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Abstract. Power flow analysis plays an important role in power grid
configurations, operating management and contingency analysis. The
Newton-Raphson (NR) iterative method is often enlisted for solving
power flow analysis problems. However, it involves computation-expensive
matrix multiplications (MMs). In this paper we propose an FPGA-based
Hierarchical-SIMD (H-SIMD) machine with its codesign of the Hierar-
chical Instruction Set Architecture (HISA) to speed up MM within each
NR iteration. FPGA stands for Field-Programmable Gate Array. HISA is
comprised of medium-grain and coarse-grain instructions. The H-SIMD
machine also facilitates better mapping of MM onto recent multimillion-
gate FPGAs. At each level, any HISA instruction is classified to be of
either the communication or computation type. The former are executed
by a controller while the latter are issued to lower levels in the hierarchy.
Additionally, by using a memory switching scheme and the high-level
HISA set to partition applications, the host-FPGA communication over-
heads can be hidden. Our test results show sustained high performance.

1 Introduction

It is not uncommon in power flow analysis to make a good initial guess regarding
the solution, e.g., a hot or flat start[16]. Thus, the Newton-Raphson iterative
method is often used in power flow problems because a good initial guess leads
to desirable convergence properties. If we profile the code of the NR algorithm, we
will find out that the most expensive computations are MMs. Real time solutions
to power flow problems are absolutely essential in power grid configurations,
operating management and contingency analysis. In this paper, an FPGA-based
parallel computing architecture is proposed to speed up the MM component in
the NR iterations.
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Multimillion-gate FPGAs can form promising hardware accelerators for con-
ventional hosts, e.g., a workstation or an embedded microprocessor[1][2][13]
[14][15]. The workstation-FPGA combination is popular for data-intensive ap-
plications due to high FPGA resource efficiency and flexible workstation control.
However, the substantial communication and interrupt overheads between the
workstation and the FPGAs is also becoming a major performance bottleneck
that may prevent further exploitation of the performance benefits gained from
the parallel FPGA implementation [3][14].

Specifically, the contributions of our work are: i) We explore the FPGA-
based design space to accelerate MM computations in NR iterations. To this
extent, a hierarchical multi-FPGA system is proposed where each FPGA works
in the SIMD (Single-Instruction Multiple-Data) parallel-processing mode. Under
SIMD, all processors execute the same instruction simultaneously but on differ-
ent data. Due to task partitioning with different granularities at various levels, we
can eliminate communication requests of the processing elements (PEs) within
the H-SIMD machine if a block-based matrix multiplication algorithm is em-
ployed. ii) We employ a memory switching scheme to overlap communications
with computations as much as possible at each level. The conditions to fully
overlap communications with computations are investigated as well. This tech-
nique overcomes the FPGA interrupt overheads and the rather low speed of the
PCI bus that connects our FPGA-based target platform to the host [7]. Thus,
our proposed methodology makes it possible to synthesize a scheme that brings
together the computing power of the workstation and the FPGAs seamlessly for
the NR algorithm.

Many research projects have studied MM for reconfigurable systems [4][5][6].
[4] proposed scalable and modular algorithms. Yet the authors point out that
the proposed algorithms still incur high configuration overhead and large-sized
configuration files. [5] introduced a parallel block-based algorithm for MM with
substantial results. Though their design is based on a host-FPGA architecture
and pipelined operation control is employed as well, the interrupt overhead from
the FPGA to the host is not taken into consideration for a workstation host.
Hence, [4][5] can not be used to accelerate MM in the NR method. [6] concluded
that FPGAs can achieve higher performance with less memory and bandwidth
than a commodity processor.

The rest of this paper is organized as follows. Section 2 analyzes the NR
iterative method, and presents the H-SIMD machine design and its memory
switching scheme. Section 3 presents the HISA instruction set for NR and an-
alyzes workload balancing for MM across H-SIMDs different layers. Section 4
shows implementation results and a comparative study with other works. Sec-
tion 5 draws conclusions.



2 Multi-Layered H-SIMD Machine and Newton-Raphson
Method

2.1 Newton-Raphson Iterative Method

The NR method employs Taylors series expression for a function with two or
more variables [16]. It replaces the Gauss-Seidel method which is characterized
by slower convergence. The nonlinear Newton-Raphson-type iteration for finding
the reciprocal 1/A of matrix A is X(k + 1) = X(k)(2I −AX(k)), where k is the
iteration number and X(0) is the initial guess for A−1. The iterative technique
proceeds until the sum of the absolute values of the off-diagonal elements in
AX(k) is less than ε, where ε is the required accuracy. The convergence rate
is determined by the initial choice of X(0). The process converges if and only
if all eigenvalues of I − AX(0) have absolute value less than one. Convergence,
when it occurs, is generally quadratic. An improvement can be made so that the
algorithms convergence is cubic. The pseudo-code for the NR algorithm is shown
in Fig. 1. We can tell that two matrix multiplications are needed per iteration.
Hence, our H-SIMD machine is designed for the acceleration of MM in the NR
iterations.

2.2 H-SIMD Architecture

The H-SIMD control hierarchy is composed of three layers: the host controller
(HC), the FPGA controllers (FCs) and the nano-processor controllers (NPCs),
as shown in Fig. 2. The HC encounters the coarse-grain host SIMD instruc-
tions (HSIs) in the application program, which are classified into host-FPGA
communication HSIs and time-consuming computation HSIs. The HC executes
the communication HSIs only and issues computation HSIs to FCs. Inside each
FPGA, the FC further decomposes the received computation HSIs into a se-
quence of medium-grain FPGA SIMD instructions (FSIs). The FC runs them
in a manner similar to the HC: executing communication FSIs and issuing the
computation FSIs to the nano-processor array. The NPCs finally decode the
received computation FSIs into fine-grain nano-processor instructions (NPIs)
and sequence their execution. Due to the difference between computation in-
structions and communication instructions at all levels, the H-SIMD machine
configures one of the FPGAs as the master FPGA which sends an interrupt
signal back to the HC once the previously executed computation HSI has been
completed. Similarly, one NP within each FPGA is configured as the master NP
that sends an interrupt signal back to its FC so that a new computation FSI
can be executed.

The communication overhead between the host and the FPGAs is very high
primarily due to the nature of the non-preemptive operating system on the
workstation. Based on tests in our laboratory, the one-time interrupt latency
for a Windows-XP installed workstation running the PCI bus at 133MHz is
about 1.5 ms. This penalty is intolerable in high-performance computing [14].
Thus, a design objective of the H-SIMD machine is to reduce the interrupt



Initialization & flat start;X1_matrix= alpha*transpose(A);do{    X0_matrix = X1_matrix;    multiply_matrix(A_matrix, X0_matrix, temp1_matrix);    multiply_minus(2*I, temp1_matrix, temp2_matrix);    multiply_matrix(X0_matrix, temp2_matrix, X1_matrix);}while( ||X1_matrix - X0_matrix|| > 0.000001);
Fig. 1. The pseudo-code for the NR it-
erations
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Fig. 2. H-SIMD machine architec-
ture

overheads. A memory switching scheme has been applied successfully before in
[5]. However, they did not specify the conditions to fully overlap communications
with computations, a focus of our study. [14] studied such conditions but for
another application problem.

The HC-level memory switching scheme is shown in Fig. 3. The SRAM banks
on the FPGA board are organized into two functional memory units: the execu-
tion data memory (EDM) and the loaded data memory (LDM). Both are func-
tionally interchangeable. At one time, the FCs access EDMs to fetch operands
for the execution of received computation HSIs while LDMs are referenced by
the host for the execution of communication HSIs. When the FCs finish their
received computation HSI, they will switch between EDM and LDM to begin
a new iteration. The FC is a finite-state machine responsible for the execution
of the computation HSI. The FCs have access to the NP array over a modified
LAD (M-LAD) bus. The LAD bus was originally developed by the Annapolis
Micro Systems company for our target board and was used for on-chip memory
references [7]. The M-LAD bus controller is changed from the PCI controller to
the FCs. The HSI counter is used to calculate the number of finished computa-
tion HSIs. The SRAM address generator (SAG) is used to calculate the SRAM
load/store addresses in EDM banks. The FC is pipelined and sequentially tra-
verses the pipeline stages LL (Loading LRFs), IF (Instruction Fetch), ID (In-
struction Decode) and EX (execution). The transition condition from EX to LL
is triggered by the master NPs interrupt signal. The interrupt request/response
latency is one cycle only as opposed to the tens of thousands of cycles between
the host and FPGAs, thus enhancing the H-SIMDs performance.

The nano-processor array forms the customized execution units in the H-
SIMD machine datapath. Each nano-processor has three large-sized register files:
the load register file (LRF), the execution register file (ERF) and the accumula-
tion register file (ARF), as shown in Fig. 4. Both the LRFs and ERFs work in a
“memory” switching scheme, similarly to the LDMs and EDMs. The ERFs are
used for the execution of computation FSIs while the LRFs are referenced by the
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communication FSIs at the same time. The computation results are accumulated
in the ARFs which can be accessed by the FCs.

3 HISA and Task Partitioning for MM

3.1 HISA: Instruction Set Architecture for MM

Similar to the approach for PC clusters in [10], we suggest here that an effective
instruction set architecture (ISA) be developed at each layer for each applica-
tion domain. The HC is programmed by host API (Application Programming
Interface) functions for the FPGA board. They can initialize the board, config-
ure the FPGAs, reference the on-board/on-chip memory resources and handle
interrupts. We present here the tailoring of HSIs for a block-based MM algo-
rithm. More specifically, we assume the problem C=A*B, where A, B, and C
are NxN square matrices. When N becomes large, block matrix multiplication is
used that divides the matrix into smaller blocks to exploit data reusability. Due
to limited space here, refer to [9] for more details about block-based MM.

In the H-SIMD machine, only a single FPGA or NP is employed to multi-
ply and accumulate the results of one block of the product matrix at the HC
and FC levels, respectively. Coarse-grain workloads can keep the NPs busy on
MM computations, while the HC and FCs load operands into the FPGAs and
NPs sequentially. This simplifies the hierarchical design of the architecture and
eliminates the need for inter-FPGA and inter-NP communications. Based on the
H-SIMD architecture, the HC issues NhxNh sub-matrix blocks for all the FPGAs
to multiply. Nh is the block matrix size for the HSIs. We have three HSIs here:
i)host matrix load(i, SLDM , Nh); ii)host matrix store(i, SLDM , Nh); iii)host
matrix mul accum(HA, HB ,HC , Nh). The first two HSIs are the communica-
tion instructions while the third one is the computation instruction.

The FC is a finite state machine in charge of executing the computation
HSI. It decomposes host matrix mul accum of size NhxNh into FSIs of size
NfxNf , where Nf is the sub-block matrix size for the FSIs. Enlisted is the



same block matrix multiplication algorithm as the one for the HC. The code
for host matrix mul accum is pre-programmed by FSIs and stored into the FC
instruction memory. The FSIs are 32-bit instructions with mnemonics as fol-
lows: i)FPGA matrix load(i, SLRF , Nf ); ii)FPGA matrix store(i, SARF , Nf );
iii)FPGA matrix mul accum(Fa, Fb, Fc, Nf ). They are in charge of the com-
munications and computations at the FPGA level.

The NPIs are designed for the execution of the computation FSI. The code
for FPGA matrix mul accum is pre-programmed with NPIs and stored into
the NPC instruction memory. There is only one NPI to be implemented: the
floating-point multiply accumulation NP MAC(Ra, Rb, Rc), where Ra, Rb, and
Rc are registers for Rc = Ra∗Rb+Rc. The NPI code for computation FSIs needs
to be scheduled to avoid data hazards. They occur when operands are delayed
in the addition pipeline whose latency is Ladder. Thus, the condition to avoid
data hazards is N2

f > Ladder, which can be easily met.

3.2 Analysis of Task Partitioning

The bandwidth of the communication channels in the H-SIMD machine varies
greatly. Basically, there are two interfaces in the H-SIMD machine: a PCI bus of
bandwidth Bpci between the host and the FPGAs; and the SRAM bus of Bsram

between the off-chip memory and the on-chip nano-processor array. The HSI
parameter Nh is chosen in such a manner that the execution time Thost compute

of host matrix mul accum is greater than Thost i/o which is the sum of the exe-
cution time THSI COMM of all the communication HSIs and the master FPGA
interrupt overhead Tfpga int. If so, the communication and interrupt overheads
can be hidden. Let us assume that there are q FPGAs of p nano-processors each.
Specifically, the following lower/upper bounds hold for matrix multiplication:
Thost compute > τ ∗N3

h/p
Thost i/o < THSI COMM ∗ q + Tfpga int = 4 ∗ b ∗N2

h/Bpci ∗ q + Tfpga int

where τ is the nano-processor cycle time and b is the width in bits of each I/O
reference. Simulation results in Fig. 5 show that the HSI computation and I/O
communication times vary with Nh, p and q for b=64 and τ=7 ns. With increases
in the block size of HSIs, the computation time grows in a cubic manner and yet
the I/O communication time grows only quadratically, which is exploited by the
H-SIMD machine. This means that the host may load the LDMs sequentially
while all the FPGAs run in parallel the issued HSI.

For FC-level NfxNf block MM, we tweak Nf to overlap the execution time
TFPGA compute of FPGA matrix mul accum with the sum TFPGA i/o of the exe-
cution times TNP i/o of all the communication FSIs and NP interrupt overheads
TNP int. The following lower/upper bounds hold:
TFPGA compute > τ ∗N3

f

TFPGA i/o < TNP i/o ∗ p + TNP int = 4 ∗ b ∗N2
f /(Bsram ∗Nbank) ∗ p + TNP int

Nbank is the number of available SRAM banks for each FPGA. This condition can
be easily met [14]. More SRAM banks can provide higher aggregate bandwidth
to reduce the execution times of the communication FSIs. By using the above
analysis of the execution time, we explored the design space for the lower bound
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on Nh and Nf , respectively. On the other hand, the capacity of the on-board and
on-chip memories defines the upper bounds on Nh and Nf . For each FPGA on
MM operations: 4∗r∗N2

h ∗b < Csram ∗Nbank and 4∗r∗N2
f ∗b < Con−chip, where

Csram represents the capacity of one on-board SRAM bank; Con−chip represents
the on-chip memory capacity of one FPGA; r stands for the redundancy of the
memory systems, so r=2 for our memory switching scheme. In summary, Nh

and Nf are upper-bound by
√

CSRAM ∗Nbank/(8 ∗ b) and
√

Con−chip/(8 ∗ b),
respectively.

4 Implementation and Experimental Results

The H-SIMD machine was implemented on an Annapolis Wildstar II PCI board
containing two Xilinx XC2V6000-5 Virtex-II FPGAs [7]. We used the Quixilica
FPU [8] to build the NPs floating point MAC. In our design environment, Mod-
elSim5.8 and ISE6.2 are enlisted as development tools. The Virtex-II FPGA
can hold up to 16 NPs running at 148MHz. Broadcasts of FSIs to the nano-
processor array are pipelined so that the critical path lies in the MAC datapath.
The 1024x1024 MM operation was tested. The block size Nf of the FSIs was set
to 8. The test results break down into computation HSIs, host interrupt over-
head, PCI reference time, and initialization and NP interrupt overhead, as shown
in Fig. 6. We can tell that the performance of the H-SIMD machine depends on
the block size Nh. When Nh is set to 64, the frequent interrupt requests to the
host contribute to performance penalty. When Nh is set to 128, the computa-
tion time does not increase long enough to overlap the sum of the host interrupt
overhead and the PCI sequential reference overheads. If Nh is set to 512, there is
long enough computation time to overlap the host interrupt. However, the mem-
ory switching scheme between the EDMs and LDMs does not work effectively
because of the limited capacity of the SRAM banks, which results in penalties
from both host interrupts and PCI references. If Nh is set to 256, the H-SIMD
pipeline is balanced along the hierarchy such that the total execution time is
very close to the peak performance Tpeak = N3 ∗ τ/(p ∗ q), where all the nano-
processors work in parallel. We can sustain 9.1 GFLOPS, which is 95% of the
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peak performance. The execution overhead on the H-SIMD machine comes from
the LDM and LRF initializations and the nano-processor interrupt to the FCs.

For arbitrary sizes of square matrices, a padding technique is employed to
align the sizes to multiples of Nf because FPGA matrix mul accum works on
NfxNf matrices. Nf is set to 8 during the test. Let A and B be square matrices
of size NxN. If N is not a multiple of eight, then both the A and B input matrices
are padded up to the nearest multiples of eight by the ceiling function. Table 1
presents the test results for different cases. For matrices of size less than 512, the
H-SIMD machine is not fully exploited and does not sustain high performance.
For a large matrix (N > 512), the H-SIMD machine with two FPGAs can achieve
about 8.9 GFLOPS on the average.

Table 1. Execution times of MM for various test cases
Matrix size H-SIMD machine(ms) GFLOPS

200 7 2.28

400 18 7.111

600 50 8.683

1024 238 9.023

2048 1900 9.042

4000 14100 9.078

Table 2. Performance comparisons between H-SIMD and other works for a Virtex II
Pro125 FPGA

H-SIMD [4] [5]

Frequency 180 200 200

Number of PEs 26 24 39

GFLOPS 9.36 8.3 15.6

Hide interrupt overhead Yes No No

Size of configuration
files (MB/100 cases)

5 500 500

Table 2 compares the performance of our H-SIMD machine with that of pre-
vious work on FPGA-based floating-point matrix multiplications [4][5]. Their
designs were implemented on Virtex II Pro125 containing 55,616 Xilinx slices as
opposed to our Virtex II 6000 FPGA that contains 33,792 slices. We scaled up
the H-SIMD size to match the resources in the Virtex II Pro125. After ISE place
and route, 26 NPs can fit into one Virtex II Pro125 running at 180MHz and



Table 3. Cost-performance comparison of the H-SIMD machine and the Xeon proces-
sor

System
Transistors
(millions)

Execution
time T(ms)

VLSI Cost Speedup

2.8GHz 286 3.9 1 1

H-SIMD
(2 FPGAs)

700 1.9 0.58 2.05

hence achieve the peak performance of 9.36GFLOPS per FPGA. The H-SIMD
running frequency can be further increased if optimized MACs are enlisted. [4][5]
presented a systolic algorithm to achieve 8.3 GFLOPS and 15.6 GFLOPS on a
single XC2VP125 FPGA. However, the H-SIMD machine can be used as a com-
puting accelerator for the workstation when the NR algorithm is implemented.
In contrast, the systolic approach does not fit into this computing paradigm be-
cause of the FPGA configuration overheads and the large size of configuration
files.

The H-SIMD performance also compares favorably to that of state-of-the-art
general purpose processors. The Intel Math Kernel Library (Intel MKL) con-
tains the BLAS implementation that has been highly optimized for Intel pro-
cessors. For double-precision general-purpose matrix multiplication (DGEMM),
a 2.8 GHz Xeon with 512 KB L2 cache achieves 4.5 GFLOPS [11]. The time-
consuming computations in the NR algorithm correspond to MMs. Thus, the
H-SIMD machine can speed up the NR method by a factor of 1.9. A cost-
performance analysis of the H-SIMD machine and a Xeon processor is in order
now. The ten million system gates in the Virtex II FPGA consume about 400
million transistors. The H-SIMD machine built on the Annapolis board con-
tains two Virtex II FPGAs. Thus, our current implementation of the H-SIMD
machine employs roughly 700 million transistors. On the other hand, a 2.8GHz
Xeon processor is comprised of about 286 million transistors [12]. For 2048x2048
MM on IEEE-754 double-precision numbers, it takes 3.9s on a Xeon processor as
opposed to 1.9s on H-SIMD. According to a widely used VLSI complexity model,
the cost C of implementing an algorithm is defined as C = A ∗ T 2, where A is
the chip area and T is the execution time. The chip area is directly proportional
to the number of transistors, so we substitute in the cost equation the latter for
the former. The VLSI cost and speedup results in Table 3 are normalized with
respect to the Xeon processor. The H-SIMD machine can speedup the MM by a
factor of two with only about half the VLSI cost.

5 Conclusions

In this paper, we analyzed the NR iteration algorithm for power flow prob-
lems and designed an FPGA-based MM accelerator for the host workstation.
The proposed multi-layered H-SIMD machine paired with an appropriate multi-
layered HISA software approach is effective for the host-FPGA architecture and
can be synthetically used to speed up MM in NR iterations. To yield high per-
formance, task partitioning is carried out at different granularity levels for the
host, the FPGAs and the nano-processors. If the parameters of the H-SIMD ma-



chine are chosen properly, the memory switching scheme is able to fully overlap
communications with computations. In our current implementation of matrix
multiplication, a complete set of HISA for this application was developed. Its
good performance was demonstrated. More recently introduced FPGAs, e.g,
XC2VP125, could improve performance even further.
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