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Abstract. Architecture-based software development plays an important role in 
successfully developing and managing large and complex software systems. 
Recently, there have been a number of studies for designing, evaluating, or 
transforming architectures. However, there is not much work being done for 
closely connecting an architectural evaluation with an architectural 
transformation in order to achieve quality attributes during the architecture-
based software development. For this reason, it is still difficult to achieve 
consistently quality attributes at the architectural level. This paper presents an 
approach to quality achievement in architecture-based software development, 
which is called AQUA. The AQUA involves two distinctive activities, which 
are architectural evaluation and transformation, but these activities can be 
seamlessly combined through producing relevant artifacts based on the design 
decisions that led to the architecture. Due to the proposed approach, we can 
expect to achieve quality attributes in architecture-based software development.  

1   Introduction 

Quality attributes of large software systems are principally determined by the system’s 
software architecture, which represents a common high-level abstraction of the system 
[1,2]. Therefore, architecture-based software development plays an important role in 
successfully developing and managing large and complex software systems [1,3,4].  

Recently, there have been a number of studies for designing, evaluating, or 
transforming an architecture. Namely, methods for designing software architectures 
for developing quality softwares[1], methods for evaluating software architectures 
with respect to software quality attributes (e.g.[2],[3],[4],[5]), or methods for 
transforming a software architecture in order to improve one or more of its quality 
attributes (e.g.[3],[6],[7]) have been studied. There is, however, not much work being 
done for closely connecting architectural evaluation with architectural transformation 



in order to achieve quality attributes during the architecture-based software 
development. For this reason, it is still difficult to achieve consistently quality 
attributes at the architectural level.  

This paper presents an approach to quality achievement in architecture-based 
software development, which is called AQUA afterwards. The AQUA involves two 
distinctive activities, which are architectural evaluation and transformation. However, 
these activities can be seamlessly combined through allowing the evaluation artifacts 
to be effectively utilized for architectural transformation centering around design 
decisions acquired from architectural evaluation. Furthermore, activities for 
architectural evaluation in the AQUA play a significant role in revealing any potential 
defects or assessing the fulfillment of required quality requirements, and activities for 
architectural transformation play a significant role in reducing defects in the 
architecture or making changes to the architecture.  

2   Overview of AQUA Process 

In this paper, we present an approach to quality achievement in architecture-based 
software development, which is called AQUA. The AQUA provides software 
architects with a mean for achieving quality attributes at the architectural level. 
For the purpose of achieving quality attributes during architecture-based software 
development, it is necessary to transform architectures based on the evaluation 
results as well as to evaluate them. Therefore, the AQUA involves two kinds of 
distinctive activities, which are architectural evaluation and transformation. 
Namely, the AQUA integrates activities for providing insights of an architecture 
with respect to its desired qualities with activities for making changes to the 
architecture within a framework. Due to the AQUA, it can be easily performed to 
achieve quality attributes at the architectural level without difficulties of bridging 
heterogeneous approaches. In other words, the information acquired from 
architectural evaluation can be effectively utilized in making changes to the 
architecture for quality achievement.  
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Fig. 1. The AQUA process 

 
Figure 1 presents an overview of the AQUA. The AQUA first needs the 

generation of an evaluation contract for scoping software requirements and 
identifying the desired quality attributes of an architecture. Then the AQUA 
requires characterizing each quality attribute for specializing explicitly the 
characteristics of quality attributes. Next, the AQUA includes the identification of 
architectural design decisions having an important impact on the achievement of 
quality attributes. Such design decisions can be identified by characterizing key 
designs relevant to quality achievement in the presented architecture with 
considering the characteristics of quality attributes. Based on the decisions, the 
AQUA includes the generation of an architecture profile representing the quality 
achievement of the architecture, and gets to generate a prediction facility helpful 
in understanding the traceability between quality attributes and architectural 
designs. Namely, it provides insights concerned with the quality achievement of 
the architecture with respect to its desired qualities.  According to the insights 
about quality achievement, it is necessary to make changes to the architecture for 
the purpose of achieving quality attributes. Furthermore, the changes should be 
able to be planned for avoiding unnecessary changes. For this reason, the impact 
on other design decisions should be considered before applying the changes to the 
architecture. Therefore, the AQUA includes the generation of a decision 
constraint graph for representing explicitly the dependencies among design 
decisions, then for tracing easily the impacts of a decision change. Through using 
the decision constraint graph, the AQUA guides the establishment of 
transformation strategies that lead to a new architecture. Finally, the activities of 
the AQUA for conducting an evaluation and transformation of an architecture can 
be repeatedly performed until reaching the desired levels of quality attributes in 
the architecture. Therefore, the AQUA provides software architects with a mean 
that supports achieving quality attributes during architecture-based software 



development. In the sections below, these artifacts are discussed in more detail. 

3   Quality Achievement Activities of the AQUA Process 

3.1   Understanding Quality Achievement Goals using Evaluation Contract 

The evaluation contract means the consensus between users and software architects 
about expectations from the evaluation for quality achievement. Namely, expectations 
from the evaluation can be concluded and negotiated. This contract includes the lists 
of quality and functional requirements, their relationship, and identifies quality goals 
of architecture. 

Figure 2 represents generating an evaluation contract. To generate an evaluation 
contract, software architects first document quality requirements and functional 
requirements of a system separately. In general, functional requirements have 
relations to one or more quality requirements. Subsequently software architects 
determine the scope of functional requirements, then software architects determine 
the scope of quality requirements. Finally, software architects identify the quality 
attributes representing the goals of an architectural evaluation for quality achievement.  
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Fig. 2. Generating an evaluation contract 

3.2   Finding Architectural Design Decisions  

Software architecture is composed of architectural design decisions, which are the 
aspects of an architecture that have a significant impact on achieving quality 
attributes, such as components, connectors, and configuration. Namely, architectural 
decisions are made from an overall system perspective. Essentially, these decisions 
identify the system’s key structural elements, the externally visible properties of these 
elements, and their relationships, and they define how to achieve the architecturally 
significant requirements[3]. Since architectural design decisions represent decisions 
on various design alternatives applicable to design problems during architectural 



design, these decisions can be interpreted as pairs of decision variable and decision 
value. The following are to illustrate the concepts of decision variables and decision 
values, respectively: 

 A decision value describes a design itself applied to the current architecture as 
the selected solution out of design alternatives applicable to each design issue. 
The decision values can be easily conceived from a well presented software 
architecture. More specifically, parts of designs relevant to functional 
requirements within the evaluation scope for quality achievement should be first 
identified. Next, each design is summarized in terms of design elements, 
relationships, and their properties. Finally, the decision values describing 
meaningfully key designs are identified in the presented architecture through 
characterizing such design summaries. 

 A decision variable describes the architectural design issue that each selected 
solution is addressing, such as “What are the big parts of the system?” and/or 
“How are they connected?”. Such decision issue can be found by analyzing 
decision values based on architectural knowledge such as design patterns, styles, 
and architectural views. Namely, the decision variables can be determined by 
asking questions about why the decision values have resulted from software 
requirements. 

 
Figure 3 represents the finding of architectural design decisions. As in the above 

illustrations about a decision variable and a decision value, software architects should 
first identify design areas relevant to functional requirements within the evaluation 
scope (① in Figure 3). Subsequently, key designs should be summarized (② in 
Figure 3). Then decision values can be identified through characterizing design 
summaries (③ in Figure 3). Finally, decision variables are determined by identifying 
one or more design issues that each decision value involves (④ in Figure 3). 
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Fig. 3. Finding architectural design decisions 



3.3   Generating Decision Constraint Graph 

Architectural design decisions also have relations to other decisions in terms of the 
consistency among designs. For instance, a decision for determining elements of a 
system should be consistent with a decision for structuring the system. The decision 
constraint graph is a graph for maintaining the consistency among design decisions. 
The graph helps in representing explicitly the dependencies among design decisions, 
and in tracing easily the impacts of a decision change. Here, architectural design 
decisions introduce two kinds of design constraints, which are unary and binary 
constraints. The following are to illustrate unary constraints and binary constraints: 

 A unary constraint captures any constraint to the design that the chose 
alternative (the decision value) might pose, which restricts design alternatives 
applicable to each design issue (the decision variable). In order to determine 
unary constraints, software architects should first analyze the characteristics of 
decision values at various points in the design. For example, if the design 
elements support the concurrency of system, it can be considered that there is 
the constraint equal to concurrency support. Next, software architects should 
determine whether the characteristics are closely related to the requirements 
specified in previous evaluation contract. Finally, the characteristics irrelevant 
to requirements should be excluded. 

 A binary constraint captures any constraint for design consistency that two 
decision values might pose each other, which represents a condition restricting 
design alternatives applicable to relevant decision variables. In order to 
determine binary constraints, software architects should analyze only the 
characteristics causing consistency problems between two decision values. 

 
Figure 4 represents the generation of a decision constraint graph. Each node in the 

graph represents a decision variable, and each edge in the graph represents constraint 
relationship between two decision variables. To generate a decision constraint graph, 
software architects should first document two kinds of constraints according to the 
above illustration; unary constraints and binary constraints. Based on the identified 
constraints, the relationships among design decisions are determined with respect to 
design consistency. As a result, nodes and edges of decision constraint graph are 
defined.  
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Fig. 4. Generating a decision constraint graph 

3.4   Applying Architectural Changes for Quality Achievement  

Software architects can apply various changes in order to reduce any potential defects, 
or to make changes to the architecture. Each change leads to a new version of the 
architecture that has the same functionality, but different satisfaction for desired 
quality attributes. However, applying a change to a specific design area may have an 
impact an adjacent design area or whole architecture. Therefore, it is necessary to 
analyze how a change to the specific area affected on other areas and to determine 
applicable design alternatives for the target area needs to be changed.  

To do this, software architects first find architectural alternatives. To find 
architectural alternatives, we can utilize various design theories or refer to other 
alternatives from candidate architectures or architect’s experience. To select 
appropriate architectural options, we should analyze the architectural options with 
respect to the scope and impacts of applying them. In particular, architectural options 
must be consistently selected against other architectural decisions. To achieve this 
goal, we propose checking the following consistencies based on the decision 
constraint graph.  

 Node consistency means the satisfaction of unary constraints restricting the 
decision values applicable to a decision variable. This also means that all 
architectural alternatives unsatisfying unary constraints on a decision variable 
would be pruned from the candidate solutions of the variable.   

 Arc consistency is the satisfaction of binary constraints representing a condition 
between two decision variables. Namely, architectural alternatives applicable to 
the specific design should satisfy arc consistency between the designs.  

4   An Example: House Alarm System 

To address the practical applicability and features of our approach, we have 



chosen an example that is familiar but rich with interesting design and 
architectural problems, that of the House Alarm System (discussed in [8] and 
elsewhere). A house alarm system consists of a main unit to which a number of 
sensors and alarms are connected. The sensors detect movements in the guarded 
area, and the alarms generate sounds and/or lights to scare off an intruder. The 
total area that can be guarded is divided into cells, where a cell contains some 
sensors and some alarms that guard a specific area. Since the house alarm system 
is included in real-time systems, there are some special concerns when modeling 
the system. Naturally, concurrency, communication, and synchronization are the 
most important factors, but fault tolerance, performance optimization, and 
distribution must also be dealt with when modeling a house alarm system.  

In this example, we focused on illustrating that the AQUA seamlessly supports two 
distinctive activities centering around architectural design decisions. For this reason, 
we omitted some artifacts such as quality attribute characterization and architecture 
profile in this paper. Furthermore, this paper introduced only architectural designs 
necessary for understanding the proposed approach. As shown in Figure 5 through 
Figure 7, partial software architecture of a house alarm system was presented with the 
4+1 view model in UML. Firstly, Figure 5 represents a set of key abstractions for the 
system and their logical relationships. Sensors and alarms are connected to a cell 
handler, which is an active class that handles a specific cell. The cell handler is 
connected to the system handler, which is an active class that handles the user 
communication. Next, Figure 6 represents a partially logical organization between 
sensors and alarms in the system. The house alarm system is structured based on the 
shared memory style. Finally, Figure 7 shows the interaction when a sensor detects 
something. It then sends an asynchronous alarm signal to the cell handler. 
Subsequently, the cell handler sends in parallel synchronous trigger signals to all 
alarms and an asynchronous alarm signal to the system handler. Inside the system 
handler, the alarm signal is handled synchronously. 
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Fig. 5. A set of key abstractions for the system and their logical relationships 
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Fig. 6. An architecture of house alarm system based on the shared memory style 
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Fig. 7. The interaction when a sensor detects something 

4.1   Understanding Quality Achievement Goals using Evaluation Contract 

In this example, we first defined the evaluation contract. We found that the house 
alarm system had the functionality such as activity detection, alarm generation, user 
communication, and system monitoring. In addition, we found that the system had 
non-functionality relevant to quality attributes such as performance, concurrency, and 
fault tolerance. When we defined the evaluation contract, we first placed the 
functional requirements and non-functional requirements in a row and column of the 
evaluation contract, respectively. The relationships between functional requirements 
and non-functional requirements were naturally determined. Here, we restricted the 
evaluation scope for evaluating the quality achievement of current architecture within 
the requirements listed in the oblique area of Figure 8. As a result, two kinds of 
quality attributes (i.e. performance, concurrency) were identified as the things to be 
dealt with in this example. In this way, we could start quality achievement at 
architectural level with the generated evaluation contract. 
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Fig. 8. Evaluation contract 

4.2   Finding Architectural Design Decisions  

In this example, we identified some design decisions necessary for illustrating our 
approach. Table 1 summarized architectural design decisions of a house alarm system. 
There were the decisions that identify the system’s key structural elements, their 
properties, and their relationships. In addition, there were the interesting decisions 
such as choosing patterns and message types. They became a leverage to help us 
understand the architecture in practice. 
 

Table 1. Architectural design decisions 
Architectural design decision 

Decision Variable Decision Value Brief Description 

Design Elements 
(D1) 

Three Kinds of 
Logical Elements 

-The system consists of three kinds of logical elements such 
as sensors, alarms, and handlers. 

Roles of Elements 
(D2) 

-User 
Communication 
-Cell Handling 
-Activity Detection 
-Sound/Light Effects

-The system handler handles the user communication. 
-The cell handlers handle a specific cell consisting of sensors 

and alarms. 
-The sensors handle the low-level interrupts from the actual 

device, then detect activity in a specific area. 
-The alarms handle the low-level communication with the 

device, then generate sound and light effects. 
Properties of
Elements (D3) 

Active Class -The main elements are designed as active classes. 

Structure of System
(D4) 

Shared Memory Style -The system is structured based on the shared memory style. 

Task Partition  
(D5) 

Unit of Active Class -The task is modeled as the unit of active class. 



Message Types 
(D6) 

Use of Synchronous 
& Asynchronous 
Messages 

-Inside the system handler, the synchronous messages are 
used. But outside the system handler, the asynchronous 
messages are used.  

Task Interaction 
(D7) 

Event-based 
Communication 

-The interaction among tasks is performed via event-based 
communication 

Task Synchronization 
(D8) 

Task Monitoring -The system monitors concurrently trying to modify or access 
a shared resource. 

4.3   Generating Decision Constraint Graph 

For the generation of a decision constraint graph, we identified unary and binary 
constraints on the design decisions summarized in Table 1. As results, Table 2 
summarized unary constraints to each decision, and Table 3 summarized binary 
constraints between the design decisions. Furthermore, the consistency relationships 
among design decisions were naturally found by determining binary constraints. 
 

Table 2. Unary constraints 
Decision Variable Unary Constraints 

Design Elements The inputs of system should be different from the outputs of system.  
Roles of Elements Assigned roles should support the concurrency of system.  
Properties of Elements Real-time properties of system should be supported. 
Structure of System Relevant data among elements should be shared.   
Task Partition Real-time properties of system should be supported. 
Message Types Both synchronous and asynchronous properties should be supported. 
Task Interaction The system should be run in terms of external events. 

Task Synchronization The tasks concurrently trying to access a shared resource should be
synchronized. 

 
Table 3. Binary constraints 

Architectural Design Decisions 
Decisions Decisions 

Binary Constraints 

Design Elements Roles of Elements Design elements should have the independent roles. 
Design Elements Structure of System There should be an element for sharing data. 
Roles of Elements Properties of Elements The concurrency among elements should be 

satisfied. 
Roles of Elements Structure of System An element should have a role for sharing data. 
Task Partition Design Elements The elements having independent roles should be 

identified as concurrent tasks 
Task Partition Task Synchronization The tasks concurrently trying to access a shared 

resource should be synchronized.  
Task Interaction Message Types The tasks should interact with each other by 

transmitting any type of message. 
Task Synchronization Structure of System The tasks concurrently trying to access a shared 

resource should be synchronized. 

 
Using the decisions and constraints described in Table 1 through Table 3, we 

generated the decision constraint graph as shown in Figure 9. Though a few decisions 



were considered in this example, the relationship among them was more complex in 
practice. Therefore, we found that the decision constraint graph would be useful for 
showing complex relationships among the decisions. In other words, the graph 
showed that the decision had the consistent relationship with one or more of them. 
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Fig. 9. Decision constraint graph 

4.4   Applying Architectural Changes for Quality Achievement  

As an example, we tried to transform the current decision for synchronization among 
the tasks concurrently trying to access a shared resource according to the previous 
evaluation results. Namely, we considered applying a periodic execution mechanism 
using a scheduler [3] to the design area of D8(Task Synchronization). Prior to 
applying an alternative to a design area, however, it is necessary to analyze its impact 
on an architecture. To do this, we gradually performed impact analysis starting from 
change of D8. Figure 10 represents the result of impact analysis for architectural 
transformation. As shown in Figure 10, some nodes of a graph were traversed during 
impact analysis by checking both node consistency and arc consistency. Since the 
change to the D8 doesn’t violate unary and binary constraint for D4(Structure of 
System), the change to the D8 doesn’t have impact on D4. However, the adjacent 
node D5(Task Partition) is affected for reasons of consistency violation. Then 
additional changes for the nodes D1(Design Elements) and D4(Structure of System) 
were needed by adding a scheduler to the system. As a result, we easily established a 
transformation strategy consisting of D5, D1, and D4 by the sequence of ① through 
③ in Figure 10. Through transforming the presented architecture according to the 
transformation strategy, we expect to reduce the possibility of errors, but it can reduce 
performance. Finally, it is necessary to validate the correctness of the transformations 
performed. It can be achieved by performing iteratively the AQUA process. 
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Fig. 10. Establishing a transformation strategy 



5   Comparison with Existing Methods 

We compared the AQUA with the existing methods in terms of activities necessary 
for achieving qualities at the architectural level. To do this, we first identified the 
activities through analyzing existing studies on architectural evaluation and 
transformation. When we analyzed them, we particularly focused on understanding 
the full process from quality identification to quality achievement. As a result, we 
identified six key activities to be handled at the architectural level for quality 
achievement as described in Table 4. The activities are as follows: 

 Identifying desired qualities is an activity to determine the kinds of quality 
attributes to be dealt with during the quality achievement of an architecture. 
Due to this activity, the goal for quality achievement can be clearly defined.     

 Specializing quality attributes contributes in acquiring more informative 
characteristics of quality attributes. In addition, it contributes in identifying 
architectural decisions having a significant impact on achieving quality 
attributes. 

 Analyzing an architecture is an activity to determine quality achievement 
of current architecture with respect to its desired qualities. It provides 
insights concerned with the quality achievement of architecture.   

 Analyzing change impacts is an activity to analyze the effects of making 
changes to the architecture on the other quality attributes or other designs. 
In particular, it helps make sure the design is consistent with one or more 
of them.    

 Modifying an architecture leads to a new version of the architecture with 
the same functionality, but with different values for its desired qualities.  

 Validating an architecture is an activity to validate the correctness of the 
transformations performed. Through validating the architecture, the quality 
achievement can be confirmed.  

 
Then we analyzed whether the existing methods and the AQUA effectively 

supported the activities necessary for quality achievement or not. To do this, we 
summarized the artifacts closely related to the activities through analyzing some 
methods including the AQUA as described in Table 4. The artifacts mean that the 
methods effectively support the described activity. As illustrated in Table 4, the 
existing methods fail to support the activities for quality achievement consistently. 
Compared with the methods described in Table 4, however, the AQUA can 
effectively support quality achievement in architecture-based software development 
through producing explicitly the artifacts relevant to quality achievement at the 
architectural level based on the design decisions. 
 
 
 
 
 



Table 4. Comparison with existing methods 

Architecture 
Evaluation & 

Transformation

Architecture profile (by 
iteration)

Transformation strategy

Decision constraint graph

Architectural decisions 
Architecture profile

Quality attribute 
characterizations

Evaluation contract

AQUA
Krikhaar’s

Approach[7]
Carriere’s

Approach[6]
Bosch’s

Approach[3]ARID[4]SAAM[4]ATAM[4]

Not defined

RPA model

RPA model

Not defined

Quality metrics

Not defined

Activity only

Activity only

Not defined

Features

Not defined

Not defined

Not defined

Not defined

Not defined

Sensitivity points 
&Trade-off points

Utility tree

Scenarios

Architecture Evaluation

Not defined

Not defined

Not defined

Activity only

Not defined

Scenarios

Validating an 
architecture

Modifying an 
architecture

Analyzing change 
impacts

Analyzing an 
architecture

Specializing quality 
attributes

Identifying desired  
qualities

Quality profilesScanarios

Activity onlyNot defined

Activity only

Activity only

Activity only

Activity only

Architecture Transformation

Not defined

Not defined

Sensitivity points

Scenarios

Methods

Activities 
for Quality 
Achievement

 

6   Conclusions and Future Work 

We presented an approach to quality achievement in architecture-based software 
development, which is called the AQUA. In addition, we applied the proposed 
approach to the House Alarm system to illuminate the approach. The AQUA 
involves two distinctive activities, which are architectural evaluation and 
transformation. Here, architectural evaluation plays a significant role in revealing 
any potential defects or assessing the fulfillment of required quality requirements, 
and architectural transformation plays a significant role in reducing defects in the 
architecture or making changes to the architecture. However, the AQUA 
effectively integrates the activities for providing insights of an architecture with 
respect to its desired qualities with the activities for making changes to the 
architecture within a framework. Furthermore, the AQUA seamlessly supports the 
activities relevant to quality achievement centering around the architectural 
design decisions by explicitly documenting them. Through following the AQUA, 
it can be easily performed to achieve quality attributes at the architectural level 
without difficulties of bridging heterogeneous approaches.  

In the future, we expect that this approach may be more complemented and 
extended as a result of ongoing researches. Presently, we are interested in several 
issues in supporting architecture-based software development. In particular, the 
development of mechanisms for process automation is considered to be important. 
We believe our approach will be effectively involved at the early stages of a software 
development lifecycle. 
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