
Timed Weak Simulation Verification and its
application to Stepwise Refinement of Real-Time

Software

Satoshi Yamane

Graduate School of Natural Science
Kanazawa University

Kanazawa City, Japan, ZIP/CODE 920-1192
Email : syamane@is.t.kanazawa-u.ac.jp

Abstract. Real-time software runs over real-time operating systems,
and guaranteeing qualities are difficult. In this paper, we propose timed
weak simulation relation verification and apply it to a refinement design
method of real-time software. Moreover, we apply our proposed method
to general real-time software scheduled by fixed-priority preemptive pol-
icy.

1 Introduction
As real-time software is reactive and concurrent, and its timing conditions are
strict, it is difficult to design real-time software [1]. It is important to specify and
verify real-time software. In this paper, we propose timed weak simulation rela-
tion verification method based on timed automata [2], and apply it to stepwise
refinement of real-time software over fixed priority preemptive schedulers [3]. In
general, real-time software is designed by dividing it into tasks [1] In this case, it
is difficult to design real-time software by the following points: (1)Real-time soft-
ware consists of many tasks, which concurrently behave. Moreover, tasks interact
with external environments. In this situation, it is useful to distinguish between
internal events and external events in the sense of process algebra [4]. (2)In real-
time software, stepwise refinement is useful, and it is important to automatically
verify whether the concrete specification refines the abstract specification.

From the above results, we propose the followings: (1)We use nondetermin-
istic timed automata, which have internal and external events. We construct
real-time software by parallel composition of nondeterministic timed automata.
(2)We verify whether the concrete specification refines the abstract specification
based on a timed weak simulation.

In general, refinement relations such as language inclusion, timed bisimula-
tion and timed strong simulation are useful as follows: (1)We can easily and
naturally verify fairness and regularity as acceptance conditions by language in-
clusion. But if we specify verification properties using nondeterministic timed
automata, language inclusion problems are undecidable [2]. On the other hand,
R. Alur proposed an event-clock automata, which is a determinizable of timed
automaton [5, 6]. But an event-clock automaton is a subclass of a timed automa-
ton, and accepts a finite timed word (though a general timed automaton accepts
an infinite timed word). As the determinization of an event-clock automaton
causes an exponential blow-up in the number of locations, the verification cost
increases. Moreover, we can not verify some deadlock using language inclusion [4,
7]. (2)Timed bisimulation relation is useful for verifying a kind of invariant hold-
ing between the more concrete specification and the more abstract specification
[8]. On the other hand, timed strong simulation relation is useful for verifying
stepwise refinement [9]. But when we stepwise develop specifications, we may

add exception procedures to the concrete specification, which are not contained
in the abstract specification. Both timed bisimulation relation and timed strong
simulation relation are not adequate for this reason.

From the above result, we use timed weak simulation relation in order to
verify whether the concrete specification refines the abstract specification.

We survey related works as follows: (1)In 1992, Cerans has shown that timed
strong and weak bisimulation equivalence problem for timed automata are decid-
able [8]. But he has not developed bisimulation algorithms. (2)In 1996, Tasiran
and his colleagues have developed the verification algorithm of timed strong
simulation relation [9]. But they have not developed a timed weak simulation
relation. (3)In 1999, Braberman and his colleagues have developed reachability
analysis method of preemptive scheduling using timed automata [10]. But they
have not developed refinement verification method.

In this paper, we define a timed weak simulation relation, and propose the
verification algorithm of timed weak simulation relation. Moreover we apply
our proposed method to general real-time software scheduled by fixed-priority
preemptive policy. As it is difficult to treat internal behaviors, timed weak simu-
lation verification methods of timed automata have never been developed before
now. Timed weak simulation verification is our original work. The paper is or-
ganized as follows: In section 2, we define specification method. In section 3,
we define timed weak simulation relation verification method and apply it to
stepwise refinement of real-time software. In section 4, we present design supprt
system and some example. Finally, in section 5, we present conclusions.

2 Specification of Real-Time Software
In this paper, we specify tasks using nondeterministic timed automata with inter-
nal and external events, and construct real-time software by parallel composition
of tasks.

2.1 Syntax and Semantics of Timed Automata
First we define clock as follows:
Definition 1 (Clock and clock interpretation)
Given a finite set of variables X = {x1, . . . , xn}, a valuation is a function
v : X → R

+0, which assigns a nonnegative real value to each clock variable. We
define V X as the set [X → R

+0]. 0 denotes the valuation that assigns the value
0 to each x ∈ X. For λ ⊆ X, v[λ := 0] denotes the valuation that assigns the
value 0 to each x ∈ λ and agrees with v for all clocks in X \ λ. Moreover, for
every t ∈ R

+, v + t denotes the clock valuation for which all clocks x ∈ X take
the value v(x) + t.

Definition 2 (Clock constraints)
For a set X of clock variables, the set ΨX of clock constraints ψ is inductively

defined by ψ ::= x ∼ c | ψ1 ∧ ψ2, where ∼∈ {≤, =, ≥}, c ∈ N. We write v |= ψ
if the valuation v satisfies the formula ψ. For each clock x ∈ X, cx(ΨX) denotes
the maximal clock constant in ΨX .

Definition 3 (Syntax of timed automata)
A timed automaton G is a tuple 〈S, s̄, Σ,X, inv, E〉, where

(1) S is the finite set of locations.
(2) s̄ ∈ S is an initial location.
(3) Σ = EXT ∪ INT is the finite set of events, where EXT is the finite set
of external events, INT is the finite set of internal events.

(4) X is the finite set of real-valued variables, called clocks.
(5) inv : S → ΨX is the invariant function that assigns ΨX to each location
s ∈ S.

(6) E is the finite set of edges. Each edge e is a tuple 〈s, σ, ψ, λ, s′〉 = e ∈ E
consisting of the source location s, the target location s′, clock constraint
ψ ∈ ΨX , the set λ of clocks to be reset, σ ∈ Σ is an event, where λ = ∅ if
σ ∈ INT .

Next we formally define semantics of timed automata.
Definition 4 (Semantics of timed automata)
A state of G is a pair 〈s, v〉 containing the location s ∈ S and the valuation
v |= inv(s). The set of all states is denoted Ω. The initial state is a pair 〈s̄,0〉.
For each state 〈s, v〉, the transition is defined as follows:
1. Discrete transitions:〈s, σ, ψ, λ, s′〉 ∈ E, v |= ψ, v[λ := 0] |= inv(s′)

————————————————————- , where v′ = v[λ := 0].
〈s, v〉 σ→ 〈s′, v′〉

2. Timed transitions:
δ ∈ R

+ ∀δ′ ≤ δ. v + δ′ |= inv(s) implies 〈s, v + δ〉
————————————————————- , where v′ = v + δ.

〈s, v〉 δ→ 〈s, v′〉
A run of timed automaton is an infinite sequence as follows:

〈s,0〉 �1→ 〈s1, v1〉 �2→ 〈s2, v2〉 �3→ · · ·
,where 〈s,0〉 is an initial state, 〈si, vi〉 ∈ Ω is a state, 	i ∈ (Σ ∪ R

+) is a label.

In this paper, we assume that timed automaton is nonZeno. It is easy to
verify whether a timed automaton is nonZeno or not using HYTECH [11].

2.2 Parallel Composition of Timed Automata
In this paper, we construct real-time software by parallel composition of tasks.
We define parallel composition of timed automata as follows:
(1) If the external event of a task is equal to the external event of environments,

the task is synchronized with environments by the same external event.
(2) As internal events of tasks are unobservable from environments, internal

events of tasks and events of environments are disjoint.

Definition 5 (Parallel composition)
Let be two timed automata G1 = 〈S1, s̄1, Σ1, X1, inv1, E1〉 and G2 = 〈S2, s̄2, Σ2, X2, inv2, E2〉.
The parallel composition of G1 and G2 is the timed automaton G = 〈S, s̄, Σ,X, inv, E〉,
where Σ1 = EXT1∪INT1, Σ2 = EXT2∪INT2. Here INT1∩Σ2 = Σ1∩INT2 =
∅.

(1) S ⊆ S1 × S2.
(2) s̄ = (s̄1, s̄2).
(3) Σ = EXT ∪ INT , where EXT = EXT1∪EXT2, INT = INT1∪ INT2.
(4) X = XA ∪XB.
(5) inv((s1, s2)) = inv1(s1) ∧ inv2(s2).
(6) 〈s, σ, ψ, λ, s′〉 ∈ E, where for 〈s1, σ, ψ1, λ1, s

′
1〉 ∈ E1 and 〈s2, σ, ψ2, λ2, s

′
2〉 ∈

E2, each element is as follows:
(a) When σ ∈ Σ1 ∩Σ2, s = (s1, s2), ψ = ψ1 ∧ ψ2, λ = λ1 ∪ λ2, s

′ = (s′1, s
′
2).

(b) When σ ∈ Σ1 and σ �∈ Σ2, s = (s1, s2), ψ = ψ1, λ = λ1, s
′ = (s′1, s2).

(c) When σ ∈ Σ2 and σ �∈ Σ1, s = (s1, s2), ψ = ψ2, λ = λ2, s
′ = (s1, s′2).

2.3 Specification Method
We decide parameters such as priorities and timing constraints by V. Braber-
man’s method [10], which is based on WCRT(Worst Case Response Time) [12].

First we define Worst-Case Response Time as follows:
Definition 6 (Worst-Case Response Time)
If every task j, j < i, has higher priority than task i, the worst-case response

time Ri of task i is given as recursive equation (i = 1, . . . , n). The (k + 1)th
worst-case response time Ri(k+1) for task i is as follows (k ≥ 0) :

R
(k+1)
i =

i−1∑
j=1

(�R
(k)
i

Tj
� × Cj) + Ci

,where period Ti, execution time Ci, deadline Di of a periodic task i. We can
compute Ri = limk→∞R

(k)
i as Ri(0)=Ci.

Using Ri, we can check whether real-time software is schedulable or not as
follows:

Real-time software is schedulable if the following condition is satisfied:
For ∀i, Ri ≤ Di(i=1,..,n) holds true.[12]

Next we specify real-time software using timed automata.
In general, it is not possible to exactly specify preemptive scheduling using

timed automata. Therefore, R. Alur and T.A. Henzinger have specified preemp-
tive scheduling using hybrid automata [13]. In this paper, we approximately
specify timing constraints by cmin ≤ x ≤ cmax using timed automata, where
we set cmin using timing constraints of edges, and set cmax using worst-case re-
sponse time. Therefore, we can realize the automatic verification of timed weak
simulation relation. If we specify real-time software of preemptive scheduling
using hybrid automata, it is not possible to automatically verify timed weak
simulation [14].

3 Refinement Design Method
It is important to design real-time software by stepwise refinement as real-time
software is a complex system. In this case, it is important to verify whether
the concrete specification is satisfied by the abstract one or not. First we define
a timed weak simulation. Next we define the verification method of a timed
weak simulation. Finally we explain the stepwise refinement design method of
real-time software.

3.1 A timed weak simulation
First we define observable transitions as follows:

Definition 7 (Observable transitions)
For each state 〈s, v〉 ∈ Ω of timed automaton G = 〈S, s̄, Σ,X, inv, E〉, observ-

able transitions are defined as follows:
Here Let ε=⇒ if and only if (τ→)∗ , where Σ = EXT ∪ INT , τ ∈ INT .
(1) For an external event σ ∈ EXT ,

Define 〈s, v〉 σ=⇒ 〈s′, v′〉 as 〈s, v〉 ε=⇒ σ→ ε=⇒ 〈s′, v′〉.
(2) For delay δ1, . . . δk, δ ∈ R

+,
Define 〈s, v〉 δ=⇒ 〈s′, v′〉 as 〈s, v〉 ε=⇒ δ1→ · · · ε=⇒δk→ ε=⇒ 〈s′, v′〉 (k ≥ 0).

In this case, a state 〈s, v〉 is called stable from environments, and we denote
wait(〈s, v〉), where δ = δ1 + · · · + δk

Definition 8 (Timed weak simulation)
Let G1 = 〈S1, s̄1, Σ1, X1, inv1, E1〉 and G2 = 〈S2, s̄2, Σ2, X2, inv2, E2〉 be two

timed automata. A timed weak simulation relation from G1 to G2 is a binary
relation Sim ⊆ Ω1 ×Ω2 if the following three conditions are satisfied. Moreover
we denote G1 � G2 if there exists a timed weak simulation relation, where
Ω1 is the set of 〈s1, v1〉, Ω2 is the set of 〈s2, v2〉, Σ1 = EXT1 ∪ INT1, Σ2 =
EXT2 ∪ INT2, s1, s′1 ∈ S1, v1, v′1 ∈ V X1 , s2, s′2 ∈ S2, v2, v′2 ∈ V X2 .

(1) External event condition:
EXT1 ⊆ EXT2.

(2) Simulation condition:
For every (〈s1, v1〉, 〈s2, v2〉) ∈ Sim and for every θ ∈ (EXT1 ∪ R

+),
if 〈s1, v1〉 θ=⇒ 〈s′1, v′1〉 then there exists 〈s′2, v′2〉 such that
〈s2, v2〉 θ=⇒ 〈s′2, v′2〉 and (〈s′1, v′1〉, 〈s′2, v′2〉) ∈ Sim.

(3) Initial condition:
(〈s̄1,0〉, 〈s̄2,0〉) ∈ Sim.

3.2 Verification method of a timed weak simulation
We achieve a timed weak simulation by converting this check to a finite check on
the finitely many equivalence classes, which is called a region weak simulation
relation. First we define a region graph, and next define a region weak simulation,
and the conversion technique. Finally we show the verification algorithm of a
timed weak simulation.

Region graph Since the number of states is infinite, we cannot possibly build a
finite automaton. But if two states with the same location agree on the integral
parts of all clock values, and also the ordering of the fractional parts of all clock
values, then the runs starting from the two states are very similar. From the
above facts, we can construct region graphs, which are finite quotient structures
by equivalence relations [2].

First we define equivalence relations of clock values.

Definition 9 (Equivalence relations of clock values)
Let V X be the set of clock values, and ΨX be the set of clock constraints. For any
t ∈ R

+0, �t� denotes the integral part of t, and fract(t) denotes the fractional
part of t. For v, v′ ∈ V X , v and v′are equivalent iff the following three conditions
are satisfied. We denote v ∼= v′.

(1) For clock x ∈ X, �v(x)� and �v′(x)� are the same, or both v(x) and v′(x)
are greater than cx(ΨX).

(2) For all x, y ∈ X with v(x) ≤ cx(ΨX) and v(y) ≤ cy(ΨX), fract(v(x)) ≤
fract(v(y)) iff fract(v′(x)) ≤ fract(v′(y)).

(3) For x ∈ X with v(x) ≤ cx(ΨX), fract(v(x)) = 0 iff fract(v′(x)) = 0.

We use [v] to denote the clock region to which v belongs.
Next we define the successor of equivalence classes.

Definition 10 (Successor of equivalence classes)
Let α and β be distinct clock equivalence classes of V X and ΨX . For each v ∈ α
and any δ ∈ R

+, we define the successor of equivalence classes:

(1) We denote β = succ0(α) iff there exists δ such that α = β and δ ∈ β.
(2) We denote β = succ1(α) iff there exists δ′ ≤ δ such that α �= β and
v + δ′ ∈ α ∪ β and v + δ ∈ β.

Region is denoted by 〈s, [v]〉, or, 〈s, α〉.
Next we define region graph of timed automaton as follows:

Definition 11 (Region graph)
For a timed automaton G = 〈S, s̄, Σ,X, inv, E〉, the corresponding region graph
R(G) = 〈Q, q̄, L,N〉 consists of four tuples:

(1) the finite set of states Q.
(2) the initial state q̄ ∈ Q , where q̄ = 〈s̄, [0]〉.
(3) the finite set of labels L = Σ ∪ SUCC , where SUCC is the set of labels,
which represent successor relations of equivalence classes.

(4) a set of transition relations N ⊆ Q× L×Q.
For any 〈s, α〉, a set of transition relations are defined as follows:

(a) If there exists 〈s, v〉 σ→ 〈s′, v′〉 such that v′ ∈ β for each v ∈ α, it is
possible to transit to 〈s′, β〉 by an event, and we denote 〈s, α〉 σ→ 〈s′, β〉.

(b) If there exists 〈s, v〉 δ→ 〈s, v′〉 such that β = succi(α) and v′ ∈ β for each
v ∈ α, it is possible to transit to 〈s, β〉 by a time delay, and we denote
〈s, α〉 succi→ 〈s, β〉 (i = 0, 1), where succi ∈ SUCC.

Region weak simulation relation We will show that the problem of checking
the existence of a timed weak simulation relation is decidable. We achieve this
by converting this check to a finite check on the finitely many equivalence classes
of an equivalence relation (what we call region weak simulation relation) defined
on parallel composition of timed automata. We define a region weak simulation
relation on parallel composition of timed automata from the following reasons:
(1) We can construct all the pairs of (〈s1, v1〉, 〈s2, v2〉) ∈ Sim as 〈(s1, s2), v12〉

of parallel compostion of timed automata, where s1 and v1 are the node and
clock value of timed automaton 1, s2 and v2 are the node and clock value of
timed automaton 2, v12 is the clock values of parallel composition of timed
automaton 1 and 2. Therefore a set of state pairs Sim, which represent region
weak simulation relation, is a subset of a set of states of product automaton
(parallel composition of timed automata) ΩG1‖G2

. Namely, Sim ⊆ ΩG1‖G2
.

(2) As it is easy to trace the relation between v1 and v2, we trace it by v12 of
product automaton.

(3) If one timed automaton has 〈s1, v1〉 δ→ 〈s1, v′1〉 and another timed au-
tomaton has 〈s2, v2〉 δ→ 〈s2, v′2〉, product automaton has 〈(s1, s2), v12〉 δ→
〈(s1, s2), v′12〉. Therefore we easily represent two timed automata by product
timed automaton.

Definition 12 (R(G1 ‖ G2))
We construct product timed automaton G1 ‖ G2 from G1 and G2 by paral-

lel composition, where EXT1 ⊆ EXT2. We define the region of region graph
R(G1 ‖ G2) as 〈(s1, s2), α〉, where s1 ∈ S1, s2 ∈ S2, α is the equivalence
class of V X1∪X2 and ΨX1∪X2 . Let QG1‖G2

be the set of equivalence classes on

G1 ‖ G2, where 〈(s1, s2), α〉 ∈ QG1‖G2
. With R(〈s1, v1〉, 〈s2, v2〉), denote the

equivalence class 〈(s1, s2), α〉 that the state (〈s1, v1〉, 〈s2, v2〉) ∈ ΩG1‖G2
belongs

to.
For any region 〈(s1, s2), α〉, observable transitions are as follows:

(1) For an external event σ ∈ EXT ,
Define 〈(s1, s2), α〉 σ=⇒ 〈(s′1, s′2), β〉 as 〈(s1, s2), α〉 ε=⇒ σ→ ε=⇒ 〈(s′1, s′2), β〉.

(2) For succi ∈ SUCC,
Define 〈(s1, s2), α〉 succi=⇒ 〈(s′1, s′2), β〉 (i = 0, 1) as 〈(s1, s2), α〉 ε=⇒succi→ ε=⇒

〈(s′1, s′2), β〉.

Next we define a region weak simulation relation on region graph R(G1 ‖
G2).

Definition 13 (Region weak simulation relation)
We say that χ ⊆ QG1‖G2

is a region weak simulation from G1 to G2 iff for
each R(〈s1, v1〉, 〈s2, v2〉) ∈ χ , the following three conditions are satisfied.

(1) For every σ ∈ EXT , if 〈s1, v1〉 σ=⇒ 〈s′1, v′1〉, 〈s2, v2〉 σ=⇒ 〈s′2, v′2〉 and
R(〈s1, v1〉, 〈s2, v2〉) σ=⇒ R(〈s′1, v′1〉, 〈s′2, v′2〉) such that R(〈s′1, v′1〉, 〈s′2, v′2〉) ∈
χ .

(2) If wait(〈s1, v1〉), for any succi ∈ SUCC, R(〈s1, v1〉, 〈s2, v2〉) succi=⇒ R(〈s′1, v′1〉, 〈s′2, v′2〉)
such that R(〈s′1, v′1〉, 〈s′2, v′2〉) ∈ χ (i = 0, 1).

(3) R(〈s̄1,0〉, 〈s̄2,0〉) ∈ χ.

Theorem 1 (Timed weak simulation and region weak simulation)
For R(〈s1, v1〉, 〈s2, v2〉) ∈ χ, let Rχ = {(〈s1, v1〉, 〈s2, v2〉)|R(〈s1, v1〉, 〈s2, v2〉) ∈
χ}. Rχ is a weak timed simulation relation from G1 to G2 iff χ is a region weak
simulation relation from G1 to G2.

Proof 1 We prove it by dividing it into two cases.

(I) To prove that if Rχ is a weak timed simulation relation from G1 to G2, χ
is a region weak simulation relation from G1 to G2:
Assuming that Rχ is a weak timed simulation relation from G1 to G2. From
the definition, we can directly prove χ is a region weak simulation relation
from G1 to G2.

(II) To prove that if χ is a region weak simulation relation from G1 to G2, Rχ

is a weak timed simulation relation from G1 to G2:
Assuming that χ is a region weak simulation relation from G1 to G2. For
some θ ∈ (EXT ∪ R

+), (〈s1, v1〉, 〈s2, v2〉) ∈ Rχ and

〈s1, v1〉 θ=⇒ 〈s′1, v′1〉.
We need to show that there exists 〈s′2, v′2〉 such that

〈s2, v2〉 θ=⇒ 〈s′2, v′2〉 and (〈s′1, v′1〉, 〈s′2, v′2〉) ∈ Rχ.

(1) When θ is σ ∈ EXT :
From the definition of R(G1 ‖ G2), there exists 〈s′2, v′2〉 such that

〈s2, v2〉 σ=⇒ 〈s′2, v′2〉 and (〈s′1, v′1〉, 〈s′2, v′2〉) ∈ Rχ.

(2) When θ is δ ∈ R
+:

Let be R(〈s1, v1〉, 〈s2, v2〉) = 〈(s1, s2), [v]〉 and R(〈s′1, v′1〉, 〈s′2, v′2〉) = 〈(s′1, s′2), [v′]〉.
First we define equivalence classes α0, . . . , αk+1 corresponding to v as
follows:

{
α0 = [v]
αi+1 = succ1(αi) (0 ≤ i ≤ k)

Next we define real values δ1, . . . , δk, δ′ and clock values v(0), . . . , v(k)

corresponding to αi as follows:
⎧⎨
⎩
v(0) = v
v(i+1) = v(i) + δi+1 ∈ αi+1 (0 ≤ i < k)
v′ = v(i) + δ′ ∈ αi ∪ αi+1 (i = k)

As there exists k such that δ = δ1+· · ·+δk+δ′, there are two cases(k ≥ 0).
(a) k = 0:

In this case, as v′ ∈ α0 ∪ α1 by δ = δ′, the transition is as follows:
〈s1, s2, α0〉 succi=⇒ 〈s′1, s′2, αi〉

Therefore clearly, there exists 〈s′2, v′2〉 such that
〈s2, v2〉 δ=⇒ 〈s′2, v′2〉 and (〈s′1, v′1〉, 〈s′2, v′2〉) ∈ Rχ (i = 0, 1).

(b) k > 0:

We consider the following regions as 〈s(i)1 , s
(i)
2 , vi〉 δi+1=⇒ 〈s(i+1)

1 , s
(i+1)
2 , vi+1〉

of G1 ‖ G2 (0 ≤ i ≤ k).

(i) 〈s(0)1 , s
(0)
2 , α0〉 = 〈s1, s2, [v]〉.

(ii) 〈s(i)1 , s
(i)
2 , αi〉 succ1=⇒ 〈s(i+1)

1 , s
(i+1)
2 , αi+1〉.

(iii) 〈s(i)1 , s
(i)
2 , αi〉 ∈ χ.

〈s(k)
1 , s

(k)
2 , αk〉 ∈ χ is inductively derived from 〈s1, s2, [v]〉. As v′ ∈

αk ∪ αk+1 by δ = δ1 + · · · + δk + δ′, we get the following transition:
〈s(k)

1 , s
(k)
2 , αk〉 succj=⇒ 〈s′1, s′2, αk+j〉.

Therefore clearly there exists 〈s′2, v′2〉 such that
〈s2, v2〉 δ=⇒ 〈s′2, v′2〉 and (〈s′1, v′1〉, 〈s′2, v′2〉) ∈ Rχ (j = 0, 1).

Verification algorithm of a timed weak simulation We define the verifi-
cation algorithm of a timed weak simulation as follows:

Definition 14 (Verification algorithm of a timed weak simulation)
For the concrete specification GL and the abstract specification GH, we con-

struct GL ‖ GH, and the region graph R(GL ‖ GH). In this case, we define the
verification algorithm in order to verify whether there exists a timed weak sim-
ulation from GL to GH. Basically first we define χ(0), and inductively compute
χ(k+1) from χ(k). First if EXT1 �⊆ EXT2, there does not exists a timed weak
simulation relation. If EXT1 ⊆ EXT2, we compute the followings:

(1) First we compute the relation χ(0) = QGL‖GH
, and initialize k by k := 0.

(2) Next we inductively compute χ(k+1) from χ(k) by repeating the following
procedures (k ≥ 0).
(a) χ(k+1) = ∅.
(b) If R(〈s1, v1〉, 〈s2, v2〉) ∈ χ(k), we set χ(k+1) = χ(k+1)∪{R(〈s1, v1〉, 〈s2, v2〉)}

when the two following conditions are satisfied.
(i) For every σ ∈ EXT , if there exists 〈s′1, v′1〉 such that

〈s1, v1〉 σ=⇒ 〈s′1, v′1〉, 〈s2, v2〉 σ=⇒ 〈s′2, v′2〉,
R(〈s1, v1〉, 〈s2, v2〉) σ=⇒ R(〈s′1, v′1〉, 〈s′2, v′2〉), and
R(〈s′1, v′1〉, 〈s′2, v′2〉) ∈ χ(k).

(ii) If wait(〈s1, v1〉), for every succi ∈ SUCC,
R(〈s1, v1〉, 〈s2, v2〉) succi=⇒ R(〈s′1, v′1〉, 〈s′2, v′2〉)
and R(〈s′1, v′1〉, 〈s′2, v′2〉) ∈ χ(k) (i = 0, 1).

(c) If χ(k+1) = χ(k), go to (3). If χ(k+1) �= χ(k), set k := k + 1, and return
(2)(a).

(3) If χ(k+1) includes R(〈s̄1,0〉, 〈s̄2,0〉), we decide χ is a timed weak simula-
tion relation. If not so, we decide χ is not a timed weak simulation relation.

As this algorithm can be formalized as the greatest fixpoint computation,
the algorithm terminates.

3.3 Stepwise refinement design method
We represent both the abstract specification and the concrete one by nondeter-
ministic timed automata, and verify the consistencies between them by a timed
weak simulation relation.

Definition 15 (Stepwise refinement design method)
The stepwise refinement design method of real-time software consists of the

following procedures.
(1) First we decide task priorities and parameters by WCRT, and specify
TASK(0)

i by timed automata (i = 1, . . . , n), where n is a number of tasks
and (0) is the level of refinement.

(2) Next we refine TASK(k)
i into TASK(k+1)

i , and specify TASK(k+1)
i by

timed automata (k ≥ 0).
(3) Finally, we construct SOFT(k) = TASK(k)

1 ‖ · · · ‖ TASK(k)
n and

SOFT(k+1) = TASK(k+1)
1 ‖ · · · ‖ TASK(k+1)

n . We revise SOFT(k+1) un-
til there exists a timed weak simulation relation from SOFT(k+1) to SOFT(k).

(4) We repeat the above step (1)-(3), and specify the final one.

4 Example of refinement design
We show our proposed method effective by a plant system. We have imple-
mented our proposed method as design support system. The design support
system is implemented by C++ language(7000 lines) on Sun Blade1000(CPU
UltraSPARC-III 900MHz, Main memory 1GB). The plant system is an embed-
ded real-time system, and behaves by fixed priority preemptive scheduling. The
plant system samples data from Sensor, and controls V alve, and outputs infor-
mation on Display. If Sensor is in bad condition, this information is announced

to administrator by Lamp. Even if Sensor is in bad condition, the plant system
continue to behave by control data. The real-time software of the plant system
consists of two periodic tasks such as SAMPLER and MANAGER. The two
tasks communicate with each other by QUEUE. In this paper, we think the
plant system is implemented by rate monotonic scheduling. Therefore this rate
monotonic scheduling algorithm assigns priorities to tasks based on their peri-
ods: the shorter the period, the higher the priority. Moreover, we assume Di = Ti

(i = 1, 2). We compute WCRT(Worst Case Response Time) [12]. From the re-
sults, we can determine two tasks are schedulable. The parameters are shown as
follows: SAMPLER has parameters such as Ti = 20, Ci = 6, Bi = 1, Ri = 7.
MANAGER has parameters such as Ti = 30, Ci = 10, Bi = 0, Ri = 16.
4.1 Specification of the plant system
We design the plant system, and specify it by timed automata. External events
are classified into three types such as system call(starti, endi, push queue,
pop queue), task control(dispatchi) and API(APplication Interface)(read sensor,
write lamp, write display, write valve). Next we show the shared resource
QUEUE in Figure 1.

Fig. 1. Specification of the shared resource QUEUE

Next we design the abstract specifications SAMPLER(0) and MANAGER(0),
and specify them by timed automata, and show them in Figure 2 and 3. In ab-
stract specification, we specify only external events and abstract behaviors. For
example, we specify SAMPLER(0) by nondeterministically behavingwrite lamp.
Finally we design the concrete specifications SAMPLER(1) and MANAGER(1),
and show them in Figure 4 and 5. We refine the abstract specification into the
concrete one by adding internal behaviors, transforming nondeterministic be-
haviors into deterministic behaviors and specifying detailed timing constraints.
For example, SAMPLER(1) executes read sensor once or twice, and if it fails,
SAMPLER(1) executes make alternate data. As the deviation of control data
is larger the processing of write valve takes longer time, in MANAGER(1),
deviation Small takes 1, deviation Medium takes 2 and deviation Large takes
3.

Fig. 2. Specification of the periodic task SAMPLER(0)

Fig. 3. Specification of the periodic task MANAGER(0)

Fig. 4. Specification of the periodic task SAMPLER(1)

Fig. 5. Specification of the periodic task MANAGER(1)

4.2 Verification experiment
We verify whether SOFT(1) � SOFT(0) holds true or not using our design sup-
port system, where the abstract specification is defined as SOFT(0) = SAMPLER(0) ‖
MANAGER(0) ‖ QUEUE, the concrete specification is defined as SOFT(1) =
SAMPLER(1) ‖ MANAGER(1) ‖ QUEUE. We measured required mem-
ory=325744kB and execution time=62.30min using ps command. In region graph
R(SOFT(1) ‖ SOFT(0)), the number of the equivalence classes is 62367, the
number of regions of QSOFT(1)‖SOFT(0) is 1645498 and the number of members
of region weak simulation χ is 1408290. The members of the set χ, which are
contained in the region weak simulation relation. As an initial region is con-
tained in χ, SOFT(1) � SOFT(0) is satisfied. Namely, there exists a timed
weak simulation from the concrete specification to the abstract one. Though the
verification cost is large, we can specify both the abstract and the concrete spec-
ifications of real-time software using timed automata, and automatically verify
whether there exists a timed weak simulation from the concrete specification to
the abstract one.

5 Conclusion
In this paper, we have proposed the following stepwise refinement design method-
ology of real-time software : First as we extend general timed automata by distin-
guishing between internal and external events, this timed automata are suitable
for stepwise specifying and designing real-time software. Next we automatically
verify whether there exists a timed weak simulation relation from the concrete
specification to the abstract one. To the best of our knowledge, a timed weak
simulation verification methods of timed automata have never been developed
before now.

References

1. J.W.S. Liu. : Real-Time System, Prentice-Hall (2000).
2. R. Alur, D.L. Dill. : A theory of timed automatoa, Theoretical Computer Science,

Vol. 126, pp.183-235 (1994).
3. Giorgio C. Buttazzo. : Hard Real-Time Computing Systems, Kluwer Academic

Publishers (1987).
4. R. Milner. : Operational and Algebraic Semantics of Concurrent Processes. Hand-

book of Theoretical Computer Science, MIT Press, pp. 1201-1242 (1990).
5. R. Alur, L. Fix, T.A. Henzinger. : Event-Clock Automata: A Determinizable Class

of Timed Automata, in Proc. of CAV’94, LNCS 818, pp.1-13 (1994).
6. C. Dima. : Removing slient transitions from event-clock automata, in Proc. of

CITTI 2000, pp 75-81 (2000).
7. A. Pnueli. : Linear and Branching Structures in the Semantics and Logics of Re-

active Systems. ICALP 1985, volume 194 of LNCS, pp. 15-32 (1985).
8. K. Cerans. : Decidability of bisimulation equivalences for parallel timer processes.

LNCS 663, pp.269-300, Springer Verlag (1992).
9. S.Tasiran, R.Alur, R.P.Kurshan, and R.K.Brayton. : Verifying Abstractions of

Timed Systems. LNCS 1119, pp.546-562, Springer Verlag (1996).
10. V.Braberman, M.Felder. : Verification of Real-Time Designs: Combining Schedul-

ing Theory with Automatic Formal Verification, LNCS 1687, pp.494-510(1999)
11. T. Henzinger, X. Nicollin, J. Sifakis, S. Yovine. : Symbolic model checking for

real-time systems, Information and Computation 111, pp.193–244(1994).
12. M.Joseph. : Real-Time System Specification, Verification and Analysis. Prentice

Hall (1996).
13. R. Alur, T.A. Henzinger, P.-H. Ho. : Automatic symbolic verification of embedded

systems. IEEE Trans. on Software Engineering 22(3), pp.181-201(1996).
14. T.A. Henzinger, P.W. Kopke, A. Puri, and P. Varaiya. : What’s decidable about

hybrid automata? Journal of Computer and System Sciences 57, pp.94–124(1998).

