
An Approach to Quality Achievement at the
Architectural Level: AQUA

Heeseok Choi1, Keunhyuk Yeom2, Youhee Choi3, Mikyeong Moon2

1 NTIS Organization, Korea Institute of Science and Technology Information
 Eoeun-dong 52-11, Yuseong-gu, Daejeon, 305-806, South Korea

choihs@kisti.re.kr
2 Department of Computer Engineering, Pusan National University
30 Changjeon-dong, Keumjeong-gu, Busan, 609-735, South Korea

{yeom,mkmoon}@pusan.ac.kr
3 Embedded S/W Research Division, Electronics and Telecommunications

 Research Institute, 161 Gajeong-dong, Yuseong-gu, Daejeon, 305-700, South Korea
yhchoi@etri.re.kr

Abstract. Architecture-based software development plays an important role in
successfully developing and managing large and complex software systems.
Recently, there have been a number of studies for designing, evaluating, or
transforming architectures. However, there is not much work being done for
closely connecting an architectural evaluation with an architectural
transformation in order to achieve quality attributes during the architecture-
based software development. For this reason, it is still difficult to achieve
consistently quality attributes at the architectural level. This paper presents an
approach to quality achievement in architecture-based software development,
which is called AQUA. The AQUA involves two distinctive activities, which
are architectural evaluation and transformation, but these activities can be
seamlessly combined through producing relevant artifacts based on the design
decisions that led to the architecture. Due to the proposed approach, we can
expect to achieve quality attributes in architecture-based software development.

1 Introduction

Quality attributes of large software systems are principally determined by the system’s
software architecture, which represents a common high-level abstraction of the system
[1,2]. Therefore, architecture-based software development plays an important role in
successfully developing and managing large and complex software systems [1,3,4].

Recently, there have been a number of studies for designing, evaluating, or
transforming an architecture. Namely, methods for designing software architectures
for developing quality softwares[1], methods for evaluating software architectures
with respect to software quality attributes (e.g.[2],[3],[4],[5]), or methods for
transforming a software architecture in order to improve one or more of its quality
attributes (e.g.[3],[6],[7]) have been studied. There is, however, not much work being
done for closely connecting architectural evaluation with architectural transformation

in order to achieve quality attributes during the architecture-based software
development. For this reason, it is still difficult to achieve consistently quality
attributes at the architectural level.

This paper presents an approach to quality achievement in architecture-based
software development, which is called AQUA afterwards. The AQUA involves two
distinctive activities, which are architectural evaluation and transformation. However,
these activities can be seamlessly combined through allowing the evaluation artifacts
to be effectively utilized for architectural transformation centering around design
decisions acquired from architectural evaluation. Furthermore, activities for
architectural evaluation in the AQUA play a significant role in revealing any potential
defects or assessing the fulfillment of required quality requirements, and activities for
architectural transformation play a significant role in reducing defects in the
architecture or making changes to the architecture.

2 Overview of AQUA Process

In this paper, we present an approach to quality achievement in architecture-based
software development, which is called AQUA. The AQUA provides software
architects with a mean for achieving quality attributes at the architectural level.
For the purpose of achieving quality attributes during architecture-based software
development, it is necessary to transform architectures based on the evaluation
results as well as to evaluate them. Therefore, the AQUA involves two kinds of
distinctive activities, which are architectural evaluation and transformation.
Namely, the AQUA integrates activities for providing insights of an architecture
with respect to its desired qualities with activities for making changes to the
architecture within a framework. Due to the AQUA, it can be easily performed to
achieve quality attributes at the architectural level without difficulties of bridging
heterogeneous approaches. In other words, the information acquired from
architectural evaluation can be effectively utilized in making changes to the
architecture for quality achievement.

Evaluation Contract

Quality Attribute Characterization

Decision Constraint Graph

Architecture Profile

Prediction Facility

Architectural Design
Decisions

Software
Requirements

Software
Architecture

Transformation Strategies

Experiences
Knowledge
Standards

D3

D2

D4

D5

D6

D7

D1

[Initial Inputs] [Architectural Evaluation]

D2, D1, D3

[Architectural Transformation]

Quality AttributesQuality Attributes

Quality
Requirements

Functional
Requirements

ResponsesStimuli
Quality
Attributes

ResponsesStimuli
Quality
Attributes

D7

Architectural
Spot

Decision
Value

Alternatives

Decision
Variable

Rationale

Architectural
Spot

Decision
Value

Alternatives

Decision
Variable

Rationale

D6

Architectural
Spot

Decision
Value

Alternatives

Decision
Variable

Rationale

Architectural
Spot

Decision
Value

Alternatives

Decision
Variable

Rationale

D5

Architectural
Spot

Decision
Value

Alternatives

Decision
Variable

Rationale

Architectural
Spot

Decision
Value

Alternatives

Decision
Variable

Rationale

D4

Architectural
Spot

Decision
Value

Alternatives

Decision
Variable

Rationale

Architectural
Spot

Decision
Value

Alternatives

Decision
Variable

Rationale

D3

Architectural
Spot

Decision
Value

Alternatives

Decision
Variable

Rationale

Architectural
Spot

Decision
Value

Alternatives

Decision
Variable

Rationale

D2

Architectural
Spot

Decision
Value

Alternatives

Decision
Variable

Rationale

Architectural
Spot

Decision
Value

Alternatives

Decision
Variable

Rationale

D1

Architectural
Spot

Decision
Value

Alternatives

Decision
Variable

Rationale

Architectural
Spot

Decision
Value

Alternatives

Decision
Variable

Rationale

Quality

Decision

Architecture

.

.

.

D3

D2

D1

+

-+

++

…Q3Q2Q1

Fig. 1. The AQUA process

Figure 1 presents an overview of the AQUA. The AQUA first needs the

generation of an evaluation contract for scoping software requirements and
identifying the desired quality attributes of an architecture. Then the AQUA
requires characterizing each quality attribute for specializing explicitly the
characteristics of quality attributes. Next, the AQUA includes the identification of
architectural design decisions having an important impact on the achievement of
quality attributes. Such design decisions can be identified by characterizing key
designs relevant to quality achievement in the presented architecture with
considering the characteristics of quality attributes. Based on the decisions, the
AQUA includes the generation of an architecture profile representing the quality
achievement of the architecture, and gets to generate a prediction facility helpful
in understanding the traceability between quality attributes and architectural
designs. Namely, it provides insights concerned with the quality achievement of
the architecture with respect to its desired qualities. According to the insights
about quality achievement, it is necessary to make changes to the architecture for
the purpose of achieving quality attributes. Furthermore, the changes should be
able to be planned for avoiding unnecessary changes. For this reason, the impact
on other design decisions should be considered before applying the changes to the
architecture. Therefore, the AQUA includes the generation of a decision
constraint graph for representing explicitly the dependencies among design
decisions, then for tracing easily the impacts of a decision change. Through using
the decision constraint graph, the AQUA guides the establishment of
transformation strategies that lead to a new architecture. Finally, the activities of
the AQUA for conducting an evaluation and transformation of an architecture can
be repeatedly performed until reaching the desired levels of quality attributes in
the architecture. Therefore, the AQUA provides software architects with a mean
that supports achieving quality attributes during architecture-based software

development. In the sections below, these artifacts are discussed in more detail.

3 Quality Achievement Activities of the AQUA Process

3.1 Understanding Quality Achievement Goals using Evaluation Contract

The evaluation contract means the consensus between users and software architects
about expectations from the evaluation for quality achievement. Namely, expectations
from the evaluation can be concluded and negotiated. This contract includes the lists
of quality and functional requirements, their relationship, and identifies quality goals
of architecture.

Figure 2 represents generating an evaluation contract. To generate an evaluation
contract, software architects first document quality requirements and functional
requirements of a system separately. In general, functional requirements have
relations to one or more quality requirements. Subsequently software architects
determine the scope of functional requirements, then software architects determine
the scope of quality requirements. Finally, software architects identify the quality
attributes representing the goals of an architectural evaluation for quality achievement.

Quality AttributesQuality Attributes

Quality
Requirements

Functional
Requirements

Evaluation Scope
of Functions

Evaluation Scope of Non-Functions

Functional
Requirements

Quality
Requirements

Software RequirementsSoftware Requirements

Evaluation ContractEvaluation Contract

have relations to

Fig. 2. Generating an evaluation contract

3.2 Finding Architectural Design Decisions

Software architecture is composed of architectural design decisions, which are the
aspects of an architecture that have a significant impact on achieving quality
attributes, such as components, connectors, and configuration. Namely, architectural
decisions are made from an overall system perspective. Essentially, these decisions
identify the system’s key structural elements, the externally visible properties of these
elements, and their relationships, and they define how to achieve the architecturally
significant requirements[3]. Since architectural design decisions represent decisions
on various design alternatives applicable to design problems during architectural

design, these decisions can be interpreted as pairs of decision variable and decision
value. The following are to illustrate the concepts of decision variables and decision
values, respectively:

 A decision value describes a design itself applied to the current architecture as
the selected solution out of design alternatives applicable to each design issue.
The decision values can be easily conceived from a well presented software
architecture. More specifically, parts of designs relevant to functional
requirements within the evaluation scope for quality achievement should be first
identified. Next, each design is summarized in terms of design elements,
relationships, and their properties. Finally, the decision values describing
meaningfully key designs are identified in the presented architecture through
characterizing such design summaries.

 A decision variable describes the architectural design issue that each selected
solution is addressing, such as “What are the big parts of the system?” and/or
“How are they connected?”. Such decision issue can be found by analyzing
decision values based on architectural knowledge such as design patterns, styles,
and architectural views. Namely, the decision variables can be determined by
asking questions about why the decision values have resulted from software
requirements.

Figure 3 represents the finding of architectural design decisions. As in the above

illustrations about a decision variable and a decision value, software architects should
first identify design areas relevant to functional requirements within the evaluation
scope (① in Figure 3). Subsequently, key designs should be summarized (② in
Figure 3). Then decision values can be identified through characterizing design
summaries (③ in Figure 3). Finally, decision variables are determined by identifying
one or more design issues that each decision value involves (④ in Figure 3).

D1

Propertie
s of
elements

Relations

Propertie
s of
relations

Elements

Topology
Software ArchitectureSoftware Architecture

Evaluation ContractEvaluation Contract Design Summary

Architectural Design DecisionArchitectural Design Decision

③
characterize
designs

① identify

② summarize
Architectural
Spot

④ analyze decision
values

Architectural
Knowledge

Decision
Variables

Decision
Values

Quality AttributesQuality Attributes

Quality
Requirements

Functional
Requirements

Evaluation Scope
of Functions

Evaluation Scope of Non-Functions

Architectural
Spot

Decision
Value

Alternatives

Decision
Variable

Rationale

Architectural
Spot

Decision
Value

Alternatives

Decision
Variable

Rationale

Fig. 3. Finding architectural design decisions

3.3 Generating Decision Constraint Graph

Architectural design decisions also have relations to other decisions in terms of the
consistency among designs. For instance, a decision for determining elements of a
system should be consistent with a decision for structuring the system. The decision
constraint graph is a graph for maintaining the consistency among design decisions.
The graph helps in representing explicitly the dependencies among design decisions,
and in tracing easily the impacts of a decision change. Here, architectural design
decisions introduce two kinds of design constraints, which are unary and binary
constraints. The following are to illustrate unary constraints and binary constraints:

 A unary constraint captures any constraint to the design that the chose
alternative (the decision value) might pose, which restricts design alternatives
applicable to each design issue (the decision variable). In order to determine
unary constraints, software architects should first analyze the characteristics of
decision values at various points in the design. For example, if the design
elements support the concurrency of system, it can be considered that there is
the constraint equal to concurrency support. Next, software architects should
determine whether the characteristics are closely related to the requirements
specified in previous evaluation contract. Finally, the characteristics irrelevant
to requirements should be excluded.

 A binary constraint captures any constraint for design consistency that two
decision values might pose each other, which represents a condition restricting
design alternatives applicable to relevant decision variables. In order to
determine binary constraints, software architects should analyze only the
characteristics causing consistency problems between two decision values.

Figure 4 represents the generation of a decision constraint graph. Each node in the

graph represents a decision variable, and each edge in the graph represents constraint
relationship between two decision variables. To generate a decision constraint graph,
software architects should first document two kinds of constraints according to the
above illustration; unary constraints and binary constraints. Based on the identified
constraints, the relationships among design decisions are determined with respect to
design consistency. As a result, nodes and edges of decision constraint graph are
defined.

Decision Constraint GraphDecision Constraint Graph

D2
D1

D3

Unary ConstraintsDecision
Variable

D4

Decision Variable

D3
D2
D2
D1

A

D3
D2

D5

Binary Constraints
B

D2

D3

D2

D4

D5

D6

D7

D1

Unary ConstraintsUnary Constraints

Architectural
Design Decisions
Architectural

Design Decisions

Binary ConstraintsBinary Constraints

D7

Architectural
Spot

Decision
Value

Alternatives

Decision
Variable

Rationale

Architectural
Spot

Decision
Value

Alternatives

Decision
Variable

Rationale

D6

Architectural
Spot

Decision
Value

Alternatives

Decision
Variable

Rationale

Architectural
Spot

Decision
Value

Alternatives

Decision
Variable

Rationale

D5

Architectural
Spot

Decision
Value

Alternatives

Decision
Variable

Rationale

Architectural
Spot

Decision
Value

Alternatives

Decision
Variable

Rationale

D4

Architectural
Spot

Decision
Value

Alternatives

Decision
Variable

Rationale

Architectural
Spot

Decision
Value

Alternatives

Decision
Variable

Rationale

D3

Architectural
Spot

Decision
Value

Alternatives

Decision
Variable

Rationale

Architectural
Spot

Decision
Value

Alternatives

Decision
Variable

Rationale

D2

Architectural
Spot

Decision
Value

Alternatives

Decision
Variable

Rationale

Architectural
Spot

Decision
Value

Alternatives

Decision
Variable

Rationale

D1

Architectural
Spot

Decision
Value

Alternatives

Decision
Variable

Rationale

Architectural
Spot

Decision
Value

Alternatives

Decision
Variable

Rationale

Fig. 4. Generating a decision constraint graph

3.4 Applying Architectural Changes for Quality Achievement

Software architects can apply various changes in order to reduce any potential defects,
or to make changes to the architecture. Each change leads to a new version of the
architecture that has the same functionality, but different satisfaction for desired
quality attributes. However, applying a change to a specific design area may have an
impact an adjacent design area or whole architecture. Therefore, it is necessary to
analyze how a change to the specific area affected on other areas and to determine
applicable design alternatives for the target area needs to be changed.

To do this, software architects first find architectural alternatives. To find
architectural alternatives, we can utilize various design theories or refer to other
alternatives from candidate architectures or architect’s experience. To select
appropriate architectural options, we should analyze the architectural options with
respect to the scope and impacts of applying them. In particular, architectural options
must be consistently selected against other architectural decisions. To achieve this
goal, we propose checking the following consistencies based on the decision
constraint graph.

 Node consistency means the satisfaction of unary constraints restricting the
decision values applicable to a decision variable. This also means that all
architectural alternatives unsatisfying unary constraints on a decision variable
would be pruned from the candidate solutions of the variable.

 Arc consistency is the satisfaction of binary constraints representing a condition
between two decision variables. Namely, architectural alternatives applicable to
the specific design should satisfy arc consistency between the designs.

4 An Example: House Alarm System

To address the practical applicability and features of our approach, we have

chosen an example that is familiar but rich with interesting design and
architectural problems, that of the House Alarm System (discussed in [8] and
elsewhere). A house alarm system consists of a main unit to which a number of
sensors and alarms are connected. The sensors detect movements in the guarded
area, and the alarms generate sounds and/or lights to scare off an intruder. The
total area that can be guarded is divided into cells, where a cell contains some
sensors and some alarms that guard a specific area. Since the house alarm system
is included in real-time systems, there are some special concerns when modeling
the system. Naturally, concurrency, communication, and synchronization are the
most important factors, but fault tolerance, performance optimization, and
distribution must also be dealt with when modeling a house alarm system.

In this example, we focused on illustrating that the AQUA seamlessly supports two
distinctive activities centering around architectural design decisions. For this reason,
we omitted some artifacts such as quality attribute characterization and architecture
profile in this paper. Furthermore, this paper introduced only architectural designs
necessary for understanding the proposed approach. As shown in Figure 5 through
Figure 7, partial software architecture of a house alarm system was presented with the
4+1 view model in UML. Firstly, Figure 5 represents a set of key abstractions for the
system and their logical relationships. Sensors and alarms are connected to a cell
handler, which is an active class that handles a specific cell. The cell handler is
connected to the system handler, which is an active class that handles the user
communication. Next, Figure 6 represents a partially logical organization between
sensors and alarms in the system. The house alarm system is structured based on the
shared memory style. Finally, Figure 7 shows the interaction when a sensor detects
something. It then sends an asynchronous alarm signal to the cell handler.
Subsequently, the cell handler sends in parallel synchronous trigger signals to all
alarms and an asynchronous alarm signal to the system handler. Inside the system
handler, the alarm signal is handled synchronously.

System Handler

Supervisor

Keyboard Handler Wrapper

LCD Display Wrapper

Sound Alarm

Call Handler Sensor

Alarm

<<persistent>>
Call Configuration Information

<<persistent>>
System Configuration Information

Log

1..*

1..*

1

1

..*

11

1

1 1..*

Fig. 5. A set of key abstractions for the system and their logical relationships

HandlerHandler

SensorSensor

SensorSensor

SensorSensor

SensorSensor

SensorSensor

AlarmAlarm

AlarmAlarm

AlarmAlarm

Fig. 6. An architecture of house alarm system based on the shared memory style

Sound AlarmSound Alarm

SupervisorSupervisor

LogLog

Cell HandlerCell Handler

Phone AlarmPhone Alarm Sound AlarmSound Alarm

Photo Cell
Sensor

Photo Cell
Sensor

1.3.2: Trigger

1.3.1: Storm

1.3: Alarm

1.2: Trigger

1.1: Trigger

1: Alarm

Fig. 7. The interaction when a sensor detects something

4.1 Understanding Quality Achievement Goals using Evaluation Contract

In this example, we first defined the evaluation contract. We found that the house
alarm system had the functionality such as activity detection, alarm generation, user
communication, and system monitoring. In addition, we found that the system had
non-functionality relevant to quality attributes such as performance, concurrency, and
fault tolerance. When we defined the evaluation contract, we first placed the
functional requirements and non-functional requirements in a row and column of the
evaluation contract, respectively. The relationships between functional requirements
and non-functional requirements were naturally determined. Here, we restricted the
evaluation scope for evaluating the quality achievement of current architecture within
the requirements listed in the oblique area of Figure 8. As a result, two kinds of
quality attributes (i.e. performance, concurrency) were identified as the things to be
dealt with in this example. In this way, we could start quality achievement at
architectural level with the generated evaluation contract.

Quality Attributes

Quality Requirements

FR1. The sensors should detect movements in the guarded area.

FR2. The alarms should generate sounds and/or lights to scare off an intruder.

FR3. Through the user interface, the system should be able to be configured,
activated, and deactivated.

Functional Requirements

Q
R

1.
 T

he
 se

ns
or

 sh
ou

ld
 c

on
tin

uo
us

ly

ha
nd

le
 th

e
lo

w
-le

ve
l i

nt
er

ru
pt

s f
ro

m
 th

e
ac

tu
al

 d
ev

ic
es

.

Q
R

2.
 T

he
 re

sp
on

se
 ti

m
e

of
 th

e
sy

st
em

sh

ou
ld

 b
e

w
ith

in
 st

an
da

rd
 re

sp
on

se

tim
e.

Q
R

3.
 T

he
 sy

st
em

 sh
ou

ld
 h

an
dl

e
co

nc
ur

re
nt

 a
cc

es
se

s t
o

a
sh

ar
ed

re

so
ur

ce
.

Concurr-
encyPerformance Fault

Tolerance

FR4. The user should be able to monitor .

Q
R

4.
 T

he
 sy

st
em

 sh
ou

ld
 p

er
fo

rm

re
qu

ire
d

fu
nc

tio
ns

 u
nd

er
 a

ll
ci

rc
um

st
an

ce
s,

su
ch

 a
s p

ow
er

 fa
ilu

re
.

Fig. 8. Evaluation contract

4.2 Finding Architectural Design Decisions

In this example, we identified some design decisions necessary for illustrating our
approach. Table 1 summarized architectural design decisions of a house alarm system.
There were the decisions that identify the system’s key structural elements, their
properties, and their relationships. In addition, there were the interesting decisions
such as choosing patterns and message types. They became a leverage to help us
understand the architecture in practice.

Table 1. Architectural design decisions
Architectural design decision

Decision Variable Decision Value Brief Description

Design Elements
(D1)

Three Kinds of
Logical Elements

-The system consists of three kinds of logical elements such
as sensors, alarms, and handlers.

Roles of Elements
(D2)

-User
Communication
-Cell Handling
-Activity Detection
-Sound/Light Effects

-The system handler handles the user communication.
-The cell handlers handle a specific cell consisting of sensors

and alarms.
-The sensors handle the low-level interrupts from the actual

device, then detect activity in a specific area.
-The alarms handle the low-level communication with the

device, then generate sound and light effects.
Properties of
Elements (D3)

Active Class -The main elements are designed as active classes.

Structure of System
(D4)

Shared Memory Style -The system is structured based on the shared memory style.

Task Partition
(D5)

Unit of Active Class -The task is modeled as the unit of active class.

Message Types
(D6)

Use of Synchronous
& Asynchronous
Messages

-Inside the system handler, the synchronous messages are
used. But outside the system handler, the asynchronous
messages are used.

Task Interaction
(D7)

Event-based
Communication

-The interaction among tasks is performed via event-based
communication

Task Synchronization
(D8)

Task Monitoring -The system monitors concurrently trying to modify or access
a shared resource.

4.3 Generating Decision Constraint Graph

For the generation of a decision constraint graph, we identified unary and binary
constraints on the design decisions summarized in Table 1. As results, Table 2
summarized unary constraints to each decision, and Table 3 summarized binary
constraints between the design decisions. Furthermore, the consistency relationships
among design decisions were naturally found by determining binary constraints.

Table 2. Unary constraints
Decision Variable Unary Constraints

Design Elements The inputs of system should be different from the outputs of system.
Roles of Elements Assigned roles should support the concurrency of system.
Properties of Elements Real-time properties of system should be supported.
Structure of System Relevant data among elements should be shared.
Task Partition Real-time properties of system should be supported.
Message Types Both synchronous and asynchronous properties should be supported.
Task Interaction The system should be run in terms of external events.

Task Synchronization The tasks concurrently trying to access a shared resource should be
synchronized.

Table 3. Binary constraints

Architectural Design Decisions
Decisions Decisions

Binary Constraints

Design Elements Roles of Elements Design elements should have the independent roles.
Design Elements Structure of System There should be an element for sharing data.
Roles of Elements Properties of Elements The concurrency among elements should be

satisfied.
Roles of Elements Structure of System An element should have a role for sharing data.
Task Partition Design Elements The elements having independent roles should be

identified as concurrent tasks
Task Partition Task Synchronization The tasks concurrently trying to access a shared

resource should be synchronized.
Task Interaction Message Types The tasks should interact with each other by

transmitting any type of message.
Task Synchronization Structure of System The tasks concurrently trying to access a shared

resource should be synchronized.

Using the decisions and constraints described in Table 1 through Table 3, we

generated the decision constraint graph as shown in Figure 9. Though a few decisions

were considered in this example, the relationship among them was more complex in
practice. Therefore, we found that the decision constraint graph would be useful for
showing complex relationships among the decisions. In other words, the graph
showed that the decision had the consistent relationship with one or more of them.

D1

D4

D8

D2 D3D5

D6

D7

Fig. 9. Decision constraint graph

4.4 Applying Architectural Changes for Quality Achievement

As an example, we tried to transform the current decision for synchronization among
the tasks concurrently trying to access a shared resource according to the previous
evaluation results. Namely, we considered applying a periodic execution mechanism
using a scheduler [3] to the design area of D8(Task Synchronization). Prior to
applying an alternative to a design area, however, it is necessary to analyze its impact
on an architecture. To do this, we gradually performed impact analysis starting from
change of D8. Figure 10 represents the result of impact analysis for architectural
transformation. As shown in Figure 10, some nodes of a graph were traversed during
impact analysis by checking both node consistency and arc consistency. Since the
change to the D8 doesn’t violate unary and binary constraint for D4(Structure of
System), the change to the D8 doesn’t have impact on D4. However, the adjacent
node D5(Task Partition) is affected for reasons of consistency violation. Then
additional changes for the nodes D1(Design Elements) and D4(Structure of System)
were needed by adding a scheduler to the system. As a result, we easily established a
transformation strategy consisting of D5, D1, and D4 by the sequence of ① through
③ in Figure 10. Through transforming the presented architecture according to the
transformation strategy, we expect to reduce the possibility of errors, but it can reduce
performance. Finally, it is necessary to validate the correctness of the transformations
performed. It can be achieved by performing iteratively the AQUA process.

D1

D4

D8

D2 D3D5

D6

D7 ①

②
③

*

Fig. 10. Establishing a transformation strategy

5 Comparison with Existing Methods

We compared the AQUA with the existing methods in terms of activities necessary
for achieving qualities at the architectural level. To do this, we first identified the
activities through analyzing existing studies on architectural evaluation and
transformation. When we analyzed them, we particularly focused on understanding
the full process from quality identification to quality achievement. As a result, we
identified six key activities to be handled at the architectural level for quality
achievement as described in Table 4. The activities are as follows:

 Identifying desired qualities is an activity to determine the kinds of quality
attributes to be dealt with during the quality achievement of an architecture.
Due to this activity, the goal for quality achievement can be clearly defined.

 Specializing quality attributes contributes in acquiring more informative
characteristics of quality attributes. In addition, it contributes in identifying
architectural decisions having a significant impact on achieving quality
attributes.

 Analyzing an architecture is an activity to determine quality achievement
of current architecture with respect to its desired qualities. It provides
insights concerned with the quality achievement of architecture.

 Analyzing change impacts is an activity to analyze the effects of making
changes to the architecture on the other quality attributes or other designs.
In particular, it helps make sure the design is consistent with one or more
of them.

 Modifying an architecture leads to a new version of the architecture with
the same functionality, but with different values for its desired qualities.

 Validating an architecture is an activity to validate the correctness of the
transformations performed. Through validating the architecture, the quality
achievement can be confirmed.

Then we analyzed whether the existing methods and the AQUA effectively

supported the activities necessary for quality achievement or not. To do this, we
summarized the artifacts closely related to the activities through analyzing some
methods including the AQUA as described in Table 4. The artifacts mean that the
methods effectively support the described activity. As illustrated in Table 4, the
existing methods fail to support the activities for quality achievement consistently.
Compared with the methods described in Table 4, however, the AQUA can
effectively support quality achievement in architecture-based software development
through producing explicitly the artifacts relevant to quality achievement at the
architectural level based on the design decisions.

Table 4. Comparison with existing methods

Architecture
Evaluation &

Transformation

Architecture profile (by
iteration)

Transformation strategy

Decision constraint graph

Architectural decisions
Architecture profile

Quality attribute
characterizations

Evaluation contract

AQUA
Krikhaar’s

Approach[7]
Carriere’s

Approach[6]
Bosch’s

Approach[3]ARID[4]SAAM[4]ATAM[4]

Not defined

RPA model

RPA model

Not defined

Quality metrics

Not defined

Activity only

Activity only

Not defined

Features

Not defined

Not defined

Not defined

Not defined

Not defined

Sensitivity points
&Trade-off points

Utility tree

Scenarios

Architecture Evaluation

Not defined

Not defined

Not defined

Activity only

Not defined

Scenarios

Validating an
architecture

Modifying an
architecture

Analyzing change
impacts

Analyzing an
architecture

Specializing quality
attributes

Identifying desired
qualities

Quality profilesScanarios

Activity onlyNot defined

Activity only

Activity only

Activity only

Activity only

Architecture Transformation

Not defined

Not defined

Sensitivity points

Scenarios

Methods

Activities
for Quality
Achievement

6 Conclusions and Future Work

We presented an approach to quality achievement in architecture-based software
development, which is called the AQUA. In addition, we applied the proposed
approach to the House Alarm system to illuminate the approach. The AQUA
involves two distinctive activities, which are architectural evaluation and
transformation. Here, architectural evaluation plays a significant role in revealing
any potential defects or assessing the fulfillment of required quality requirements,
and architectural transformation plays a significant role in reducing defects in the
architecture or making changes to the architecture. However, the AQUA
effectively integrates the activities for providing insights of an architecture with
respect to its desired qualities with the activities for making changes to the
architecture within a framework. Furthermore, the AQUA seamlessly supports the
activities relevant to quality achievement centering around the architectural
design decisions by explicitly documenting them. Through following the AQUA,
it can be easily performed to achieve quality attributes at the architectural level
without difficulties of bridging heterogeneous approaches.

In the future, we expect that this approach may be more complemented and
extended as a result of ongoing researches. Presently, we are interested in several
issues in supporting architecture-based software development. In particular, the
development of mechanisms for process automation is considered to be important.
We believe our approach will be effectively involved at the early stages of a software
development lifecycle.

References

1. Bass, L., Clements, P., and Kazman, R., Software Architecture in Practice, 2/E, Addison-

Wesley, 2003.
2. Kazman, R. et al., "The Architecture Tradeoff Analysis Method", Proceedings of the 4th

IEEE International Conference on Engineering of Complex Computer Systems, August
1998, pp.68-78.

3. Bosch, J., Design and Use of Software Architecture, Addison-Wesley, 2000.
4. Clements, P., Kazman, R., and Klein, M., Evaluating Software Architectures, Addison-

Wesley, 2002.
5. Dobrica, L. and Niemela, E., “A Survey on Software Architecture Analysis Methods”, IEEE

Transactions on Software Engineering, IEEE Computer Society, Vol. 28, No. 7, July 2002,
pp.638-653.

6. Carriere, S.J., Woods, S., and Kazman, R., "Software Architectural Transformation",
Proceedings of the 6th Working Conference on Reverse Engineering, October 1999, pp.13-
23.

7. Krikhaar, R., et al., "A Two-phase Process for Software Architecture Improvement",
Proceedings of the International Conference on Software Maintenance, August 1999,
pp.371-380.

8. Eriksson, H.E. and Penker, M., UML Toolkit, John Wiley & Sons, 1998.

