-ARM1136 (EEMBC, 1-
iteration)

Applications IPC IPC Difference IPC Difference
(ARM1136) (Sim-Outorder) (%) (Sim-ARM1136) (%)

autcor00 0.57 0.73 -28.07 0.62 -8.77
bitmnp01 0.71 0.75 -5.63 0.71 0.86
bitmnp816 0.60 0.63 -5.00 0.55 8.33
memacc816 0.32 0.35 -9.38 0.35 -9.38
pntrch816 0.53 0.48 9.43 0.51 3.77
rspeed816 0.19 0.22 -15.79 0.25 -31.58
Mean 0.48 0.60 12.22 0.58 10.45

All the results are similar. When simulating without the branch predictor, the
relative performance loss in Sim-ARM1136 is as close as that in ARM1136.
However, the performance loss in Sim-Outorder is as much as 24%. Different
from Sim-ARM1136, Sim-Outorder can issue multiple outstanding data cache
miss requests to memory. However, without the branch predictor, the effect of
multiple outstanding data miss requests decreases.

When running Dhrystone 100-iteration, the results from ARM1136 and Sim-
ARM1136 shows less than 3% difference. Sim-Outorder has 36% lower IPC,
compared to the ARM1136. There are two reasons for that. First, running more
iterations reduce data cache miss rate, leading to decrease of the multiple data
cache miss effect. Second, data dependency prevents instructions from being
issued in Sim-Outorder, where only dependency-resolved instructions can be
issued.
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Fig. 5. IPC Comparison between Sim-ARM1136 and Sim-Outorder (EEMBC,default-
iteration)

4.2 IPC Comparison : ARM1136 vs. Sim-Outorder vs.
Sim-ARM1136 (EEMBC, 1-teration)

Table 2 shows the accuracy of Sim-Outorder and Sim-ARM1136 to that of Sim-
Outorder by running EEMBC benchmark suite [11]. The average difference is
12.22% and 10.45% in Sim-Outorder and in Sim-ARM1136, respectively. Main
source of differences may be caused by not modeled features (more detailed MAC
pipeline, return address stack, branch folding and so on).

Since the first iteration incurs much more data cache misses that account
for large portion of execution time, the IPC of Sim-Outorder is very close to
that of Sim-ARM1136. In the next Subsection, we show the difference between
Sim-ARM1136 and Sim-Outorder by running the default number of iterations
of all applications in the EEMBC benchmark suite.

4.3 IPC Comparison : Sim-ARM1136 vs. Sim-Outorder (EEMBC,
default-iteration)

As shown in Figure 5, the simulation results show that Sim-Outorder has higher
IPC than Sim-ARM1136 in most applications. These results are reverse, com-
pared to the results in Section 4.1. The reason is that EEMBC benchmark suite
incurs much more data cache misses than Dhrystone, which results in perfor-
mance gain from multiple outstanding cache misses in Sim-Outorder. Though
Sim-ARM1136 allows the instructions whose data dependencies are not resolved,



this effect is compensated by hit under miss feature (explained in Section 2)
that allows only one outstanding data cache miss. The average IPCs for Sim-
ARM1136 and for Sim-Outorder are 0.55 and 0.63, respectively. The average
difference is as much as 19.0%. Moreover, the increased IPC in Sim-Outorder is
not proportional among the applications. Therefore, the amount of performance
improvement or degradation by researcher’s new idea would be different between
in Sim-ARM1136 and in Sim-Outorder.

Though Sim-ARM1136 shows lower IPC in most applications, Sim-ARM1136
shows higher IPC in some applications that are expected to have a lot of data
forwarding and utilize the 64-bit wide internal bus. Especially, in puwmod816
that has much more LDM/STM, the IPC difference is as much as 38%. Since
LD/ST generates two operations (shift operation for address calculation and
practical LD/ST), it seriously increases data dependencies. In this case, data
dependency can be resolved by data forwarding, resulting in relative performance
gain in Sim-ARM1136.

5 Conclusions

Simulators are essential tools for most researchers to analyze their valuable idea
without costly silicon implementation. However, state-of-the art embedded pro-
cessors have many architectural improvements than the simple simulators. By
the absence of improved features of embedded processors on simulators, if re-
searchers put ideas in the simulators without reflecting of the improvements,
simulation results can be distorted by impacts of added features. Thus, this
might unintentionally conclude valuable idea as useless.

In this paper, we validated Sim-ARM1136, which simulates the processor
parameters of ARM1136 as well as the extended features. We also presented
the difference between Sim-ARM1136 and Sim-Outorder where only processor
parameters are changed without modifying pipeline features. The simulation
results show the difference that might mislead to incorrect performance eval-
uation. Now, Sim-ARM1136 is adopted by Samsung electronics to evaluate of
high-performance embedded processors.

References

1. V. Pai, P. Ranganathan, and S. Adve: RSim: A Simulator for Shared Memory
Multiprocessor and Uniprocessor Systems that Exploit ILP In Proceedings of the
3rd Workshop on Computer Architecture Education (1997)

2. M. Rosenblum, S. Herrod, E. Witchel, and A. Gupta: Complete Computer Simula-
tion : The SimOS Approach In IEEE Parallel and Distributed Technology (1995)

3. D.M. Tullsen, S.J. Eggers, and H.M. Levy: Simultaneous Multithreading: Maximiz-
ing On-Chip Parallelism In 22nd Annual International Symposium on Computer
Architecture, June (1995)

4. Virtutech: Simics Simulator. available at http://www.virtutech.com.
5. Simplescalar LLC: Simplescalar 3.0 available at http://www.simplescalar.com.



6. Bryan Black and Jhon Paul Shen: Calibration of Microprocessor Performance Mod-
els Computer, 31 (5):41-49, May (1998)

7. ARM Corp.: ARM 7 Technical Reference Manual available at http://www.arm.com.
8. Simplescalar LLC: Simplescalar Tutorial available at http://www.simplescalar.com.
9. ARM Corp.: ARM 1136 Technical Reference Manual available at

http://www.arm.com
10. Simplescalar LLC: Pre-release of Simplescalar 4.0, (2004)
11. The Embedded Microprocessor Benchmark Consortium: EEMBC Benchmark Suite

available at http://www.eembc.org.
12. ARM Corp.: RealView Compilation Tools available at http://www.arm.com.


