

A Hardware/Software Co-design and Co-verification
on a Novel Embedded Object-Oriented Processor

Yau Chi Hang, Tan Yi Yu, Mok Pak Lun, Yu Wing Shing, Fong Anthony S.

Department of Electronic Engineering, City University of Hong Kong
Tat Chee Avenue, Hong Kong

Anthony.Fong@cityu.edu.hk

Abstract. In the past, programming language are procedural, the design con-
cept is based on the module and scope which are difficult to manage, but nowa-
days, the programming trend is Object-Oriented Programming (OOP), where
objects are the key elements to build up application and the communications
between different objects are through method invocation. A novel object-
oriented processor offers an opportunity to enhance the system security, per-
formance and provides a more effective way to manipulate OOP instead of us-
ing a software Virtual Machine. jHISC is a novel object-oriented processor
which provides a natural way to map the concept of OOP into architectural
level through the hardware object data structure. Our solution is to design se-
cure hardware object data structures on a novel processor with Just-In-Time
compilation for Java which then makes it possible to implement complex OO
related bytecodes at hardware level and access some fields of object in parallel
to improve the execution speed. It mainly targets J2ME and implements about
93% bytecodes and 83% OO related bytecodes in hardware directly.

1. Introduction

Computer hardware becomes quite mature, however, software trend is moving to
Object-Oriented Programming (OOP) with advantages on reusable design and better
security. In traditional systems, processor architecture like Complex Instruction Set
Computer (CISC) or Reduced Instruction Set Computer (RISC) does not support
object manipulation directly on hardware. To support object technology in nowadays
system, there are mainly three categories, which are compiling objects into native (Fig.
1), developing software-based object virtual machine (Fig. 1) and developing an ob-
ject-oriented processor (Fig. 2).

For the first approach, since traditional computer system does not support object-
oriented programming, applications written in object-oriented programming languages
like C++ are compiled into native instructions for execution. Application processes
will be created and executed in their own spaces, and they are invisible from each
other through the use of virtual memory system. Through the specific compiler, ob-
jects will be translated into subroutines, which are machine readable for direct execu-
tion. Compilation approach can fully optimize the generated codes, but object-

oriented features, such as dynamicity behavior, will be removed. Modification of a
single class requires the whole application to be re-compiled.

In the second approach, an object virtual machine application is built on top of the
traditional operating system. From the view of operating system, the application is just
a usual process like other applications. Protection of different processes is the same as
in compilation approach and objects are manipulated on this software virtual machine.
The advantages of this method are that without the modification of hardware platform
and current system, object technology can be supported through software emulation.
But the two layers of software, virtual machine and operating system, also introduce
much overhead to the overall computing system and increase the memory footprint of
the system.

Application
Process

Application
Process Virtual Machine Process

Traditional Operating System

Traditional Hardware Architecture

Thread
Object Object Object

Fig. 1. System Architecture of Compilation Approach and Virtual Machine Approach

Thread
Object

Thread
Object

Object-Oriented Operating System

Object-Oriented Hardware Architecture

Object Object Object

Fig. 2. System Architecture of Object-Oriented Hardware Approach

In our solution, we will use the third approach where the objects are directly ma-
nipulated on an object-oriented processor, and an object-oriented operating system
will be built to assist hardware in managing the heap (Fig 2). In this approach, protec-
tion of objects is governed by the object-oriented operating system with the protection
features offered by the object-oriented processor. This approach can manipulate ob-
jects directly and the efficiency of the computing system is increased because no page
table updating is required during context switching.

In the following sections, we will firstly discuss our secure hardware object archi-
tecture on section 2, their overall security features on section 3. Moreover, we will
show the hardware/software co-verification methodology which verifies the Java
compatibility on our novel architecture, through the Just-In-time compilation on Java

bytecode and demonstrate some co-verification results on section 4. Finally, a conclu-
sion will be presented on Section 5.

2. jHISC v3 Architecture with Object Representation

Fig. 3. Object Data Structure relationship

In Java, objects are created with some class templates, which provide information of
the object instance, such as methods, fields, etc. Object instances of the same class
share the same method codes, but each instance maintains its own copy of instance
variables.

There are different kinds of objects in an object-oriented system. An object can
have three contexts which are the instance context, the class context, and the method
context. In jHISC v3, it maps the three contexts to architecture. The information about
objects in different contexts is stored in different data structures which are defined by
the architecture for object representation. Generally, all the objects share the same
extendable object data structure. Array and thread objects, which require additional
support by hardware, are represented differently.

Three headers are defined. They are object, class, and method headers. These head-
ers store information for describing the object, class, and method itself. A header may
associate with other data structures for describing different aspects of the context.

Descriptor tables store descriptors. Each descriptor contains information about an
element within the class. Two kinds of descriptor table are defined. They are Class
Operand Descriptor Table (CODT), and Class Property Descriptor Table (CPDT).

Data spaces provide spaces for the storage of data. There are three types of data
space. They are the Class Data Space (CDS), the Instance Data Space (IDS) and the
Local Variable Frame (LVF). Unlike CDS and IDS, LVF are dynamically created
inside the register file upon method invocation and destroyed upon method revocation.

Inside the method context, Method Code Space (MCS) is defined to store the in-
structions. Fig 3 shows the relationships between different data structures. On the
following of this section, we will show each of our hardware data structure in details.

2.1 Descriptor Format

jHISC uses a 32-bit operand descriptors to describe properties own by a class or re-
sources accessed by the class. Descriptor is a data structure which stores the informa-
tion about a variable, reference or any data structures. In jHISC v3, a single descriptor
format is defined, which combined both fields in Class Operand Descriptor (COD)
and Class Property Descriptor (CPD). The descriptor length is 32-bit, with five fields
defined according to the specification of Java virtual machine. These fields are, Ad-
dress Field, Access Modifier, Type Field, Static Flag, Read Only Flag, and Resolved
Flag.

2.2 Instruction Set

jHISC is a RISC based core with some object-oriented features enhancement proces-
sor. Its Instruction length is 32-bit and supports up to three operands. Each instruction
uses 8-bit opcode for defining instruction operation and references data in current
LVF with 7 bits, addressing up to 128 registers. In addition, jHISC provides object-
oriented manipulation instructions to handle the object-oriented related processing.

In traditional computers, memory-register data transfer instructions allow program
to access memory directly which may result in security problems. In jHISC, all data
are encapsulated into objects, and each object associates with a pair of memory
boundaries (see Section 3). A program needs to pass the bound control checks before
it accesses the data and out-of-bound accesses are prohibited. Two instructions “gifld”
and “pifld” are introduced in our architecture to perform data transfer operations be-
tween memory and register with rigid memory access checking.

There are totally seven groups of instruction defined in jHISC v3, they are: logical
instructions, arithmetic instructions, branching instructions, array Instructions, Object-
Oriented (OO) instructions and data manipulation instructions. Excluding the float-
point and 64-bit operation instructions, jHISC implements 93% bytecodes and 83%
OO related bytecodes in hardware directly (Table 1). The rests are executed through
software traps, such as “new”, “newarray”.

Table 1. The bytecodes supported by jHISC

Number of bytecodes 226

Number of bytecodes excluding the float-point and 64-bit operations 140

Number of bytecodes supported by the hardware directly 130
Number of bytecodes done by the software traps 10

Number of bytecodes for OO operations 40

Number of OO bytecodes supported by the hardware directly 33

Percentage of bytecodes supported by the hardware directly 93%

Percentage OO bytecodes supported by the hardware directly 83%

3. Security Features

Nowadays computing systems are multi-tasked. Multiple applications are executed on
the same machine simultaneously. As more parties are involved in a computing system,
it raises some concern of information privacy between different applications.

For object-oriented hardware approach, different objects share the same addressing
space. Protection features for object access should be provided by the processor and
used by the operating system in order to guarantee security between objects. Unlike
traditional processor architecture, object-oriented processor has built-in protection
logics to ensure security, in order to minimize execution errors.

Operations in a processor can be roughly categorized into two groups. The first
group performs real calculation and data movement. They are used for generating the
results of execution. Another group provides the support for control flow. Such opera-
tions include branching, subroutine calling and returning. They let a sequential execu-
tion machine to change the order of instruction execution according to the flow of
program.

The switch of control from one domain to another provides some possible back
holes for hacking programs and viruses. In order to secure the system from damages,
checking routines are introduced directly to the architecture. In jHISC v3, the secure
control transfer mechanism is based on object-oriented programming and the concept
of object-oriented programming features like data encapsulation, messaging, etc, is
used to restrict access of information from intrusion.

3.1 Strong type and Structural Memory Access

jHISC v3 is a strong typed system based on the definition of objects. Every data is
associated with a type field, which indicates the data type. Data are encapsulated in-
side an object. All data types are specified upon compilation and they cannot be
changed at run-time.

Direct memory accessing operations is prohibited in the jHISC v3 system. Instead
of using direct memory accessing operations like load/store, jHISC v3 provides indi-
rect memory accessing operations such as oo.getfield, oo.putfield, array.load and
array.store.

3.2 Local Variable Frame and Object Data Structure Out of Bound Checking

Local variables are maintained inside Register Stack Engine (RSE). The RSE contains
embedded logics for checking the out of boundary access of local variables. Any out
of boundary access to local variables would cause the system a protection violation.
This feature removes the potential bugs on the software or corrupted executable pro-
grams.

Pair of registers is maintained in the processor for object data structure access. A
base register is used to locate the address of the object data and a size register records
its size for out of boundary checking. Logics are embedded to do this kind of checking

every time the data is accessed through the object-oriented instructions. Since every
object has only bounded access to other objects, the sharing of address spaces in ob-
ject-oriented hardware approach could be achieved with this protection features.

3.3 Intra-Method and Inter-Method Control Transfer

Intra-method control transfer instructions are defined for conditional statements in
programming languages, such as if-then-else, while-loop, for-loop, etc. In jHISC v3,
these instructions are based on branching instructions with an additional checking to
avoid branching outside of the current method space. A pair of register is used to store
the base address and size of current running method. The branch target is an offset to
the base address (Fig. 4). The avoidance of branching outside the current method
space enables all objects running in the same addressing space.

Base Address Branch Offset Size

+

<

Valid if true, else throws
exception

Fig. 4. Branch target checking in jHISC v3

Inter-method control transfer instructions include method invocation and method
revocation. Method invocation is a procedure to call a method, while method revoca-
tion is a procedure to return from a method. They provide functionality for messaging
between objects. Each method in jHISC v3 is defined to have only single entry point
of calling. This feature prohibits the code bypassing in the same addressing space (Fig
5).

Intrusion Program

Security Checking

Security Checking

Protected Area
A Method Space

Single Valid
Entry point

Memory Space

Not Allowed

Fig. 5. Single entry point of Method in jHISC v3

4. Co-Verification Methodology and Result

The jHISC V3 with 4KB instruction cache and 8KB data cache has already been im-
plemented on a Xilinx Virtex XCV800 FPGA to verify our concept. During imple-
mentation, the caches are generated by Xilinx CORE Generator and the whole system
costs about 600K equivalent gates in FPGA.

In order to test the compatibility of running Java programs on our architecture, we
built a software verification platform to compile all the JVM instructions into jHISC
instructions and verify the functionality of the secure architecture through the Just-In-
Time compilation of bytecode stream and run it on the FPGA. With the software test-
ing implementation of Just-in-time compilation for jHISC, compatibility of Java pro-
gram can be assured and tested. With some I/O display operations that have been
implemented, the bytecode can be compiled and loaded into the FPGA board through
the PCI interface and the required results can be dumped back for display. The linker
has also been built to link and demonstrate the executable results that were obtained in
our architecture. As shown in Fig. 6, the executable memory map is loaded into the
FPGA board through the linker by calling the DimeJavaAPI.

All implemented instructions are tested to verify whether they are operated cor-
rectly. The related results are shown on Table 2. Besides, assembly program are writ-
ten to infringe the system and test whether the jHISC core can detect such infringe-
ment and throws an exception to the system. The results are shown on Table 3.

Finally, some testing Java programs are compiled through our JIT compilation and
loaded into the system for execution. With the verification of all the data structures
and resolutions which are built through the compiler with GUI display (Fig. 7), the
compiled code are successfully run in the jHISC core and the results are dumped back
through the linker to the Console (see Fig. 8). Table 4 shows results of testing on some
simple Java program.

 Hardware

 Software

Nallatech Virtex FPGA Board

Linker

JIT Compiler

DimeJavaAPI

Fig. 6. The Flow of the Co-verification Methodology

PC
I

Table 2. Result of Instruction Verification

Instruction Group Result
Logical Instructions passed

Arithmetic Instructions passed
Branching Instructions passed

Array Instructions passed
Object-Oriented Instructions passed

Data Manipulation Instructions passed

Table 3. Result of Protection Features Verification

Tests Result
Index a register that is out of current LVF Causes Exception
Modification of a reference type register Causes Exception
Operation on two different typed (Float and Int) register Causes Exception
Branch outside the current MCS Causes Exception
Access an element index that is larger than the array size Causes Exception
Invoke a non reference type CPD Causes Exception
Invoke with an index that is larger than CPDTS Causes Exception
Invoke a non-static method in a static method Causes Exception
The address of CPB is larger than CDSS Causes Exception
Invoke a non-method typed object Causes Exception
Allocate registers (In + Local + out) larger than 32 Causes Exception
Incompatible argument size for invoked method Causes Exception
Invoke with an index that is larger than CODTS Causes Exception
Invoke with a non property type COD Causes Exception
Invoke an unresolved method Causes Exception
Invoke with a class reference that is not class typed Causes Exception
Revoke with IVKTYPE = 00b Causes Exception
Access non-static field in static method Causes Exception
Access a static field that out of CDS Causes Exception
Access a field that is out of IDS Causes Exception
Modify a read only field Causes Exception
Access an unresolved field Causes Exception

Table 4. Results of testing on some Java programs

Tests Result
Helloworld – display a ‘helloworld’ text Correct
Interactive sorting programs – input a sequence of numbers and
sorted the numbers with different sorting

Correct

Perform some arithmetic calculation Correct
Program to convert all input lower case characters to upper case Correct
Min/Max – input a sequence of numbers and the minimum and
maximum value are displayed

Correct

Message Program – an interactive program that can let user to
store message, remove message and read message

Correct

5. Conclusion

In this paper, we have discussed the secure hardware data structure on jHISC, which
has been built with FPGA technology, and a software platform to co-verify the com-
patibility, through Just-In-Time compilation, on some Java class files. Through this
hardware/software co-design, some resolution burdens in JVM have been compen-
sated through our novel architecture. Besides, comparing with the traditional system
where the security and boundary checking of methods are controlled by software, our
approach in putting the security and boundary checking jobs into hardware would
move the burden of security checking into some pipeline stages and greatly improve
the overall system security and throughput of the processor. Moreover, a secure
method invocation can safeguard any error or bad reference produced by erroneous
programming. Furthermore, our co-verification process verifies the functionalities of
the instructions set, exception handling of our hardware protection features and the
execution of some Java program examples. Eventually, Java can be run as a native
language in the jHISC architecture and all Object-Oriented and Java’s protection
features are penetrated from software to hardware in order to increase the overall
system security and performance.

Acknowledgements

The work described in this paper was partially supported by a grant from City Univer-
sity of Hong Kong (Strategic Research Grant Project No. 7001548).

References

1. Andrew S. Tanenbaum. Structured Computer Organization, Forth Edition. Prentice Hall,
1999.

2. Fong, A., S., “HISC: A High-level Instruction Set Computer”. In 7th European Simulation
Symposium, pages 406-410. The Society for Computer Simulation, Oct 1995.

3. Mok Pak Lun, Richard Li, Anthony Fong. “Method manipulation in an object oriented
processor”. ACM SIGARCH Computer Architecture News archive. Volume 31, Issue 4,
September 2003.

4. Bill Venners. Inside the Java 2 Virtual Machine. Mc Graw Hill 1999.
5. Tim Lindholm, Frank Yellin The Java(TM) Virtual Machine Specification (2nd Edition).

Addison-Wesley Pub Co; 2nd edition,1999
6. Austin Kim, Yang Qian and J. M. Chang, " Designing a Memory System Using a Static

Loader For Embedded Java Architectures" , The Second International Workshop on Com-
piler and Architecture Support for Embedded Systems (CASES'99) , Washington, D.C.,
October 1-3, 1999

7. Chang, L.-C., Ton, L.-R., Kao, M.-F., Chung, C.-P., “Stack operations folding in Java
processors”, Computers and Digital Techniques, IEE Proceedings- Volume 145, Issue
5, Sept. 1998, pp. 333 – 340

8. Kim, A.; Chang, M, “Advanced POC Model-Based Java Instruction Folding Mechanism”,
Euromicro Conference, 2000. Proceedings of the 26th Volume 1, 5-7 Sept. 2000, pp. 332 -
338 vol.1

9. Sun Microsystems, Inc. The Java HotSpot performance engine architecture.
10. M. W. El-Kharashi, “Java Microprocessors: Computer Architecture Implications”, IEEE

Pacific Rim Conference on Communications, Computers and Signal Processing, Vol. 1,
August, 1997, pp. 277-280.

11. D. Mulchandani, “Java for Embedded Systems”, IEEE Internet Computing, June, 1998, pp.
30-39.

Fig. 7. Class and Method Directory Frame (GUI) displaying information of Class and Method
Context which are built from a bubble sort class program and verified through our JIT compiler

Fig. 8. Executing results of some Java programs.

