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Abstract. The well-known Separation of Concerns Principle has been revisited
by recent research, suggesting to go beyond the limits of traditional modulariza-
tion. This has led to the definition of an orthogonal,invasivecomposition rela-
tionship, which can be used all along the software development process, taking
several different forms. The object-like entity known asaspectis the best known
among them, but in the most general case it can be defined as a new kind of struc-
ture. Software Architecture must be able to describe such a structure. Moreover,
as mostADLs have a formal foundation, this can be used to provide an adequate
formalization for the aspectual composition relationship, which is still under dis-
cussion. In this paper, we propose to base this architecture-level definition in the
concept ofsuperimposition, integrating the resulting framework into the process-
algebraic, dynamicADL namedPiLar. This language has a reflective design,
which allows us to define that extension without redefining the semantics; in ad-
dition, the extended syntax can be used to avoid the use of reflective notions.
Nevertheless, the language must provide the means to define general patterns
to guide the weaving. Such patterns must not only identify locations in the ar-
chitecture, but also the adequate states of the corresponding process structure.
Therefore, we suggest to usetemporal logic, specifically theµ-calculus, as the
quantification mechanism. To illustrate this approach, we expose a case study in
which all these ideas are used, and conclude by discussing how the combination
of temporal logic and aspect superimposition, in this context, provides also an
alternative way to describe architectural dynamism.

1 Introduction

From the very beginning, one of the basic guidelines of Software Engineering has been
the Separation of ConcernsPrinciple [20]. This is yet another translation of the clas-
sic strategy known asdivide et impera, commonly attributed to Julius Caesar, to the
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computing field. The principle itself is at the core of every conceptual division within
the Software Engineering body of knowledge, and its purpose is to separately deal with
every detail in the development process, thus obtaining both simplicity and cohesion. It
is also the deep reason behind the traditional practice ofmodularization, which causes
the definition of structures within software; and also the motivation to create a specific
discipline to study them, namely Software Architecture.

In recent years, this principle has been revisited and given birth to the approach
known as Advanced Separation of Concerns, within which the so-called Aspect-Oriented
Software Development [12] is the best known incarnation. Considered as a whole, it is
basically an approach to software development in which those differentconcerns–or
aspects– within a system are conceived and designed as separate entities. The result
of this process is a set of overlapping functional elements or modules, maintainting
mutual dependencies and crosscutting relationships. Traditional modular barriers are
crossed; structural schemas, typically compositional and thus hierarchy-based, are no
longer valid. An orthogonal,invasivecomposition [2] relationship is used instead.

This new kind of element, often known asaspect, was initially conceived within the
boundaries of programming, at the implementation phase; but this origin has been su-
perseded long ago. Nowadays, the principles of Aspect Orientation are applied all along
the software lifecycle; in fact, there’s even a specific term, namelyearly aspects, to re-
fer to their influence in early stages of the development process, such as requirements
specification and architectural design itself.

Therefore, to study the concept of aspect from an architectural point of view is not
only reasonable, but even relevant. Moreover, as already exposed in [10], aspects are
related to the notion ofarchitectural viewpoint[24], still one of the more important and
less studied in the field. However, existing Architecture Description Languages (ADLs)
are conceived around the dimensions of composition and interaction, and designed to
describe their structures. However,aspectualstructures are not strictly compositional,
as they have a different nature; so they are not easily specified using currentADLs. To
adapt them to this sort of description, some specificextensionmust be defined.

In this paper we outline such an aspect-oriented extension for an existingADL

namelyPiLar [9]. This language has a reflective basis, which has made us able to
design this extension without affecting the semantics. But at the same time, the impact
of the new syntax on the whole of the language has been greater than at first expected.
On the one hand, theaspectualperspective can be used to avoid the complex reflective
interpretation of the original; on the other hand, the new setting provides a whole new
approach to describedynamic architecture.

2 On the Notion of Superimposition

The concept ofsuperimposition, also known assuperposition, was first proposed in
Concurrency Theory, both in the context of process algebras and action systems [3, 6].
It was originally conceived as a notion of refinement, relating different versions of a
specification as variations from the original. The same approach was later used as an
isomorphic notion of extension, composing a basic description with additional details.
Consequently, superimposition is now conceived as a privileged relationship between



two concurrent entities, such that the first one is able to access the internal details of the
second one. This relationship has essentially acompositionalnature.

Superimposition has also been approached from a different perspective, recently. In
the search for an adequate formal foundation for the novel concepts identified in the
context of Advanced Separation of Concerns, and particularly in Aspect Orientation,
it has been regarded as a suitable candidate. The alternative composition offered by
superimposition could possibly be assimilated to theinvasivecomposition implicit in
those concepts. In fact there are already several proposals relating this formal concept
to the notion of aspect [14, 17, 21, 22], though most of them are located at a program-
ming level. The only exception are Katara and Katz [15], who have also studied those
concepts at the architectural level, but still using an informal approach.

There are several different definitions of superimposition in the literature. Though
similar, they are not actually equivalent. Fiadeiro and Maibaum studied them from a
categorical perspective [11], finding out that there are really three different flavours of
the concept, which are respectively namedinvasive, regulativeandspectativesuper-
imposition. The first one is the simplest as it is unrestricted; the third one is the most
complex as it bears several restrictions to achieve better extensional properties.

In the architectural context, the most interesting among all the definitions of super-
imposition is probably Katz’s [16], as it describes not a relationship, but an structure.
The traditional strategy is to define the formal semantics for the superimposition rela-
tionship and then summarize it in a single compositional operator or morphism. Instead,
Katz uses a different approach. He defines superimposition as a high-level concurrent
control structurewhich implicitly uses the concept, and then provides the semantics
for this construct. Therefore the relationship itself, a well-behaved form or spectative
superimposition [11], is only indirectly defined.

This approach seems to be very adequate for the architectural domain, as the con-
struct has a significant resemblance to certain presentations of the concept of connector,
particularly higher-order connectors. Moreover, the resulting structure is also somewhat
similar toaspectual collaborations[19], the most recent result of the work by Lieber-
herret alon aspect orientation. This coincidence suggests that Katzian superimposition
provides indeed a good starting point to explore aspectual composition at the architec-
tural level, and therefore this is the definition to be used in the rest of this document.

2.1 Katzian Superimposition

In the following, the termsuperimpositionwill be generally used in the most general
sense, but assuming Katz’s definition [16] when necessary. Therefore, the expression
Katzian Superimpositionwill be used to explicitly refer to this restricted meaning, and
to concrete features in it which differ from some other approaches.

Structurally, every superimposition relationship has two parts: a superimposed ele-
ment, and another(s) base element(s) where it is superimposed to. The complete struc-
ture receives the name ofsuperimposureor combination. In the original conception, this
is justspectative superimposition, in which the superimposed process refines or extends
the original. It is able to inhibit the external interaction of the superimposee and also
to observeits internal behaviour, but it cannot modify the latter [3, 16]. In summary, it
doesn’t have full control over it, and acts like a monitor.



The frequent use of such terms assuperimposedor superimposeeis rather con-
fusing. To avoid complex periphrasis, we have decided to use a prefix-based notation,
which states clearly the relative position of involved elements. Then, the superimposed
component will be designated asσ-component, and it is conceived to be situated “over”
some superimposee component, here known asβ-component.

In Katzian superimposition, the relationship is defined as a structure which could
simultaneously comprise severalβ-processes, such that the set of theirσ-processes de-
fines an algorithm –a behaviour– which is globally superimposed over a significant
subsystem. The basic idea is that differentσ-components may play different roles in
this algorithm, thus providing us with the means to modularize the specification, while
at the same time grouping these modules in a single construction.

Each one of those roles are defined as subprocesses in a Katzian superimposition,
where they receive the name ofroletypes. The same roletype could have several in-
stances: that is to say, several elements could be playing the same role in the algorithm,
and share the same description. In this case, severalσ-processes, defined as the same
roletype, are superimposed over severalβ-processes.

Thus the notion ofroletypeis very useful from an architectural perspective, and it
would be used in the following sections. However, this could cause some confusion with
the concept ofrole in a connector, which is somehow similar. To avoid this, we would
use the namerole-componentto refer to the same notion in the architectural domain, as
it has features in common to both ideas.

3 Aspect-Oriented Architecture in PiLar

ThePiLar [7–9] language is a dynamic, process-algebraicADL, based on the notion
of abstract process [8] and the concept of reflection, and with semantics founded on re-
lation theory and the polymorphicπ-calculus. The use of reflection is its distinguishing
feature: as a consequence of that, aPiLar description could be stratified in multiple
meta-levels, components are implicitly divided in three categories (base component,
meta-component and meta-level component) and have a dual nature, and the definition
of first-class connectors is not strictly necessary.

Our previous work [10] shows that the existing language, with the associated re-
flective support, was powerful enough to simulate the superimposition structure and the
combination schema in an aspect-oriented architectural description. There, the founda-
tion of our approach was the process-algebraic strategy of Andrews’ definition [1]. But
at the same time this approach was rather complex, and we suggested ourselves that an
specific syntax for the new set of concepts would be rather convenient.

In the next sections we describe a proposal for an aspect-oriented extension of
PiLar, now using Katzian definition as a foundation. By doing so, we expose the real
expressiveness of such an approach, and simultaneously provide a completely different
perspective for theADL, as the syntax acquires an alternative nature.

Of course this new vision does not exclude the previous one, though it can be used
to hide it. Using it, we’re able to describe the language without any mention of the
concept of reflection or the meta-level hierarchy, but at the same time we retain most of
the expressive power of the reflective vision.



New Concept Analogous Aspectual Notion Former Reflective Concept

Viewpoint Concern Reification Category
Architectural View Crosscut Meta-Level (subset)

Multi-dimensional Component Hypermodule (Extended) Metaspace
Architectural Fragment Aspectual Component Composite Meta-level Component

Partial Component Aspect, Hyperslice Metaspace (subset)
Exterface Aspect Interface Metaface (Meta-Interface)

Bond Assertion Pointcut Designator —
(Aspect) Connector

Superimposition (target) Pointcut Reification (target)
Role-Component Pointcut (subject) Reification (origin)

Superimposition (relationship) Dynamic Weaving Reification (relationship)
Combination (Superimposure) Weavedsystem Reification (set)

β-Component BaseModule Base Component, Avatar
σ-Component Aspect (part of) Meta-Component, Rohatar
σ-Constraint Advice Meta-Constraint

Component in-a-Fragment (Aspect) Wrapper Meta-level Component, Niyatar
Boundβ-Action Join Point Synchronization with Avatar

Table 1.Rough Conceptual Analogies in/to bothPiLar Models

However, theseaspectualand reflective perspectives of the same language are not
conflicting at all; on the contrary, they naturally complement each other. So we’re not
rejecting the reflective interpretation, which is still more powerful; we’re just providing
an alternative explanation for the language, which allows us to initially avoid some of
the most complex notions in the language.

3.1 PiLar Revisited: A New Vision For The Language

We have already exposed the reasons why we consider the description ofaspect-oriented
architectures to be relevant. An explicit aspect-oriented syntax is not strictly required,
as we can use the reflective syntax to provide this description indirectly, as already ex-
posed in [10]. However, this approach could allegedly be considered too complex. For
this reason, we found it convenient to extend the language’s syntax, such that relevant
concepts can be directly managed.

This syntax extension would be based in Katzian superimposition, as this construct’s
shape provides an almost direct mapping to the architectural level. Specifically, the
following concepts are introduced:

Architectural Fragment or Partial Component. This name designates the analogue
of an aspect at the architectural level. Such an aspect is a new kind of module,
similar to a component, but which was not designed to work on isolation; that’s why
it has a partial description. It is syntactically identical to a composite component,
which unfolds as a Katzian superimposition.

Superimposition. Relationship which is implicitly introduced in the new model. It has
the form of a Katzian construction, where the main structure is a fragment, the el-
ements are plain components and role-components, instantiating asσ-components,
and the resulting architecture defines a combination.



Role-Component. Each of the roles we can superimpose over aβ-component when
defining a Katzian structure. They are the “holes” in the architectural fragment, and
they are filled byσ-components when the superimposition is made effective.

σ-Component. Every instance of a role-component, which is superimposed over a
β-component. It can define also “external”, non-superimposed behaviour.

β-Component. Every one of the base components where aσ-component is being
superimposed, filling a gap in the fragment.

Combination. The set of all the elements involved in a Katzian superimposition, once
it has been applied.

This version of the superimposition structure extends Katz’s one merely by adding
compositional details. Therefore, the fragment could have its own external interface,
which is not projected intoβ-components; it could define its own constraints, which
would be combined to those of its internal elements; and of course, a fragment definition
can use additional components which arenot going to be superimposed, that is, which
would never act as role-components.

The new conceptual structure of the language is completely based on the implicit
mapping between two structural relationships: the already existing, reflective notion of
reification, and the concurrent concept ofsuperimposition, introduced by the aspectual
extension. Curiously enough, this idea is supported by the original semantics of the lan-
guage, as there reflection is unfolded as aπ-calculus structure of concurrent processes
which is inspired [8] in another definition of superimposition [3].

The syntax is inspired in Katzian superimposition, and this means that this concep-
tual mapping would not be direct at the linguistic level. This means that some of the
more complex aspectual notions are built over a set of several reflective elements; and
also that some basic reflective concepts lack a peer in the aspectual view.

However in general terms, the mapping between the more important aspectual and
reflective notions is rather intuitive. Everyβ-component is a base-component, and its
σ-component is a meta-component. So, the notion of role-component is just a way
to explicitly declare the meta-components in a fragment, and superimposition is just
a reification relationship which is reflected over an already existing base component.
Consequently, an architectural fragment is a composite meta-component, composed of
one or several meta-components and (possibly) some additional meta-level components.
Only the notion of combination lacks a reflective equivalent, as it combines elements
which are situated in two different meta-levels.

There’s no space here to provide a more detailed mapping between the reflective and
aspectual concepts inPiLar, as this is not our main concern here. Similarly, a detailed
explanation of their similarities and differences which analogous notions in the specific
field of Aspect Orientation would also require a rather long exposition, particularly to
explain those analogues. This comparison is interesting anyway, so we provide a brief
and compact summary both mappings in the Table 1.

3.2 A New Extended Syntax for thePiLar Language

Table 2 contains an enumeration of the new syntactic elements added to the language,
which are based in the notions we have described in the previous section. Here we



Keyword Notion Basic Structure

\fragment Architectural Fragment Analogous to a composite component including
role-components.

rolecomp Role-Component Declaration of a component instance which acts
as aσ-component. A “hole” in a fragment.

\exterface Exterface Non-superimposed interface, reserved for the
(External Interface) private use of theσ-component itself.

bcomp β-Component Prefix to designate elements of aβ-component.
scomp σ-Component Prefix to designate non-superimposed elements.
impose Superimposition Dynamic operator to superimpose a fragment

over severalβ-components (see Figure 4).
del Unweaving Deletion (destruction) of a superimposition.
\bond assertion Bond Asssertion Syntax to select relevant join points.

Table 2.Aspect-Oriented Extension forPiLar: Syntax

will not try to describe the minor details of this syntax, as they are rather intuitive, and
anyway most of them will be used later for the case study included in section 4.

The only notion we have not mentioned before is that ofbond assertion. This is
the incarnation of the quantification mechanism which is necessary in every aspect-
oriented language [13, 10]. As we expose in the next section, this mechanism is based
on temporal logic, and it provides the syntax to select join points at any placeor moment
in the architecture, resulting in a truly dynamic weaving mechanism.

Of course, already existing introspective (reflective) operands in the language can
still be used. In fact, some of them are even essential to outline a good aspect-oriented
description, as they fill the role of so-calledaspectual reflection[18] abstractions. For
example, the language already included a reflective operator,bound, to obtain the set
of links bound to a given port (or the set of ports pount by a given link). This operator
happens to be also particularly useful in an aspectual context.

Most of this “extended” syntax is actually justsyntactic sugarfor aspect-oriented
abstractions. Not a single element in the language semantics has required to be adapted
to the new conception of theADL. This is in accordance to our initial purpose, in which
this new version ofPiLar is conceived just as a different presentation of the same
language, which tries to avoid the use of reflective notions.

However there is an exception to this rule: the definition of assertions and the use
of temporal logicis actually a new addition to the language. But this addition has not
been an arbitrary decision; as explained next, there are several reasons to use it.

3.3 The Syntax of Temporal Assertions

The existence of some quantification mechanism is strictly necessary for a sensible
Aspect Orientation definition [13]. Without it, every join point between two structures
has to be individually designated. Though this would still be useful [10], it is not flexible
enough; an architectural description is supposed to describe structuralpatterns, and
therefore the lack of a general expression to refer to patterns of superimposition would
be considered as a severe limitation.



Moreover, in the context of dynamic architectures, the choice of a particular join
point to superimpose an architectural aspect does not only depends on the system’s
structure, but frequently also on the concretesituationor state in which an element (or
set of elements) is. Superimposition happens not only at aplacein the architecture, but
also at a particularmomentin the system’s evolution.

Existing aspect-oriented languages, at the programming level, use quantification
mechanisms based just on name structure; this would be a very inadequate approach at
the architectural level. Some other proposals provide a better mechanism by suggesting
the use of some variant of predicate logic. While this is much more flexible, it is still not
enough, particularly in the presence of time. Besides, classical logic is probably not the
best choice to combine with the semantics of a process-algebraicADL, which would
usually consist of transition systems.

Then our proposal tries to be a solution to both problems, and it is based on the
addition oftemporal logicto the language, using the form of assertions or laws. In the
context ofPiLar, which is founded on a process algebra and the notion of bisimulation,
the obvious choice is the modalµ-calculus [4], a branching-time temporal logic, which
is also considered as the most general among them.

Therefore, the syntax for temporal assertions would be based in that ofPiLar’s
dynamic language and theµ-calculus. There are several different but equivalent nota-
tions for the latter; here we follow Stirling’s [4, 23], probably the best known among
them. Currently we would only use the basic syntax; but this is just a first approach to
the problem, so it should not be taken as a final decision. We could consider further
additions, like pure temporal operators in the CTL style, which are usually considered
easier to understand by the average software engineer. Those would be syntactic sugar
anyway, as their semantics are already expressible in theµ-calculus syntax.

The basic extension is just a notion oflaw or assertion. With this addition, the
language acquires a new quality, as it gets transformed into some sort ofLaw-Governed
PiLar, which is even capable of describing architectural styles. However, subject to
this notion there’s a set of new concepts, which are summarized in the following.

Assertion. Following Lamport, we use the termassertionto refer to any temporal
formula defined over the architecture. The purpose of this term is to easily separate
them from behavioural constraints, which inPiLar are defined as processes. The
assertionstructure of the syntax is defined to contain these formulae.

Bond Assertion. The only difference between this and a conventional assertion is that
this isactive. This means that when the formula requires an action to happen, and
this action is not observed, the assertion itself is in charge of doing it,but only if this
action is related to a superimposition. Expressed otherwise, if an assertion states
that animposeaction must happen, the assertion itself is the one which creates a
superimposition. Apart from being prefixed with a\bond qualifier, the syntax is
identical to that of a conventional assertion.

Action. Any valid action in aPiLar specification, in particular message inputs and
outputs through some port. They are the set of observable events from the asser-
tion’s point of view. The syntax allows to specify a single action or an enumeration
of several ones. When it is prefixed by a minus (–) sign, this refers to the set of each
actionexcept forthis. Conversely, the asterisk (∗) refers to every of them.



Bound Name. This is not aµ-calculus notion, as it comes from aspect orientation. As
noted above, assertions are used as a quantification mechanism, and they observe
actions happening inany portof the namespace. Then such a port is a join point
within a component, and thus we would often need to refer to it again. To be able
to do that, we provide a mechanism tobind the name of these elements within a
special variable defined for this purpose. The binding process must comply with
the Scope Inversion Rule, stated below.

Possibility Modality . When referencing an action, this means that if the action hap-
pens, the expression which follows in the assertionmaybe true. The purpose is
to state that the system is able to do something in this point of its evolution. It is
expressed by enclosing the action〈a〉 in angles.

Necessity Modality. The second alternative. When referencing an action, this means
that if it happens, the expression which followsmustbe true. The purpose is to
forbid any otherpossibility to happen in the system, indicating an inhibition. It is
expressed by enclosing the action[a] in brackets.

Minimal Fixpoint . It has a complex semantics; but we can summarize it [4] by saying
that it specifies a repetition of undefined, butfinite length. In theµ-calculus, it is
often expressed asµ (or min); inPiLar, we shall use the keywordnrec.

Maximal Fixpoint . It is equally complex; we can summarize it by saying that it spec-
ifies a repetition ofinfinite length. In theµ-calculus, it is often expressed asν (or
max); inPiLar, we shall use the keywordxrec.

This construction has the same semantics as the equivalent notions in theµ-calculus,
and therefore it has been already formally defined [4, 23]. There’s only one difference
from their usual application to a process algebra: here we don’t have a flat namespace,
but a hierarchy of names. This results in two consequences. First, any assertion must
be defined over a concrete namespace, provided by a component; this is designated by
using theover clause. Second, it is often necessary to bind the name of the components
in which actions are observed. As stated above, this binding process must comply with
the rule which follows:

Rule 1 (Scope Inversion)Every action on a port which is observed in an assertion
binds the name of theinnermostcomponent where this port belongs in the composition
hierarchy, using the conventional syntax to qualify those names.

Next we will expose an example to show how an assertion works. To ease the ex-
planation, and also to show the differences in the notation, we would use the same
one which is later provided inPiLar syntax in Figure 4. Moreover, the actions to be
observed (acc1 andacc2) have been abstracted, so that we just focus on the temporal
aspects of the formulae and not on the concrete behaviour.

This assertion4 uses the conventional notation of theµ-calculus [4]. The mapping
to the syntax inPiLar should be apparent by comparison to the descripiton in the
Figure 4, taking into account that the actions (acc1 andacc2) are themselvesPiLar
actions, expressed in the syntax of the dynamic language.

4 This is of course just a single assertion (Always_Do_Tunnel), but it has been divided in three
parts to ease its explanation. The specification in a single formula can use a much more com-
pact notation, which is:ν X. ([acc1] ([−acc2]false ∧ 〈−〉true) ∧ [−] X).



Must_Tunnel ::= [−acc2] false ∧ 〈−〉true (1)

Do_Tunnel ::= [acc1]Must_Tunnel (2)

Always_Do_Tunnel ::= ν X. (Do_Tunnel ∧ [−] X) (3)

The assertion has been separated in three formulae, such that each one of them is
contained in the following. So we begin with the most internal one (1). It describes the
conjuction of two terms: the second states that it’s possible for any action to happen; the
first states that when something happens which isnot theacc2 action, the formula gets
false. This means that the conjunction only gets true if theacc2 action actually happens.
This is theµ-calculus way to indicate that something is mandatory.

The second equation (2) is trivial; it just states that after anacc1 action happens, the
previous one (1) isnecessarilytrue; in summary,acc2 must happen.

The last equation (3) encloses the former one in another conjunction, inside the
scope of a maximal fixpoint (ν X). The other part of the conjunction is enabling any
action to happen, assuming that the fixpointX (that is, any possible future) gets true.
For this to be consistent, if theacc1 action happens at some point in time, the other
equation (2) must be true, and so this forces us to “trigger”acc2. This is a maximal
fixpoint, therefore this sequence can happen as many times as required (“always”).

In summary: the assertion states that anacc1 action may happen at any moment, but
in the case the next action is necessarilyacc2; and this is always true, meaning that this
happensevery timethe actionacc1 is observed.

4 Case Study: P/S Architecture with Secure C/S Connection

In this section we provide a case study outlining the use of the new aspectual framework,
to show how it can be applied for the purposes of architectural description. To simplify
things, we use an augmentative (asymmetric) model, whichgrows from an initial ba-
sis; a compositive model, though symmetric, would have been much more complex.
The general idea is that we begin with a base architecture, and then we superimpose a
security aspectover it, defining the weaving as a bond assertion. Besides, this super-
imposition indirectly modifies the system’s structure; therefore, this is also an example
of a new way to describearchitectural dynamism, a very interesting side-effect of the
aspectual framework.

The case study describes a hybrid architecture, blending the Publisher/Subscriber5

and the Client/Server architectural styles [5]. The global conception is that of a dis-
tributed system composed of a number ofsubscriberswhich contract the services of a
publisher; for instance, a news service. As soon as new contents are made available, the
publisher notifies subscribers by triggering an event. When a subscriber observes this
event, it must decide whether it is interested in those contents or not. If this is the case,
the subscriber starts to behave like aclient, which tries to communicate to aserver; but
the connection to this server has yet to be created. In this particular moment, asecure

5 This architectural pattern has also been described in the literature as theImplicit Invocation
architectural style, and even theObserverdesign pattern. The structure is fairly identical.



\component Publisher (
\ interface ( port notify | port server )
\constraint (

Provide def = ( Publish | Serve )

Publish def= rep ( tau (msg);
loopSet ( bound (notify) )

( notify !( msg) ) )

Serve def= rep ( server?(req);
tau (req,data ); server!(data ) ) ) )

\component Subscriber (
\ interface (

port receive | port client )

\constraint (
Observe def= rep ( receive?(msg);

tau (msg,ask,req);
if ( ask ) ( Request(req) ) )

Request(req) def= ( client !( req);
client ?(data ); tau (data ) ) ) )

\component System (
\config (

PS: Publisher | S1, S2, S3: Subscriber |
\bind (

PS.notify = S1.receive |
PS.notify = S2.receive |
PS.notify = S3.receive ) ) )

Fig. 1. Hybrid Publish/Subscribe and Client/Server Architecture (w/o connection)

connectionamong them is created, applying atunnelingprotocol which ensures that ev-
ery interaction between them is encrypted in advance. Using this connection, the client
receives the selected contents. This process may happen as many times as required.

Many details of this example which are not strictly related to this paper’s subject
have been left out, as we try to briefly expose an averagely complex system. Therefore,
there are details on the final system which don’t try to be realistic. Then, the specifica-
tion shows how new private connections are created, but they are never destroyed; the
only reason to omit this step is to keep the example short and simple enough.

The case study is described in Figures 1 to 4. The first one provides the base Pub-
lish/Subscribe architecture, and also the Client/Server infrastructure. The second one
describes an architectural fragment, which provides the secure connection by using the
tunneling protocol. In the last one we provide the bond assertion, which dynamically
“triggers” the superimposition of this fragment to the base architecture.

The specification in Figure 1 is therefore fairly standard. ThePublishercomponent
has two ports, enabling it to act as publisher or server, as required; and two constraints,
PublishandServe, which control any interaction in these ports. The first process starts
when some new content –expressed as an internaltau action– is created; then this is
notified to every subscriber connected to thenotify port. The second process describes
how the server waits to receive some request; when this happens, it locates the requested
data, and sends them to the requesting client.

On the other hand, theSubscribercomponent can similarly behave either as a sub-
scriber or a client. However in this case the two relevant constraints are related. The first
process,Observe, waits to receive a notification event, which is internally evaluated. If
an affirmative decision is taken, the component begins to behave as a client by starting
theRequestprocess. This just sends a request for the new content, waits to receive the
result, and then processes the information.

TheSystemcomponent is just a composite to define the whole of the system. Let us
note that initially, only the publisher and its subscribers are connected.

Figure 2 describes an architectural fragment defining the superimposition of a se-
cure connection, supported by a tunneling protocol, over the previous base architecture.
So it is the equivalent of asecurity aspect. As this is conceived in an augmentative
model, a high degree of connascence with theβ-architecture is allowed, something that
could be less adequate in a symmetric model.



\component TBegin (
\ interface ( port send )
\constraint (

lock ( bcomp .client );
rep ( catch client (req ); send!(req);

send?(ex); tau (ex,x );
shift client (x ) ) ) )

\component TEnd (
\ interface (

port recv )

\constraint (
lock ( bcomp .server );
rep ( recv?(req ); shift server(req);

catch server(x);
tau (x,ex ); recv!(ex ) ) ) )

\ fragment Tunnel (
\config (

rolecomp TB: TBegin |
rolecomp TE: TEnd |
\bind ( TS.send = TR.recv ) ) )

Fig. 2. Architectural Fragment to Superimpose a Secure Connection

The Tunnelfragment is defined as a Katzian superimposition, built as the compo-
sition of two role-components connected by a basic link. These components define a
tunnelusing this link: every message to be sent is encrypted in advance on origin, and
only the legitimate receiver would know how to decrypt it. This way asecure channel
is created over a conventional connection.

The tunnel has been designed to be asymmetric: only the sending of data is en-
crypted, while the requests are not, as they are not considered as sensible information.
This implies that interaction is always initiated by the same part of the interaction. As
a result, the tunnel is conceived as having an explicit beginning and an end, as indi-
cated by the archtypesTBeginandTEnd, which respectively describe the behaviour to
be superimposed over every client and the server.

The former has then been designed to be combined with aSubscriber. First, it
locks theclientβ-port, thus inhibiting any further uncontrolled interaction. Then it cap-
tures (catch) any message sent through this port, which must be a request. This request
is sent to the server unaltered, using the superimposed connection. Eventually, some
encryptedresponse is received, and it must be decrypted; this is made by an internal
process (tau). The requested data are then obtained, and then they are inserted (shift)
into theβ-port. All this process is transparent to the oblivious client; it just requests
some data, and later receives those data in the same port.

TheTEndarchtype is similar, but it gets superimposed to aPublisher. Equivalently,
it locks theβ-portserver, but now it waits for a request on the superimposed connection.
When this is received, it is inserted into the server component, which “believes” this to
be a conventional reception, and answers by providing the relevant data. Those data are
captured by theσ-component, which encrypts them in an internal process, and sends
the result through theσ-connection.

Figure 3 depicts and summarizes the architecture of the augmented system. Two
long arrows represent the superimposition relationship, which imposesTBegin and
TEnd to Subscriberand Publisher, respectively. Small arrows represent the flow of
information within the woven architecture.

Finally, Figure 4 describes the bond assertion which blends the fragment with the
β-architecture. Once we’re aware of the meaning of the temporal formula, which was
described in section 3.3, the explanation is immediate.

First, the assertion is declared: it is a bond assertion, defined over the namespace
of the Systemcomponent, and the name of the main formula isAlways_Do_Tunnel;
the rest are subformulae. The temporal expression is now evaluated; it means that any



Fig. 3. Publisher/Subscriber System with a superimposed Client/Server Tunnel

\bond assertion Always_Do_Tunnel over System (
Must_Tunnel(s) is= [ – impose Tunnel (s | PS ) ] false and <∗> true
Do_Tunnel is= (name Sub) [ Sub.client!(_) ] Must_Tunnel(Sub)
Always_Do_Tunnel is= xrec X ( Do_Tunnel and [∗] X ) )

Fig. 4. Bond Assertion: Superimposing theTunnelingAspect

action may indefinitely (xrec) happen; but if this action is some kind of sending through
a port namedclient, the name of the sending component is bound in aSubvariable;
data themselves are ignored. Now the next step is mandatory, as the formula requires:
theTunnelfragment is superimposed over the bounded client and the standalone server.
This is a bond assertion, so it is the one which creates the superimposition; this way, the
fragment iswoveninto the architecture.

In summary, every time (always) a client sends a data request, asecure connection
between it and the server is transparently created.

Though simple, this example has yet another reason to be notorious; it shows how
the dynamic weaving (combination) of architectural aspects, based on the temporal
logic support, causes in fact adynamic evolutionof the architecture. Temporal logic
has been used before in the context of Architecture, but always for analyzing purposes,
never to describe a system, or a dynamic effect within it. As far as we know, this is the
first time that it is used to cause an effect on the system’s structure.

5 Conclusions and Future Work

An ADL must be first conceived as a formal description language. This means that it
is used to describe the structure and properties of an architecture, and this can be done



just for specification purposes. From this point of view, the existing temporal logic
support is adequate for our purposes, as long as it can be used to capture the system’s
behaviour. But, anADL can also be used to simulate (or even generate) the system
itself; in that case, the existing temporal support would not be enough. Some kind of
timeoutmechanism would be required to limit the timeframe and ensure that a particular
superimposition indeed happens; a minimal fixpoint (“eventually”) formula would not
suffice to provide the required behaviour.

This paper introduces superimposition as “the” third architectural dimension, a role
which has previously been played by reflection. This is orthogonal to the traditional
dimensions of composition and interaction. The expressiveness of this approach is pro-
vided by combining elements located at different places in those three dimensions, even
indirectly. Though not as expressive as reflection, it provides still a very high degree of
flexibility, and a new approach to tackle the problem of architectural dynamism.

However, this impliesaspect composition, something that at present has only been
tackled by using heuristic techniques. The only notorious exception is a work by Sih-
man [21, 22], which is also based on Katzian superimposition; so their results could be
considered in the context ofPiLar. A detailed study is scheduled as future work. This
work will also include several related questions, such as the management of priorities
and dependencies between aspects. These problems are still open questions in research
within Aspect Orientation, and therefore any results at the architectural level would be
of general interest to the whole field.

On the other hand, the introduction of assertions in the language has been as generic
as possible, as it does not only provide the support to bind and weave aspects, but also
to define architectural styles. This is obviously a feature we have not exploited in this
paper; though very promising, it has yet to be carefully evaluated.

In summary, the introduction of the notion of “aspects” in Software Architecture
does not only provide the means to describe several new abstractions, but at the same
time simplifies the presentation of previous approaches, and outlines a whole new range
of applications, namely the specification of dynamism, the definition of multiple archi-
tectural views, the separate description of concrete concerns, such as security or coor-
dination, or the study of new composition schemes.
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