
Hardware Concurrent Garbage Collection for Short-
lived Objects in Mobile Java Devices

Yau Chi Hang, Tan Yi Yu, Fong Anthony S., Yu Wing Shing
Department of Electronic Engineering, City University of Hong Kong

Tat Chee Avenue, Hong Kong
Anthony.Fong@cityu.edu.hk

Abstract. jHISC is an object-oriented processor for embedded system aiming at
accelerating Java execution by hardware approach. Garbage collection is one of
the critical tasks in a Java Virtual Machine. In this paper, we have conduct a
study of dynamic object allocation and garbage collection behavior of Java pro-
gram based on SPECjvm 98 benchmark suite and MIDP applications for mo-
bile phones. Life, size, and reference count distribution of Java objects are
measured. We found most Java objects die very young, small in size and have
small number reference counts. Reference counting object cache with hardware
write barrier and object allocator is proposed to provide the hardware concur-
rent garbage collection for small size objects in jHISC. Hardware support on
write barrier greatly reduces the overhead to perform the reference count update.
The reference counting collector reclaims the memory occupied by object im-
mediately after the object become garbage. The hardware allocator provides a
constant time object allocation. From the investigation, over half of Java objects
can be garbage collected by the object cache that makes it unnecessary for these
objects to copy to the main memory.

1. Introduction

Java is a widely used programming technology for developing applications on differ-
ent kinds of mobile devices. Fast product development, portability and secure envi-
ronment are the advantages that Java offers for the mobile devices. Connected Limited
Device Configuration (CLDC) and Mobile Information Device Profile (MIDP) pro-
vide the core application functionality required by mobile applications, in the form of
a standardized Java runtime environment and a rich set of Java APIs. Sun Microsys-
tems announce that there are over 250 million handsets already in people’s hands
which support Java, over 200 different Java handset models (globally) and around 77
network operators’ deploying Java based Web services in worldwide.

Java KVM is the traditional JVM on mobile devices, simple mark-sweep algo-
rithms are used to collect garbage objects. The mark-sweep collector traverses the
heap from the root to determine the reachability, and then sweep the heap by collect
the reclaimed memory into a freelist. The major weakness of the classic mark-sweep
GC method is that all other threads within JVM have to be suspended while the gar-

bage collector is running. The suspension time is directly proportional to the number
of objects on the heap.

jHISC processor is proposed by Fong [1][2], which applies object-oriented concept
into the architecture of the processor. This paper introduces a hardware garbage col-
lection method based on reference counting algorithm, for jHISC processor.

The remainder of the paper is organized as follows: Section 2 is an overview of the
related research. Section 3 is a research of the object behavior. Section 4 describes the
design of the proposed garbage collector. Evaluation and further study are on the last
two sections.

2. Background

2.1 Reference Counting

Reference-counting is a traditional garbage collection algorithm. The concurrent na-
ture makes it suitable to be used in real-time embedded system. The traditional
method reference counting was first developed for Lisp [13]. It was widely used in
SmallTalk-80 [14] and Perl [15]. The basic theory of the reference-counting algo-
rithm is that each object has an associated count of the references (pointers) to it.
When a variable is assigned a reference to that object, the reference-count is incre-
mented by one. Similarly, whenever a reference pointing to an object is deleted, its
reference-count is decremented by one. When the reference-count becomes zero, it
implies that the object is not referenced by other objects and the executing process
cannot reach it. The memory occupied by this object is garbage and can be reclaimed
by the collector.

The space overhead to store the reference counts is the weaknesses of the reference
counting method. Extra space in each object is needed to store the reference count.
For the worst case, the reference count field would have to be large enough to hold the
total number of object references in the memory space [4]. Whenever a reference to an
object is made, copied or deleted, it is necessary to access memory to update the ob-
ject’s reference count field. Furthermore, computation to update reference count de-
grades mutator performance.

There are researches try to apply reference counting algorithm into Java Virtual
Machine (JVM). In JVM architecture, references to an object are created form three
areas, which are other form objects heap, Java stacks and pc registers. Deutsch and
Bobrow noted that most of the overhead is on counter updates from the frequent up-
dates of local references (in stack and registers) [12]. Deferred reference counting is
suggested by Blackburn to ignore frequent pointers mutations to the stack which
eliminates most of their reference counting load [8]. It thus postpones all reclamation
until it periodically enumerates the stacks.

Cyclic objects cannot be garbage collected because of its cyclic structure. Most of
the research work of reference counting is used in generational garbage collection.
Bacon and Rajan developed a current and localized algorithm to solve this disadvan-

tage to make RC unnecessary to work with other garbage collection algorithms [11].
The algorithm is capable of collecting garbage even in the presence of simultaneous
mutation and never needs to perform a global search of the entire object heap. Local
search is performing after a possible root is found. That algorithm combines the trac-
ing and reference counting collection. It is only an incremental garbage collection al-
gorithm because pause occurs when there is local search.

Fig. 1. Reference Count updates when a pointer is move.

2.2 Garbage Collection in Mobile Java

Due to the popular of the Java enabled mobile phone, many researches are conducted
to improve the performance of Java execution in the limited resource on mobile de-
vice. Active memory processor is introduced by Chang to reduce the overhead of
memory management in Java [6]. A bitmap-based processor is used to work with
standard DRAM cells. Memory availability and GC information are stored in a bitmap.
There are Compete Binary Tree (CBT) and a bit-sweeper inside the processor to pro-
vide constant time garbage sweeping and object allocation. Limited reference field is
supported in the processor. According to the study of Chang, it can reduce the amount
of the memory usage by 77%.

Table 1. Description of MIDP Benchmark Applications

Applications Description

 WebViewer Simple Web Browser
WormGame Popular game on mobile photo
PhotoAlbum Image viewer that can used to view image file like JPEG, GIF and PNG
AudioDemo Audio player include in the MIDP reference implementation

The disadvantage of the idea of Chang is that the design of the hardware memory

manager is complex. It increases the cost of the hardware and power consumption.
The CBT design cannot utilize the memory space well and causes internal fragmenta-
tion in the heap.

3. Behavior of Java objects

The Mobile Information Device Profile (MIDP) is a set of Java APIs which together
with the Connected Limited Device Configuration (CLDC) to provide an environment
for mobile devices, such as PDA and mobile phone. In this study, the object behavior
of Java applications running on embedded devices based on MIDP 2.0 and CLDC
1.0.4 are investigated. There are no standard benchmark suites for MIDP applications
available yet. Four applications are chosen form PennBench [3], which is a benchmark
suite for embedded Java, defined by Java researchers.

 In the MIDP study, we focus on the object life. We have modified the source code
of the KVM to trigger garbage collector before every object allocation. The garbage
collection scheme used on KVM is the simple Mark-Sweep algorithm. It is a Stop-the-
World algorithm. Only garbage collector thread is active during garbage collection in
progress, and other threads are suspended [5]. Object allocation is not allowed during
garbage collection in progress. After the garbage collection is completed, no newly
created object is in the object that makes sure all the memory used by the garbage ob-
jects are freed and available immediately for further object allocation.

Table 2. Accumulative Distribution of Object Size on Java MIDP applications

Applications
Percentage of objects which the size is smaller
than <= 48 bytes

WebViewer 87.01%
WormGame 91.00%
PhotoAlbum 91.28%
AudioDemo 92.75%
Overall 90.51%

3.1 Size distribution

The object size is the first category we are concerned. On KVM runtime environment,
each object has an object header which is 2 words (a word is 32-bit) in size. The
minimum size of an object in KVM is 8 bytes. Each data inside Java object would use
a word to store, regardless if it is an integer or a character. In our study, we found that
most object sizes are small. Over 90% of objects are equal to or smaller than 48 bytes
(12 words).

3.2 Age distribution

The relative age of an object we defined is the number of objects allocated between
the object allocation and de-allocation events. According to the example of figure 2,
there are two object allocation events between the allocation and de-allocation of ob-
ject A. Based on the definition, the relative age of object A is 3. Applying the same
rule on object C, the life of object C is zero.

We found that more than half of the Java objects (~50%) have relative ages of 0,
and over 90% of objects have relative ages less than 16. We can make a conclusion
that the life span of a typical object in embedded Java environment is short. Half of
the Java objects can be garbage collected immediately before an object allocation
event.

Fig. 2. Definition of relative age for Java objects

Table 3 Accumulative Distribution of Object AGE on Java MIDP applications

Applications AGE = 0 AGE <=15

WebViewer 30.92% 83.54%
WormGame 55.80% 92.41%
PhotoAlbum 62.95% 95.59%
AudioDemo 58.15% 92.81%
Overall 51.95% 91.09%

3.3 Reference-count distribution

Jikes RVM (Research Virtual Machine) is used to study the reference-count of Java
objects. It is designed to execute Java programs that are typically used in research on
fundamental virtual machine design issues [9].

Our experiment is mainly targeted on the reference-counting collector. We are in-
terested in the reasonable maximum reference-count of java objects. Through the ex-
periment of running JVM SPEC 98 [17] in RVM, the reference-count of each object is
obtained. We have modified the object header of the RVM in order to record the
maximum reference-count of the object. The maximum value of the maximum refer-
ence-count is set to 255. If it is overflow, the reference-count will be reset to zero,
and the object is subject to garbage collection.

According to the measurement, the average value of the maximum references is
small (<= 2). There are over 99% of objects of which the maximum reference-count is

Allocate A

Allocate B

Allocate C

De-allocate C

Allocate D

De-allocate A

Time

less than or equal to two. Therefore, four bits for reference-count for each object are
sufficient to cover 99% of Java objects.

Fig. 3. Definition of reference count for Java objects.

4. jHISC architecture

In Java bytecode specification, there are several instructions defined to perform the
tasks of the object-oriented features such as invokevirtual and putstatic. The ratio of
the object-oriented bytecodes (including access constant pool instruction and method
call instructions) on SPEC JVM 98 benchmark is 31.87% [17]. Object-oriented in-
structions are added into jHISC instructions set in order to accelerate the object-
manipulation operations by hardware support.

In jHISC architecture, three-address register-to register instruction form is used.
jHISC processor have a register engine which contains 32 general registers of32 bits
wide. Beside the 32-bit data, each register contains a 4-bit type field to describe the
type of the data inside the register. During the process of the method invocations
caused by ivk instruction, a method frame is allocated in the register. The method
frame acts as the stack frame in Java virtual machine which is the method code work-
ing space. The register engine can be used to translate all the stack operations, which
defined in Java bytecode, into 3 addressing jHISC instructions to accelerate the execu-
tion of Java applications.

5. Garbage Collection for young object

Generational garbage collection is used. The whole object heap is divided into two
generation spaces. They are young space and mature space. All the new objects will
be allocated in young space. Objects will be promoted into mature space after it is still
alive in the young space for a period of time. In order to support real-time application,
concurrent garbage collection will be used in both generation spaces. On this paper,
we are focusing on the young space.

3

2

5.1 Reference counting object cache

The main design concern of the memory management in young space is to provide fast
object allocation. According to the research about the java object size and life, we
have found that in most Java programs the vast majority of objects (often >95%) are
very short-lived (i.e. are used as temporary data structures), small in size (90% objects
=< 48 bytes). The object allocation occurs frequently.

The purpose of the scheme is to hold objects with their respective reference-counts
in the cache to speedup the algorithm. The reference-count is modified directly in the
cache to avoid accessing the main memory. For each instruction which will copy, de-
lete or set a reference between two objects, it will check if the objects are held on the
cache or not. If all the objects involved by this instruction are on the cache, the refer-
ence-count of these objects will be modified concurrently while the instruction is exe-
cuting.

Fig. 4. Overview of jHISC Garbage Collection scheme

When the reference-count becomes zero, this implies that the object is not refer-

enced by other objects and the running program cannot reach it. The cache line occu-
pied by this object can then be reclaimed by the collector. When the reference-count
of an object stays on cache overflow, it will be promoted to the mature space. Its ref-
erence-count field will be invalidated and it will be ignored by the reference-counting
collector. Beside newly allocated instance objects, objects residing in the main mem-
ory are allowed to be brought into the cache. In these cases, their reference-counts are
set to all “1”s and they will not be collected by the reference-counting collector.

There is a 3-bit reference-count field to store the reference-count. Zero represents
that the object is garbage and all ‘1’s represents overflow. There is an M-bit to repre-
sent that the object has references form the mature space’s object.

One of the main drawbacks of reference-counting is its computational expense.
Therefore, we only maintain reference-count of an object in the cache. After an object
is moved out from the cache, it will not be collected by the reference-counting collec-
tor and the reference-count on the cache will be invalidated. It reduces the computa-
tional expense for adjusting the reference-count in main memory.

5.2 Object allocation for small size objects

Object creation takes place in the object-cache directly instead on the main memory.
As the lifetimes of small-size object in Java are short and there are spatial localities in
the memory allocation and deallocation patterns in Java, hardware object allocator is
proposed to do the small block sizes memory allocations and deallocations. Many of
objects will die in the cache, without ever being written to the main memory.

A separated object allocation bit vector and a decision tree are used to allocate an
object in hardware level [6] [7]. Buddy System is used to find the appropriate con-
tiguous free bits in a bit vector. This allocation scheme supports the objects sizes of
power of two. In our instance object cache, each object will occupy a whole cache line.
The young object space is divided into slots of same size. Design of the binary tree
can be further simplified. The object allocator determines if there is an available slot
or not. If so, the allocator locates the address.

Objects of data size smaller or equal to a cache line, are allocated in the cache di-
rectly by the hardware object allocator. For objects of size greater than a cache line,
the allocation request will be transferred to the operating system. These objects will be
allocated in the mature object space. A free list is maintained by the memory manager
of the operating system. Suitable free space will be searched to adapt the allocation
request.

5.3 Hardware write barrier for reference count update

During the execution time of the user Java program, we need to keep track of the ac-
tion of the reference assignment and deletion operations and update the associated ob-
ject’s reference-count. Write barrier method is used to keep track of this operation.

In jHISC, we integrate write barrier into the instructions. There are four instruc-
tions responsible for reference update between objects. They are oo.pfld, oo.psfld,
oo.pifld and array.store. While these reference update instruction is executing, we can
update the reference-count of the object concurrently. When executing oo.pfld, an in-
stance variable will be modified. If the data type of the variable is in reference type,
write barrier will be activated. If the assigned references and the reference we are
overwritten are in the object cache, the write barrier will update their reference-count.
If the destination object is in the mature space and the object described by the assign-
ment object is in the cache, the M-bit in the reference count field is set to 1.

Beside the references between objects, reference exists between stack /registers
(register frame of jHISC) and objects. Reference-count update must be done on stack
operations. Reference-count update process is invoked after the local registers move-
ment operations (“data.move” instruction) if the type of the register are “reference”.

6. Evaluation

A nearly real-time garbage collection with reference-counting has been done success-
fully. The reference-counting collector reuses the memory cell for further object allo-

cation immediately when the objects become garbage. Reclamation of short-lived gar-
bage objects is done in-cache without requiring any accesses to main memory. One of
the characteristics of reference-counting algorithm is that it can garbage collect the ob-
ject as soon as the object becomes garbage.

Objects with relative age zero and size equal to or smaller than a cache line can be
garbage collected on the cache and will not reside in the main memory. This kind of
objects would be staying on object cache all their lives. The small-size size object
which can fit into a cache line can be allocated on the object cache directly. In the ob-
ject allocation process in the object cache, all objects are treated the same size which
is equal to the size of each cache line. According to the object behavior we have stud-
ied, over 90% of objects (sizes smaller than or equal to 48 bytes) are allocated directly
on the object cache. The objects which have zero relative age are all reclaimed by the
reference-count garbage collector. There are 70% of objects dead on object cache.

Table 4. Percentage of small size and short-lived object on Java MIDP applications

Applications Percentage of objects which the size is smaller than <=
48 bytes and relative age is equal to zero

WebViewer 83%
WormGame 72%
PhotoAlbum 43%
AudioDemo 76%
Overall 68%

7. Further Investigation

A concurrent garbage collector for small-size and short-lived objects is designed. This
collector can be used as the collector on young space of generational garbage collec-
tion. A secondary collector is need on mature object space to collect the garbage ob-
ject that cannot be reclaimed by the reference-counting algorithm such as cyclic ob-
jects and objects with many references. A heap compaction algorithm is another issue
for future study. Fixed-size object allocation may cause the fragmentation in the object
heap. Heap compaction is needed to remove the fragment in the heap. The existing so-
lution is for secondary level garbage collection, and heap compaction is stop-the-
world algorithm. For future investigation, we will concentrate to design a nearly con-
current algorithm to meet the real-time requirement for embedded systems.

Acknowledgements

The work described in this paper was partially supported by a grant from City Univer-
sity of Hong Kong (Strategic Research Grant Project No. 7001548).

References

1. Fong, A., S., HISC: A High-level Instruction Set Computer. In 7th European Simulation
Symposium, pages 406-410. The Society for Computer Simulation, Oct 1995.

2. Mok Pak Lun, Richard Li, Anthony Fong. Method manipulation in an object-oriented
processor. ACM SIGARCH Computer Architecture News archive. Volume 31, Issue 4,
September 2003.

3. G.Chen, M.Kandemir, N.Vijaykrishnan, M.J. Irwin. PennBench: A Benchmark Suite for
Embedded Java Proceedings of the 5th Workshop on Workload Characterization. Austin,
TX, Nov, 2002

4. Paul R. Wilson. Uniprocessor Garbage Collection Techniques. In International Workshop
on Memory Management, St. Malo, France, September 1992.

5. R. Jones, R. Lins. Garbage Collection Algorithms for Automatic Dynamic Memory Man-
agement. John Wiley & Sons.1996

6. Witawas Srisa-an, Chai-Tien Dan Lo and J.M. Chang. Active Memory Garbage Collector
for Real-Time Java Embedded Deveices. IEEE Transactions on Mobile Computing, vol-
ume 2, No. 2, pp. 89-101. 2003.

7. H.Cam, M.Abd-El-Barr, and S. M. Sait. A high-performance hardware-efficient memory
allocation technique and design. International Conference on Computer Design, 1999.
(ICCD ‘99), pp. 274-276. IEEE Computer Society Press, Oct 1999

8. S. Blackburn and K. Kathryn. Ulterior Reference Counting: Fast Garbage Collection with-
out a Long Wait. OOPSLA’ 03 ACM Conference on Object-Oriented Systems, Language
and Applications, October 26-23, 2003.

9. B.Alpern, C.R. Attanasio, A. Cocchi, D. Lieber, S. Smith, T. Ngo, J. J. Barton, S. F.
Hummel, J. C. Sheperd, and M. Mergen. Implementing Jalalpeo in Java. In Processings of
the 1999 ACM SIGPLAN Conference on Object-Oriented Programming Systems, Lan-
guages & Applications, OOPSLA’99, Denver, Colorado, November 1-5, 1999, volume
34(10) of ACM SIGPLAN Notices, pages 314-324, ACM Press, Oct. 1999.

10. H.Azatchi and E. Petrank. Integration generations with advanced reference counting gar-
bage collectors. In International Conference on Compiler Construction, Warsaw, Poland,
Apr. 2003.

11. D. F. Bacon and V. T. Rajan. Concurrent cycle collection in reference counted systems. In
J. L. Kuden Knudsen, editor, Proceedings of 15th European Conference on Object-
Oriented Programming Languages, New Orleans, Louisiana, January 15-17, 2003, volume
38(1) of ACM SIGPLAN Notices. ACM Press, Jan. 2003.

12. L. Peter Deutsch and Daniel G. Bobrow. An efficient incremental automatic garbage col-
lector. Communications of the ACM, 19(9):522-526, September 1976.

13. Geoergo E.Collins. A method for overlapping and erasure of lists. Communications of the
ACM, 3(12):655-657, December 1960.

14. Adele Goldberg and D. Robson. Smalltalk-80: The Language and its Implementation. Ad-
dison-Weslev, 1983.

15. Larry Wall and Randal L. Scheartz. Programming Perl, O’Reilly and Associates, Inc.,
1991.

16. Sun claims it's winning developer space, http://www.theinquirer.net, May, 2004
17. Young-Min Lee, Byung-Chul Tak, Hye-Seon Maeng, and Shin-Dug Kim. Real-Time Java

Machine for Information Appliances. IEEE Transactions, volume 46, issue 4, p.949-957.
2000.

18. SPEC JVM98. http://www.specbench.org/osg/jvm98/

