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Abstract. With the increasing prevalence of ubiquitous computing, the
software component allocation while meeting various resources constraints
and component interdependence is crucial, which poses many kinds of
challenges. This paper mainly presents an adaptive component allocation
algorithm in ScudWare middleware for ubiquitous computing, which uses
dynamic programming and forward checking methods. We have applied
this algorithm to a mobile music space program and made many exper-
iments to test its performance. The contribution of our work is twofold.
First, our algorithm considers resources constraints requirement, com-
ponent interdependence, and component tolerant issues. Second, we put
forward a component interdependence graph to describe interdependent
relationships between components. As a result, the evaluation of compo-
nent allocations has showed our method is applicable and scalable.

1 Introduction

In recent years, computations are becoming ubiquitous and embedded[1], which
provide more facilities for our life. Ubiquitous computing aims at fusing physical
world and information space naturally and seamlessly, which demands plenty of
computation resources for performance requirements. It must require considering
interdependences of functional aspects. However, the computation resources in
ubiquitous and embedded environments are limited such as CPU computation
capabilities, network bandwidth, and memory size. As a result, it sometime
cannot provide enough resources to execute some applications successfully. In
addition, changes of the heterogeneous contexts including people, computing
devices and environments are ubiquitous. Therefore, it results in many problems
in software design and development. We think adaptation is the key issue of
software systems and applications to meet the different computing environments.

In this work, we focus on the design-time adaptation of component allocation
considering resources constraints, component interdependence, and tolerant is-
sues. This paper presents a scalable algorithm using dynamic programming and
forward checking methods to allocate components meeting above three aspects
in design-time. We have implemented this method for ScudWare middleware,
applied it to a mobile music space program, and made many experiments to
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evaluate its performance. The result shows the method is applicable and scal-
able.

The rest of the paper is organized as follows. Section 2 presents a ScudWare
middleware platform. Section 3 details a computation model consisting of the
adaptive component formalization and a component interdependence graph. Sec-
tion 4 proposes an adaptive component allocation algorithm. In section 5 and 6,
we give a case study and make experiments to evaluate performance and scala-
bility of the algorithm. Then some related work is stated in section 7. Finally,
we draw a conclusion in section 8.

2 ScudWare Middleware Platform

We have developed a ScudWare[2] middleware platform in terms of CCM (CORBA
Component Model)[3] specification, using ACE (Adaptive Communication En-
vironment)[4] and TAO (The ACE ORB)[5]. TAO is a real-time ORB (Object
Request Broker) developed by Washington University.

The ScudWare architecture consists of three parts: ACE components, real-
time ORB core and ScudCCM, defined as SCDW=(ACE, ETAO, SCUDCCM).
(1) ACE denotes an adaptive communication environment and is targeted for de-
velopers of high performance and real-time communication services. (2) ETAO,
the extended ACE ORB, is a CORBA middleware framework that allows clients
to invoke operations on distributed objects without concern for object location,
programming language, OS platform, and communication protocols. ETAO in-
cludes a set of services such as transaction, persistence, and life cycle services. In
addition, we have developed context-aware, adaptive notification, and compo-
nent management services added to ETAO. (3) SCUDCCM=(CC, CH, ACM),
where CC denotes a set of component containers, which are environments of com-
ponent runtime; CH denotes a set of component homes, managing component
lifetime; ACM denotes adaptive component management. It includes component
package, assembly, deploy, and allocation in design-time. Besides, it consists of
component migration, replacement, updating, and variation in runtime. Over-
all, in this architecture, we emphasize on context-aware characters and adaptive
mechanisms by providing context-aware service, adaptive service, and compo-
nent management.

3 Computation Model

In this section, we define an adaptive component computation model in a struc-
tural method and describe the problems while meeting resource constraints and
component interdependence during the component allocation. We firstly give
some definitions about the adaptive component. Then we introduce a compo-
nent interdependence graph.
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3.1 Adaptive Component Formalization

In turn, we give definitions of adaptive component model, adaptive component
organization model, adaptive component container model, and adaptive compo-
nent community model.

Definition 1 An adaptive component model Ac = (C, 1,0, R, P) is a meta-
object. (1) C denotes component’s capabilities, including a set of computation
functions. (2) I denotes a set of input interfaces provided by other components.
(3) O denotes a set of interfaces exporting for other components use. (4) R
denotes a set of required resources consumptions value (e.g. CPU computation,
network communication bandwidth, and memory size). (5) P is the executing
platform of component(e.g. Windows and Linux). Specially, if two components
(e.g.al and a?) have the same interfaces and capabilities and run at the same
platform, we call them component brothers, which is defined as brother(al) = a2.
Besides, if two components (e.g. al and a?) are not brothers, but having same
capabilities regardless of other aspects (e.g. platform feature, interfaces), we call
them component friends defined as friend(al) = a?.

Definition 2 An adaptive component organization model A, = (G,1L,OL,
F, RC) is a weighed directed component graph. (1) G C A, denotes a group of
components. (2) IL denotes a set of directed links from the output interface of
one component to the input interface of another component. (3) OL denotes a
set of directed links from the input interface of one component to the output
interface of another component. (4) F specifies the semantic description of IL
and OL. (5) RC denotes a set of resource consumption functions as:

(a) CPU Computation Consumption: RC,. :Vc € A, -Fv € QT - (RC,. — v)
defines the CPU computation resource consumption by component c. Q% is a
set of non-negative real numbers.

(b) Communication Consumption: RCep, : Ve € Ac-Fv € Q1+ (3. RCepy — v)
defines communication resource consumption by component c.

(¢) Memory Consumption: RCpym : Ve € A.- v € QT - (RCpppm — v) defines
memory resource consumption by component c.

According to above definitions, we have modelled the component resources
consumptions as a directed graph. The node weight denotes the CPU compu-
tation and memory consumption. In addition, the node links’ weight denotes
component communications’ consumption.

Definition 3 An adaptive component container model A,, = (P, RP,RA,CA,
D) is a weighed undirected graph. (1) P denotes a set of execution platforms
including different OSs and middleware infrastructures. (2) RP = (RP.., RPu,
RP,,.,) is a set of current left available resources consisting of CPU computation,
network bandwidth, and memory resources. (3) RA = (RA¢c, RAcm, RAmm) is
a set of resources that have been allocated for CA. (4) CA C A, is a set of
components allocated into P. The definitions of RP and RA are same as RC in
definition 2. (5) D denotes a set of containers’ lifetimes.

Definition 4 An adaptive component community model A,, = (Ao, An, K,
CT) is a component network permeated in ubiquitous computing environments.
(1) A, denotes a set of adaptive component organizations including many het-
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erogeneous components. (2) A, denotes a set of various adaptive component
containers. (3) K is a set of human-centric tasks. (4) CT is a set of current
context information related to application domains.

In terms of above four definitions, we can conclude the component alloca-
tion problem formally equals to a model-building problem. That means how to
build an adaptive component community model A,, by giving an adaptive com-
ponent organization model A, and an adaptive component container model A,,.
Specifically stated, there are three restrictions:

(a) Each component is allowed to be allocated in just one container during
its lifetime.

(b) It must meet restrictions of resources quantity. That means RP should
be more than RA in A,,.

(c) During component allocation, we should consider component interdepen-
dence. For example, if component ¢; has been allocated into container ny and
component ¢; and ¢y are interdependent directly, co must be allocated in con-
tainer ny regardless of other aspects.

3.2 Component Interdependence Graph

In order to describe the interdependent relationships between components, we
introduce a component interdependence graph composed of component nodes
and link paths.

For each component, we associate a node. The link paths are labelled with a
weight. We define a component interdependence graph A;, = (CN,LP,W). (1)
CN = {cn;}i=1.n denotes a set of component nodes. (2) LP = {l; j}i=1..n,j=1..m
denotes a set of component links, describing the dependent targets. I; ; is the
link between the nodes cn; and cn;. (3) W = {w; ;}i=1..n,j=1..m denotes a set
of interdependent weight. w;; is a non-negative real number, which labels I; ;.
In addition, w;; reflects the importance of the interdependence between the
associated components. These weights used, for instance, to detect which links
becomes too heavy or if the systems rely too much on some components. In terms
of this weight, we can decide which component should be allocated preferentially.
Extremely, this graph changes in terms of the different contexts. Therefore, this
interdependence is not static: it can be modified when a new component is
added or one component disappears. Moreover, based on the different application
domain context and run-time environment, the interdependent relationships will
change.

4 Adaptive Component Allocation Algorithm

This section describes an adaptive component allocation algorithm, considering
resources constraints requirement, component interdependence, and component
tolerant issues, which we call RIT-Based component allocation algorithm. Be-
sides, this algorithm uses DP (dynamic programming) and FC (forward check-
ing) methods, which invokes functions CCAP, SCB and ACDC.
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4.1 RIT-Based Component Allocation Algorithm

Giving a set of application domains and human-centric tasks, RIT-Based algo-
rithm, listed in algorithm 4.1, aims at generating an adaptive component commu-
nity model A,, from an adaptive component organization model A,, an adaptive
component container model A,, and a set of human-centric tasks K in terms of
resources constraints requirement, component interdependence, and component
tolerant issues. First, RIT-Based algorithm decomposes tasks into a set of logic
functions. Second, it finds a set of key components and their brothers and friends.
Third, it forms the component interdependence graph. Fourthly, for each com-
ponent, it calculates its allocation priority according to the resources quantity
required and the interdependent relationships between other components. Then
it will sort components in terms of their allocation priorities. Specially stated,
for each key component, its one brother or friend will be selected as a component
backup for tolerant issues. Finally, it completes all component allocations and
returns the allocation scheme.

Algorithm 4.1 RIT-Based Component Allocation

Input: (1) An adaptive component organization model A, =(G, IL, OL, F,
RC); (2) An adaptive component container model A, =(P, RP, RA, CA, D); (3)
A set of human-centric tasks K={lf1,1fa, ... fn}.

Output: An adaptive component community model A,, = (Ao, A, K, CT).

Begin

Step 1 : Decomposing K into a set of logic functions {lf1,lf2, ... fn};

Step 2 : Finding a set of key components and their brothers and friends in
terms of Lf;;

Step 3 : Forming the component interdependence graph;

Step 4 : (1) CCAP : Calculating all components’ allocation priorities and
sorting them; (2) SCB : Selecting component backups for some key components;

Step 5 : (1) ACDC: Allocating all components into different component con-
tainers, and generating Ap; (2) If (Am.Ao.G = Ay Ay .CA) then return A,
else return error.

End.

4.2 CCAP and SCB

For CCAP, we introduce an adaptive competence function for each component.
We consider both combined resources consumptions of each component and its
interdependence. First, for each component ¢ € A,.G, the component allocation
priority CCAP(c) is calculated as formula (1).

c , c RC.pm(c
(a*(%) + 5*(%) + 7*(7127()))*(1"—21”(6))
> RPec(An(3)) > RPrm(An(4)) > RPem (An(3))

i=1 i=1 i=1

(1)
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We use a, 8 and 7y to define the weights of CPU Computation, communication
and memory resources. If we emphasize CPU Computation more than other
aspects, we can set o more than 8 and v. In addition, (14> w(c) considers the
aspect of component interdependence.

In order to add tolerant mechanism, we introduce the component backup
method for key components. In SCB step, we select one component brother
or friend as its backup. For example, if ¢; is one of key components and has
brother ¢z, co will be as its backup. If ¢; has not any brothers, but has friend
c3, c3 will act as its backup. Emphatically, the key component and its backup
must be allocated into the different component containers at the same time.
For instance, if there are key component ¢; and its backup ¢, and ¢; is placed
into component container cny, co should be allocated into another component
container except cnj.

4.3 ACDC

For the allocation of each component, we use DP(dynamic programming) and
FC(forward checking) methods. In ACDC, we present three allocation policies:

(a) If component cny and cng are directly interdependent, we must allocate
them into the same component container.

(b) Assume that there are two component containers: cny and cny. Compo-
nent ¢y will be placed. If ¢y is to be placed into cny, x1 = (cni.RA/cny.RP).
Also, if ¢1 is to be placed into cny, xo = > (cng.RA/cne.RP). As a result, if
x1 < x9, we will allocate c¢1 into cnq, else c1 will be placed into cno.

(c) If the allocation of component c; dose not meet the resource constraint
requirement according to (1) and (2), c1 will be placed into the component con-
tainer that has the mazimum available resources.

According to above three policies, we use DP and FC methods to decide
where to place each component, which reduce component allocation complexities.

5 Case Study

In order to demonstrate the usefulness and effectiveness of our component alloca-
tion method, we apply algorithm 4.1 to a MMS (mobile music space) program|6]
in smart vehicle space. MMS program aims at acquiring music source, playing
music, and outputting music adaptively in terms of diverse context information.

The structural model of MMS consists of components for MSM (music
source management), PM (playing music), OM (outputting music), CM (context
management), CA (context acquisition), CR (context reasoning), DF (detecting
fault) and CC (Controlling center). Figure 1 shows this structural and resources
consumptions of each component and their interdependent weight (Kilobytes for
memory and links). There are two component containers: a, and a2, which are
connected via a shared link. Their available resources include 20 and 25 com-
putation, 30 KB and 35 KB memory, and 100 KB/s communication link. As
following, we will illustrate the steps of component allocations.
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Fig. 1. MMS Component Resources Consumptions and Interdependence Graph

First, we calculate allocation priorities of all components and sort compo-
nents by formula (1). Specially stated, we assign « = 8 =~ =1 . Based on the
result of calculation, the order of component allocated is (CC, CM, PM, OM,
CA, CR, MSM, DF), where CCAP(C(C)=2.0102, CCAP (PM)=0.2732, CCAP
(CM)=0.2377, CCAP (OM)=0.2065, CCAP (DF)=0.1907, CCAP (CA)=0.1796,
CCAP (CR)=0.1796, and CCAP (MSM)=0.1076.

Next, we allocate above components into two containers according to three
policies of ACDC. Because CCAP(CC) is maximum, CC' is the key component.
We select its one brother or friend as a backup to allocate to another container
at the same time. In addition, because CA and CR are interdependent directly,
they must be placed into the same component container. Table 1 shows the
component allocation steps and related values. In this case, forward checking is
not performed because the allocation of each step meets resources constraints.
Emphatically stated, if component c is calculated to placed into al, however al
has not enough resources, forward checking is done and component ¢ will be
allocated to a?2.

Finally, component CC, PM, CM, DF, and MSM are placed into component
container a2, and component CC-backup, OM, CA, and CR are allocated into
component container al.

6 Experiments Evaluation

In order to test the performance and scalability of above adaptive component
allocation algorithm, we have made many experiments. The evaluation uses the
number of visited components as a metric for measuring algorithm efficiency. We
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Table 1. Component Allocation Steps

Steps Components X(a;)and X(a2)

CC(2.0102)  0.3000/0.2514
2 PM(0.2732) 0.5657/0.3823
3 CM(0.2377) 0.2583/0.2357
4 OM(0.2065) 0.3995/0.5596
5 DF(0.1907) 0.1490/0.1370
6 CA(0.1796) 0.2424/0.2607
7 CR(0.1796)
8 MSM(0.1076) 0.1735/0.1496

Allocation

a2 (CC-backup— ay,)
a,
az,
ar,
a,
ar,
a, (ACDC: policy (1))

ay

consider varying the number of both components and containers. For compari-
son, we choose SDP (standard dynamic programming) as a baseline, compared
to our method DPFC (dynamic programming with forward checking). The ex-
periments conclude our algorithm has good performance and scalability.
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Fig. 2. The numbers of visited components in Test (1) and Test (2)

Test 1: Varying the number of components. We evaluate the scalability of
the algorithm varying the number of components. First, we fix the number of
component containers to be 6, which have different number of resources. Sec-
ond, we select the number of components from 100 to 1000 in increments of 100,
which resource consumptions are randomly generated. Third, we use SDP and
DPFC algorithms respectively to count the number of visited component once
a solution found. The result is shown in figure 2. The numbers of visited com-
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ponents caused by SDP and DPFC both increase as the number of components
increases. However, if the number of components is same, the numbers of visited
component caused by SDP and DPFC are different significantly, which is due
to forward checking method that improves the solution search.

Test 2: Varying the number of component containers. We evaluate the scal-
ability of the algorithm varying the number of component containers. First, we
fix the number of components be 100, which resources consumptions are ran-
domly generated. Second, we select the number of component containers from
5 to 50 in increments of 5, which have different number of resources. Third,
we use SDP and DPFC algorithms respectively to count the number of visited
component once a solution found. Figure 2 also shows experiment results. The
numbers of visited components caused by SDP and DPFC both increase as the
number of components increase. Nevertheless, on the same number of compo-
nents, the numbers of visited component caused by SDP and DPFC' are different
significantly, which is also due to forward checking method.

7 Related Work

Software component adaptation has the potential for enhancing the system’s
flexibility and reliability to a very wide range of factors. Adaptive component
allocation is playing an important part in software adaptation. Many efforts have
been put in this research area.

Shige Wang and Kang G. Shin[7] give a method of component allocation us-
ing an informed branch-and-bound and forward checking mechanism subject to
a combination of resource constraints. However, their method ignores the execu-
tion dependencies of components and tolerant issues when the structural model is
partitioned. Belaramani and Cho Li Wang[8] propose one dynamic component
composition approach for achieving functionality adaptation and demonstrate
its feasibility via the facet model. Nevertheless, they do not consider related
aspects in design-time fully. Philip K. Mckinley[9] considers the compositional
adaptation enables software to modify its structure and behavior dynamically
in response to changes in its execution environment and gives a review of cur-
rent technology compares how, when, and where re-composition occurs. Kurt
Wallnau and Judith Stafford[10] discuss and illustrate the fundamental affinity
between software architecture and component technology. They mainly outline
criteria for the component integration. Besides, we have proposed a semantic
and adaptive middleware[11] and a component management framework for data
management in smart vehicle space. According to us, we should consider re-
sources constraints, component interdependence, and tolerant issues for adaptive
component allocation in design-time adequately.

8 Conclusions and Future Work

Adaptive component allocation with many aspects’ constraints is playing an
important role for software component design in ubiquitous computing environ-
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ments. This paper presents an adaptive component allocation algorithm applied
to the ScudWare Middleware, considering resources constraints, component in-
terdependence, and tolerant issues. This algorithm uses dynamic programming
and forward checking methods. We have made many experiments to test the
performance and scalability of the algorithm. The experiment results show our
method has good performance and scalability.

Our future work aims at improving the performance of our component al-
location algorithms. In addition, we will take other methods to realize more
flexibility and reliability of component allocation in design-time.
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