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Abstract. We study cooperative caching technique for supporting data access
in ad hoc networks. Two protocols that are based on the notion of zone are
proposed. The IXP protocol is push-based in the sense that a mobile node
would broadcast an index message to the nodes in its zone to advertise a
caching event. A data requester can fetch a needed item from a nearby node if it
knows that it has cached the data. The second protocol, called DPIP, is
explicitly pull-based with implicit index pushing property. A data requester
may broadcast a special request message to the nodes in its zone asking them to
help satisfy its demand. However, this is done only if its own caching
information does not result in a successful fetch. Performance study shows that
the proposed protocols can significantly improve system performance when
compared to existing caching schemes.

1 Introduction

Recent advances in wireless communication technology have greatly increased the
functionality of mobile information services and have made many mobile computing
applications a reality. It provides users with ability to access information and services
through wireless connections that can be retained while the users are moving. A
number of novel mobile information services, such as mobile shopping aids in a large
shopping mall and financial information distribution to users via mobile phones and
palmtop computers, have already been implemented.

While many infrastructure-based wireless networks have been deployed to support
wireless communication for mobile hosts, they suffer from such drawbacks as the
need for installing base stations and the potential bottleneck of the base stations. The
ad-hoc-based network structure (or MANET) alleviates this problem by allowing
mobile nodes to form a dynamic and temporary network without any pre-existing
infrastructure. This can be highly useful in some environments. For example, in a
large shopping mall there may be an info-station that stores the prices of all goods for
querying. Due to limited radio range, an info-station itself can only cover a limited
geographical area. If shoppers’ mobile devices are able to form an ad hoc network,
they can have access to the price list even if they are beyond the radio range of the
info-station. In such an environment, when a request for a price is forwarded toward
the info-station, it is likely that one of the nodes along the path has already cached the



requested item. This node can send the data back to the requester so that the access
time, the channel bandwidth, and the battery power can be saved.

In light of the above example, we see that caching of data offers significant
benefits for applications in ad hoc networks. Cooperative caching, which allows
sharing and coordination of cached data among multiple nodes, has been widely used
to improve web performance in wired networks [9, 22, 25]. These protocols usually
assume fixed network topology and often require high computation and
communication overheads. However, in an ad hoc network, the network topology
changes frequently, and mobile nodes typically have resource (battery, CPU, and
wireless bandwidth) constraints, thus cannot afford high computation or
communication overheads. Moreover, ad hoc networks are based on wireless
communications that are unreliable in nature. Being able to access data from nearby
nodes is important from performance point of view. Hence, there exists a need for
new techniques that may be applied to ad hoc networks.

In this paper, we design and evaluate cooperative caching techniques for
supporting data access in ad hoc networks. Two protocols that are based on the notion
of zone are proposed. In the protocols in-zone broadcasts of small-sized messages are
exploited to assist the locating of required data items. The first protocol, called IXP, is
push-based in the sense that a mobile node broadcasts an index message to the nodes
in its zone to advertise a caching event. A data requester can fetch a needed item from
a nearby node if it knows the node has cached the item. Otherwise, it issues a request
to the data center to ask for it. Any nodes along the path can redirect the request to a
nearby node, instead of faraway data center, if it knows the node has cached the item.
The second protocol, called DPIP, is explicitly pull-based with implicit index pushing
property. A data requester may broadcast a special request message to the nodes in its
zone asking them to help satisfy its demand. However, this is done only if its own
caching information does not result in a successful fetch. DPIP allows a wider scope
of local caching cooperation without incurring extra communication overhead. In
particular, unlike previous techniques [5, 6, 7], DPIP exploits the implicit index
pushing property in locating data items existing in nearby nodes. In addition, the
proposed protocols achieve a greater level of caching cooperation through employing
an appropriate cache replacement mechanism. Simulation results show that the
proposed protocols may improve system performance in terms of the request success
ratio and the data access time.

2 Related Works

To facilitate data access in ad hoc networks, some data replication schemes [11, 12,
13, 24] and caching schemes [18, 23, 26] have been proposed in the literature. Data
replication addresses the issue of allocating replicas of data objects to mobile hosts to
meet access demands. These techniques normally require a priori knowledge of the
operation environment and are vulnerable to node mobility.

Unlike data replication schemes, caching schemes do not rely on distributing data
objects beforehand to facilitate data access. In the conventional caching scheme,
referred to as SimpleCache [26], a data requester always caches the received data. If
subsequent requests for the cached data arrive before the cache expires, the node may
use the cached copy to serve the requests. In case of a cache miss, it has to get the



data from the data center. Getting data from faraway data center will increase the
response times for the requests. Recently, a cooperative caching strategy, called
CoCa, was proposed in [5, 6]. In CoCa, mobile hosts share their cache contents with
each other to reduce both the number of server requests and the number of access
misses. In addition, a group-based cooperative caching scheme, called GroCoCa, has
been presented in [7], in which a centralized incremental clustering algorithm is
adopted by taking node mobility and data access pattern into consideration. GroCoCa
improves system performance at the cost of extra power consumption. In the 7DS
architecture [19], users cache data and share with their neighbors when experiencing
intermittent connectivity to the Internet. However, the above researches focus on the
single-hop environment rather than the multi-hop ad hoc networks addressed in this
work.

In ad hoc networks, finding the location of a cached copy of a data item is the core
of a cooperative caching mechanism. In [17], when an object is requested, the
protocol relies on flooding to find the nearest node that has maintained a copy of the
object. Using flooding may potentially reduce the response time since the request can
be served by a nearby node, instead of the data center faraway. However, flooding can
be problematic for network communication. To reduce the overhead, flooding is
limited to nodes within k£ hops from the requester in [17], where k is the number of
hops from the requester to the data center. The overhead is still excessive especially
when £ is large or the network density is high. In [18], flooding is limited by imposing
a threshold on route existence probability. Based on the definition of route stability, as
a query packet is forwarded by hopping, its route existence probability becomes
smaller. By loading the threshold of route probability into the header of a request
packet beforehand, the range of cache querying can be limited. However, choosing
appropriate threshold for route existence probability is challenging.

Hence options other than flooding are desirable for finding a needed data item in
mobile ad hoc networks. In [23], a cooperative caching scheme has been proposed to
reduce the communication and energy costs associated with fetching a web object.
When a terminal M wants to get a web data W that was not cached locally, M requests
W through the base station only if the base station is in the zone of M. Otherwise, M
will broadcast a request message for W in its zone. If W is not cached by any of the
mobile nodes in the zone, a peer-to-peer communication scheme is realized with the
mobile nodes that are known to share interests with M and are at a distance that is less
than the one between M and the nearest base station. The communication is based the
notion of terminal profile. However, if the data correlation between mobile terminals
is small, the effect of terminal profile will be lost. In [26], two caching schemes,
called CacheData and CachePath, had been presented. With CacheData, intermediate
nodes may cache data to serve future requests. In CachePath, a mobile node may
cache the path to a nearby data requester while forwarding the data and use the path
information to redirect future requests to the nearby caching site. A hybrid protocol
HybridCache was also proposed, which improves the performance by taking
advantages of CacheData and CachePath methods while avoiding their weakness. In
HybridCache, when a mobile node forwards a data item, it caches the data or the path
based on some criteria. These criteria include the data item size, and the time-to-leave
value of the item. One problem with these methods is that caching information of a



node cannot be shared by a data request if the node does not lie on the path between
the requester and the data source.

3  Zone-Based Cooperative Caching Schemes

Our research is motivated by ZRP, a zone-based routing protocol [1, 10]. In general,
routing protocols for MANETSs can be classified into two categories: proactive and
reactive. Proactive protocols (e.g., OLSR [8], DSDV [21]) update their routing tables
periodically. Reactive protocols (e.g., AODV [20], DSR [16]), on the other hand, do
not take any initiative in finding a route to a destination until a routing demand arises,
thus a priori reduce the network traffic. ZRP is a hybrid protocol that combines
reactive and proactive modes. In ZRP, a zone is associated with each mobile host and
consists of all the nodes that are within a given number of hops, called radius of the
zone, from the host. Each node proactively maintains routing information for the
nodes in its zone. In contrast, a reactive protocol is used to reach any node beyond its
zone.

We use the notion of zone as ZRP in this research. The basic idea of our scheme is
to have each mobile host share its caching contents with those in its zone or beyond
without the need for group maintenance. Our design rationale is twofold. As stated
previously cooperative caching is possible among neighboring nodes, and zone
reflects such notion of vicinity. Second, aided by the underlying routing protocols
such as ZRP, a zone can be readily formed and maintained for a mobile host even if
the node is on the move. In the following, we present a simple protocol called Index
Push (or IXP) and a more sophisticated one called Data Pull/Index Push (or DPIP)
for implementing the zone-based cooperative caching.

3.1 System Model

We consider a MANET where all mobile nodes cooperatively form a dynamic and
temporary network without any pre-existing infrastructure. There exists a data center
that contains a database. Each mobile host may send a request message to the data
center for accessing a data item. When a node fetches a data item, it always stores the
item in its local cache for future use like conventional caching scheme. We assume
that each node has limited cache space, so only a portion of the database can be
cached locally. If the cache space of a node is full, the node needs to select a victim
data item from its cache for replacement when it wants to cache a new one. To reduce
access latency and to ease the load of the data center, an intermediate node on the
forwarding path between the requester and the data center can directly deliver the
requested data to the requester if it has a copy in its local cache, or redirect the request
to some nearby node that it knows has cached the data item.
In our system, we also make the following assumptions:
(1) All data items are of the same size.
(2) For sake of simplicity and standing out the salient features of our proposed
schemes we do not consider updates of the data items.
(3) We assume that ZRP is the underlying routing protocol used in the MANET
although this is not indispensable for our schemes.



3.2 Index Push (IXP) Protocol

The idea of Index Push is based on having each node share its caching content with
those in its zone. To facilitate exposition, we call the neighboring nodes in the zone of
a node M the buddies of M. If M, is a buddy node of M, M is also a buddy of M,. To
this end a node should make its caching content known to its buddies, and likewise its
buddies should reveal their contents to the node. One way of arriving at this is for a
node that has cached a new data item to advertise such a caching event. Index Push
(IXP) takes this approach. It broadcasts an index message to its buddies whenever it
caches a data item. The id of the data item that has been cached is included in the
index message. A node may receive multiple index messages from different buddies
that are associated with the same data item. Each node maintains an index vector,
denoted as IV. An IV has N elements, where N is the number of data items; each
element is associated with a distinct data item. Each element in /V has three entries
that are used to record the caching information of the corresponding item. Consider
the IV of a node M. The first entry associated with data item x is of type binary and is
represented by IV[x].cached. This entry indicates whether x is cached locally. If the
entry is TRUE, it means that x is locally available; otherwise x has to be obtained
from some remote site. The second entry, denoted as IV[x].cachednode, is used to
record a nearby node that has cached x. For sake of saving storage space M only
records the last node that has broadcast an index message associated with x. The third
entry, represented by IV[x].count, contains a count of M’s buddies that are known to
have cached x since x is cached by M. As described later, this count will be used for
cache replacement purpose. Initially, any IV[x].cached is set to FALSE,
1V[x].cachednode is set to NULL, and IV[x].count is set to zero.

(a) Data Accessing/Caching

Consider that a node M wants to access a data item x. M first checks its
IV[x].cached to see whether the data item has been cached locally. If the entry is
FALSE, M proceeds to examine [V/[x].cachednode expecting someone in the
neighborhood may offer some help. If the entry is NULL, M sends a request message
to the data center directly. If the entry is not NULL, M issues a request message to the
node, say M, if M, is still in the zone. Due to node mobility, it is possible that M,
may no longer stay in M’s zone. With ZRP, if M, is not inside M’s zone M has no
routing information about how to reach M;. To avoid the overhead for searching for a
path to M;, M would send a request message to the data center directly. An
intermediate node I on the path to the data center can redirect the message to a buddy
node that / knows has cached the data item according to its IV[x].cachednode entry.
When M eventually receives x, it caches x. In doing so it may possibly need to discard
another cached data item, say y, if its cache is full. M sets its IV[x].cached to TRUE
and IV[y].cached to FALSE. Moreover, M will reset its IV[x].count to 0. As described
in the next section, this is performed in order to avoid having x be chosen for
replacement soon after it is cached. M then broadcasts an index message to its
buddies. Included in the index message are ids of the newly cached item x and the
replaced data item y. Upon receiving the index message M’s buddies update their
1IV[x].cachednode entries with M, increase IV[x].count by one and decrease
IV[y].count by one. The last two operations, i.e. updating IV[].count entries, need to
be performed by a buddy node only if the corresponding data items are cached by the



node. Furthermore, if a buddy has recorded M in its IV[y].cachednode, it needs to set
the entry to NULL because y is no longer cached by M.

(b) Cache Replacement

If a node M accesses a data item when its cache space is full, some cached item
must be removed to make room for the new one. In IXP, we use IV[].count entry for
cache replacement. Recall that this entry indicates the number of M’s buddies that
have cached a data item since M cached the same item. IXP replaces the data item that
has the maximum /V/].count among all cached ones. Replacing such a data item tends
to induce less impact on M’s buddies because there are less buddies relying on M for
fetching the data item when the associated count becomes bigger. In addition, M and
its buddies tend to have greater chance in finding the replaced data item in their
neighborhood than in finding the other cached items. Moreover, doing so can limit
caching duplicates. This may also explain why M needs to set the IV/[x].count to O
when it first caches a data item x. At this time, all of M’s buddies are supposed to
have their IV[x].cachednode entries point to M, hence we do not want to have x
replaced too soon. Notice that once a data item x is chosen for replacement, the values
of IV[x].count maintained by M’s buddies will also be decremented, implying less
chance for these buddies to have x replaced. This can alleviate the problem of
concurrently replacing the same item by all the nodes in the neighborhood.

3.3 Data Pull/Index Push (DPIP) Protocol

IXP is essentially push-based in the sense that a caching node “pushes” the caching
information to its buddies. Each node has a view of the caching status in its zone only.
However, due to mobility of the nodes and some limitations of mobile devices such as
transient disconnection, the caching status reflected by IV may be obsolete or not
up-to-date. For example, suppose that, according to node M’s IV, none of M’s buddies
caches x. If a new node that has cached x moves into M’s zone now, this caching
information cannot be captured by M’s IV with IXP. In the following, we propose a
more sophisticated protocol called Data Pull/Index Push (DPIP) to deal with this
problem.

Similar to IXP, each node maintains the IV vector. When a node M wants to access
a data item x that is not cached by itself, it first examines the entry IV/[x].cachednode
to see if some buddy node in the zone has cached x. If such buddy node exists, M
sends a request message to the node asking for a copy of x in the same way as IXP.
However, unlike IXP, if IV[x].cachednode entry is NULL, M broadcasts a special
request message srg to all of its buddies. The srg message carries the ids of the
requested data item, x, and the data item that will be replaced if the cache space is
already full. Upon receiving the srg message a buddy node will reply to M if either of
the following conditions is met: (1) it has cached x, (2) it knows some of its buddies
has cached x (as per its IV). To reduce the number of reply messages, only peripheral
nodes, i.e. the nodes at the perimeter of M’s zone, are required to reply under the
second condition, but any node for which the first condition is met should reply. In
contrast with IXP, DPIP increases the chance for the data requester M to obtain a
copy of x from nodes in its vicinity. This can be argued as follows. In addition to the
fact that M can fetch a copy of x from its buddies if the first condition is met, it may
possibly obtain caching status of the nodes that are beyond its zone but within the



zones of its buddies as specified by the second condition. Consequently, the scope of
local cooperation is essentially extended by a factor of two, in terms of radius, at the
data requester site. In addition, the in-zone broadcast, which initiates the “data
pulling” operation, allows DPIP to use the latest caching information. From above
description, we see that in-zone broadcast of the srg message implicitly advertises the
fact that the requester node will cache a copy of the requested data item, and it will
soon be able to help others in satisfying their demands for the item. In other words,
srg messages serve two functions: data pulling and index pushing (in implicit
manner). Note that when a srg message is broadcast, a timer is started. If no reply is
received from M’s buddies before the timer goes off, M sends a request message
toward the data center. IV vectors are updated in the same way as IXP at both the
requester site and its buddies. However, the update of IV is done by the buddies at the
time when they receive either a broadcast srg message or a direct (unicast) request
message from the requester site. Cache replacement is performed in the same way as
IXP.

4 Simulation Study

In this section we present simulation results for the proposed protocols and compare
them to HybridCache.

4.1 Simulation Configuration

We have developed a simulation model based on the ns-2 simulator [27] with CMU
wireless extension. The simulated network consists of 50 nodes spread randomly in an
area of 1500mx320m, similar to the model used in [26]. One node is designated as the
data center, and it is fixed at the upper left-hand corner of the area throughout the
simulation. For ease of implementation, we use the DSDV [21] as the underlying
routing protocol. It is assumed that the wireless transmission range of the nodes is 250
meters and the channel capacity is 2Mbps. A node moves according to the random
waypoint model [2], in which each node selects a random destination in the specified
area and moves toward the destination with a speed selected randomly from the range
(1m/s, 10 m/s). After the node reaches its destination, it pauses for a period of time
and then repeats the movement pattern. The pause time is used to represent node
mobility. The default pause time is 300 seconds.

The data center contains 3000 data items. Data updates are not considered in the
model. Data requests are served on FCFES basis at all nodes. The size of each data
item is 1000 bytes, other messages such as request messages and index messages are
all assumed to be 20-byte long. Each node generates a sequence of read-only requests.
The inter-arrival times of data requests follows exponential distribution with mean 20
seconds. The data items are accessed uniformly. We consider a data request failed if
the requested data item is not returned within a given amount of time. This is
employed to account for packet loss in the unreliable wireless network. In addition, a
data request that takes an excessive amount of response time is, in most cases,
abandoned by the client.

To capture the performance of the protocols several metrics are examined in the
simulation. The first principal metric is the request failure ratio which gives the ratio
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of data requests that fail to receive the requested data items. The second metric we
measure is the average data access time for a successful data request. The other metric
of interest is the ratio of data requests that are served by the data center. Reducing
such ratio mitigates the workload of the data center, and better load balance results.

As we are interested in the steady state of the system we allow the simulated
network to warm up for 1000 seconds. The simulation results are collected for 4000
seconds. In our simulations the radius of a zone is set to one hop for both IXP and
DPIP protocols.

4.2 Simulation Results

Figure 1 illustrates the request failure ratios for IXP, DPIP and HybridCache with
cache size varying from 30 to 270 items. In this simulation the pause time is set to
300 seconds. Apparently, both IXP and DPIP outperform HybridCache by significant
margins. In addition, traffic congestion near the data center may cause request failures
as well. Note that our schemes, DPIP in particular, demonstrate more evident
improvement, in comparison with HybridCache, as the cache size increases. This
result indicates that our protocols offer great capability for exploiting localized
cooperative caching.

Figure 2 shows the ratios of the requests messages that are eventually addressed to
the data center. Reducing the chances of having data requests satisfied by the data
center is essential to the efficiency of the cooperative caching techniques. DPIP is
least likely to lead the requests to be sent to the data center, followed by IXP and then
HybridCache. A smaller such ratio implies, to some extent, better load balance among
the data center and the nodes that have cached the requested data items. Again, DPIP
is most sensitive to the cache size with respect to this metric.

In Figure 3 we illustrate the average access times of the successful data requests for
the same setting as used in Figure 1. Since the access times do not consider the failed
data requests, a straightforward comparison of the three protocols using this figure
may not be appropriate. From Figure 3 we see that DPIP does not offer advantages in
terms of the average access time when the cache size is very small. This is mainly due
to the fact that srg broadcasts in DPIP are not effective enough to compensate for the
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timeout intervals experienced by the data requesters when no cache hit among their
buddies results. In this situation, both IXP and HybridCache.

To evaluate the effect of node mobility on the performance of the protocols we
have performed simulation with different pause times. The result is shown in Figure
4, in which the request failure ratios are plotted against the pause times. Note that as
the pause time decreases the node mobility becomes higher. All three protocols are
affected when node mobility increases. DPIP is least sensitive to node mobility
because it provides a comparatively wide scope of caching cooperation for
neighboring mobile nodes. HybridCache is the most sensitive with respect to the
metric.

5 Conclusion

In this paper, we have presented two zone-based cooperative caching protocols for
MANETs. Both protocols demonstrate sensitivity with respect to the cache size. This
indicates their capability for exploiting localized cooperative caching. Owing to this
observation the benefits of the proposed protocols should be evident for MANETS of
large scale.
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