Symbolic verification of communicating systems with
probabilistic message losses: liveness and fairnéss

C. Baiett, N. Bertrand, and Ph. Schnoebelén

1 Universitat Bonn, Institut fir Informatik 1, Germany
2 SV, ENS de Cachan & CNRS, France

Abstract. NPLCS'’s are a new model for nondeterministic channel systems where
unreliable communication is modeled by probabilistic message losses.die sh
that, forw-regular linear-time properties and finite-memory schedulers, qualita-
tive model-checking is decidable. The techniques extend smoothly tdi@ues
where fairness restrictions are imposed on the schedulers. The lsympizee-

dure underlying our decidability proofs has been implemented and ustadyp

a simple protocol handling two-way transfers in an unreliable setting.

1 Introduction

Channel systemgl5] are systems of finite-state components that commumigit
asynchronous unbounded fifo channélessychannel systems [17, 6], shortly LCS'’s,
are a special class of channel systems where messages cast bénile they are in
transit. They are a natural model for fault-tolerant protsavhere communication is
not supposed to be reliable (see example in Fig. 1 below)itibddlly, the lossiness
assumption makes termination and safety properties daeif22, 17, 6, 4, 20, 8] while
reliable, i.e., non-lossy, systems are Turing-powerful.

LCS'’s are a convenient model for verifying safety propertd& asynchronous pro-
tocols, and this can be automated [4]. However, they are ded@ate for verifying
liveness and progress properties: firstly these propatesindecidable for LCS's [5],
and secondly the model itself is too pessimistic when ligsrie considered. Indeed, to
ensure any kind of progress, one must assume that at leastraessages will not be
lost. This is classically obtained via fairness assumpgtion message losses [18] but
fairness assumptions in LCS’s make decidability even miusve [5, 21].

Probabilistic LCS’s shortly PLCS's, are LCS’s where message losses are seen as
faults having grobabilisticbehavior [27, 10, 31, 1, 29, 2, 7]. Thanks to its probabdisti
framework, this model automatically fulfills strong faigseconditions on the message
losses. Additionally it allows one to state so-callgahlitative questions, whether a
linear-time property will be satisfiedwith probability I', that are decidable. However,
PLCS’s are not a realistic model for protocols because tloegider that the choices
between different actions are made probabilistically eatihan nondeterministically.
When modeling communication protocolgmndeterminisms an essential feature. It
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is used to model the interleaved behavior of distributed maments, to model an un-
known environment, to delay implementation choices atesidges of the design, and
to abstract away from complex control structures at latges.

This prompted us to introduce NPLCS's, i.e., channel systehrere message losses
are probabilistic and actions are nondeterministic [1R, These systems give rise to
infinite-state Markov decision processes, and are a mattgfdaimodel for analyzing
protocols. The drawback is that they raise very difficulifigation problems.

Qualitative verification for NPLCS’s. Our early results in [14] rely on the assumption
that idling was always a possible choice. This simplifiesehalysis considerably, but

is an overkill: a necessary ingredient for most livenesperties of a compound system
is the inherent liveness of the components, which disagpetrey can idle.

We developed new techniques and removed the idling liroitaith [9] where we
show that decidability can be maintained if we restrict otteergtion tofinite-memory
schedulers (strategies for the nondeterministic chaidés$ seems like a mild restric-
tion, and we adopt it in this paper since we aim for automagiification.

Our contributions. In this paper we extend the preliminary work from [9] in three
directions: (1) We allow linear-time formulas referringttee contents of the channels
rather than just the control locations. We did not consibleréxtension earlier because
we lacked the techniques for proving the convergence of iingmmputations. How-
ever, the extension is required in practical applicatioheng fairness properties have to
express that “a rule is firable,” which depends on channeters for read actions. (2)
We develop symbolic representations and algorithms fer&dtPLCS configurations.
These algorithms have been implemented in a prototype habhte use to analyze a
simple communication protocol. (3) We consider qualigtrerification with quantifi-
cation oveffair schedulers, i.e., schedulers that generate fair runs abuoaly.

Outline of the paper. Section 2 recalls the necessary technical background fior no
deterministic probabilistic channel systems, and se@ioriroduces the new symbolic
framework we use for handling sets of configurations. Wegamesur decidability re-
sults in sections 4 (for finite-memory schedulers) and 5 fd@ar schedulers). Finally
we apply our algorithms on Pachl’s protocol in section 6. pdbofs omitted in this
extended abstract can be found in the complete versiorsé@ibn the web.

2 Nondeterministic probabilistic channel systems

We assume the reader has some familiarity with the verifinatf Markov decision pro-
cesses, or MDPs, (otherwise see [11]) and refer to [9] fordeta definitions regarding
our framework. Here we recall the main definitions and notetiwithout motivating or
illustrating all of them.

Lossy channel systemsA lossy channel system (a LCS) is a tuple= (Q, C,M,A) ofa
finite setQ = {p,q,...} of controllocations a finite selC = {c, ...} of channelsa finite
message alphab&l = {m,...} and afinite seh = {9, ...} of transition rules Each rule
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has the forng * p whereopis anoperationof the formc!m (sending messagaalong
channelc), c?m (receiving message from channek), or ,/ (an internal action with
no communication). For example, the protocol displayeddgnlFis naturally modeled
as a LCS: building the asynchronous product of the two psasd3 andPy yields a
bona fide LCS with two channels and a five-message alphébef{ap,as,do,d1,eo0d}.

Operational semantics A configurationof £ as above is a pag= (q,w) of a location
and a channel valuatiow : C — M* associating with any channel its current content
(a sequence of messagel):C, or M* when |C| = 1, denotes the set of all channel
valuations, andConf the set of all configurations. denotes both the empty word and
the empty channel valuation. The siakof a configuration is the total number of mes-
sages irs. The rules ofz give rise to transitions between configurations in the oliwio
way [9]. We write/A(s) for the set of rule® € A that are enabled in configuratian

We writesiperfsi whens is obtained by firingd in s. The “perf” subscript stresses
the fact that the step is perfect, i.e., no messages aréllosiever, in lossy systems, ar-
bitrary messages can be lost. This is formalized with thp b&the subword ordering:
we writep C  whenpis a subword of, i.e.,p can be obtained by removing (any num-
ber of) messages fropd, and we extend this to configurations, writifgw) C (¢, w/)
wheng = ¢ andw(c) = w/(c) for all c € C. As a consequence of Higman’s Lemma,
is a well-quasi-order (a/qo) between configurations af. Now, we defindossy steps

by Iettingsi s Ethereisa perfect stepiperfs’ such thats” C . This gives rise

to a labeled transition systebTS, oot (Conf,A,—). Here the sef of transition rules

serves as action alphabet. In the following we assume thairfp locationg € Q, A
contains at least one rutqa% p whereop is not a receive operation. This hypothesis
ensures that TS, has no deadlock configuration and makes the theory smoditier.
no real loss of generality as demonstrated in [2, § 8.3].

An example.Pachl’s protocol [22] handles two-way communications dessy chan-
nels and is our case study for our algorithms. It consistavof ilentical processes,
PLieft) andPr(ignt), that exchange data over lossy channels using an acknawétg
mechanism based on the alternating bit protocol. See Figolb&he actual contents
of the data messages is abstracted away, and we judpLdsec M to record the alter-
nating control bit. Message®,a; € M are the corresponding acknowledgments. The
protocol starts in configuratiofl.0,R4) whereR is the sender anBk the receiver. At
any time (provided its last data message has been acknaedetite sender may signal
the end of its data sequence with @ € M control message and then the two pro-
cesses swap their sending and receiving roles. Noteetitatioes not need to carry a
control bit, and that its correct reception is not acknogksdl In section 6 we explain
how such a two-process protocol is modeled as an LCS, andgive outcomes of our
automated analysis.

From LCS’s to NPLCS's. ANPLCSa. = (£,T1) is a LCS. further equipped with a
fault ratet € (0,1) that specifies the probability that a given message storederof
the message queues is lost during a step [13, 14]. The apeaibsiemantics of NPLCS’s
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Fig. 1. Pachl's communication protocol, from [22].

has the form of an infinite-state Markov decision prodd&P,, d:ef(Conf,A, Py ). The

stepwise probabilistic behavior is formalized by a thrégeehsional transition proba-
bility matrix P, : Conf x A x Conf — [0, 1]. For a given configuratiosand an enabled
rule d € A(s), Py (s,9,-) is a distribution oveConf, while P, (s,9,-) = 0 for any tran-
sition ruled that is not enabled ia The intuitive meaning o, (s,8,t) = A > O is that
with probabilityA, the system moves from configuratieito configuratiort whend is
the chosen transition rule &

For lack of space, this extended abstract omits the technlesavy but quite natu-
ral definition ofP,,, and only lists its two essential properties:
1. the labeled transition system underlyM@P,, ;) is exactlyLTS; .
2. the setQ; = {(q,¢€) | q € Q} of configurations where the channels are empty is an
attractor, i.e., from any starting configuratio@, will eventually be visited with prob-
ability 1 [2, 7].

Schedulers and probability measureThe nondeterminism in an MDP is resolved by
a scheduler also often called “adversary”, “policy” or “strategy”. Hea “scheduler”
is ahistory-dependent deterministic schedutethe classification of [28]. Formally, a
scheduler fory is a mappingu that assigns to any finite pathin A¢ a transition rule

0 € Athat is enabled in the last statemfThe given patht specifies the history of the
system, and: (11) is the rule thatu chooses to fire next. A schedularonly gives rise

to certain paths: we say= & S % ... is compatible withu or, shortly, is azz-path,

if Py (S-1,0,5) > 0foralli > 1, wheredi 1 = ¢ (S 5.5 s) is the rule chosen by
u at stepi alongTt In practice, it is only relevant to define how evaluates on finite
u-paths.

A finite-memoryor fm-, schedulet: = (U, D, n, up) is specified via a finite sét of
modesastarting mode p € U, adecision rule D.U x Conf — A choosing the next rule
D(u,s) € A(s) based on the current mode and the current configuration, aextanode
functionn : U x Conf — U specifying the mode-changes af. The modes are used to
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store some relevant information about the history. An finestulerz is memoryless
it has a single mode: them is not history-dependent and can be specified more simply
as a mappingi : Conf — A.

Now, given an NPLCS\, a starting configuratios = sp and a scheduletz, the
behavior ofA’ under« can be formalized by an infinite-state Markov ch®I€ ;. For
arbitrary schedulers, the statesM€,, are finite paths im(, while for fm-schedulers
it is possible to consider pairs!,s) of a mode ofu and a configuration ofi. One
may now apply the standard machinery for Markov chains afideléor fixed starting
configurations) a sigma-field on the set of infinite paths startingiand a probability
measure on it, see, e.g., [28, 23, 11]. We shall Writge(ﬁ: ) to denote the standard
probability measure iMC,, with starting states.

LTL/CTL-notation. We use simple LTL and CTL formulas to denote properties of re-
spectively paths and configurationsMDP, . Here configurations and locations serve
as atomic propositions: for exampl&)s (resp.[J0q) means thas € Conf (resp.q € Q)

is visited infinitely many times, and Until s means that the control location remains
g until configurations is eventually reached. These notations extend to sets and, f
T C Conf andP C Q, OOT andJOP have the obvious meaning. FBrC Q, P is

the set{(p,¢) | p € P} so that)Q, means that eventually a configuration with empty
channels is reached. It is well-known that for any schedulgthe set of paths starting
in some configuratios and satisfying an LTL formula, or aw-regular property is
measurable [32, 16]. We write P(s = ¢) for this measure.

Reachability analysis.For a seA C Conf and a ruled € A, we letPre[8](A) d:ef{s | Jte

A,si t} denote the set of configurations from whi&ftan be reached in one step with

rule . Pre(A) d:er(;eA Pre[d](A) contains allone-step predecessorand Pre*(A) gef

AUPre(A)UPre(Pre(A)) U--- all iterated predecessar§he successor se@as{o|(A),
Pos{(A), andPost (A) are defined analogously. Recall that reachability betweefig-
urations of LCS’s is decidable [6, 30], which is also implledTheorem 3.2 below.

Constrained reachability. We sometimes need to reach a Aatsing only rules that
cannot get us out of some SEIC Conf. Formally, forT, A C Conf, we define

d:Ef{s € Conf | 30 € A(s) s.t.Pos{d](s) NA # 0 andPostd](s) C T}.

Prer (A)
In other words s is in Prer (A) if there is a ruled that may takes to some state in

A but that cannot take it outside. The set of iterated -constrainedoredecessors is

Prer (A) &' AU Prer (A) UPrer (Prer (A)) U - --

3 Symbolic representations for sets of configurations

Symbolic model-checking relies on symbolic objects repnésag sets of configura-
tions, and algorithmic methods for handling these objeaammgfully.

In this section, we present a symbolic framework for NPLCS3ised orifferences
of prefixed upward-closure3his extends previous techniques from [4, 3, 20] in that it
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permits dealing with set differences and checking whiclhésfirst message in a chan-
nel. For simplicity in the presentatiowe assume that the NPLCS under consideration
only has a single channeWe also omit most of the algorithmic details pertaining to
data structures, normal forms, canonization, ..., thapeagsent in our prototype im-
plementation (see section 6).

Recall that a seT C Conf is upward-closedresp.,downward-closefif for all

seT,andforalls Os(resp.S Cs),s € T.ForT C Conf,welet] T d:Ef{se Conf|3s €

T AS C s} denote theupward-closureof T, and | T def {s€ Conf|3s € TASC s}
denote thelownward-closuref T. For singleton sets we write shortlyt and | t rather
thant {t} and| {t}.

Our symbolic sets are defined with the following abstracirgrear:

prefix: a:=¢|m me M
prefixed closure:  6:=afu ue M*
sum of prefixed closures: ¢ :=061+---+6y n>0
simple symbolic set: p:=(g,6—0) g€ Qis alocation
symbolicset:  y:=p1+---+pn n>0

Prefixed (upward-)closures and their sums denote subs#ts défined with[oTul] def

{av|uC v} and[B1+--+6y] o [61] U---U[Bn]. Symbolic sets denote subsets of

Conf defined with[(9,0 — (81 + -+ 6n))] d:Ef{<q,v> € Conf |ve [0~ ([61]U---U

[6n])}. A regionis any subset o€onf that can be denoted by a symbolic set. It is a
control regionif can be written under the forrg;(g;,£7€), where channel contents are
unrestricted.

We abuse notation and wri@to denote both empty (i.e., with = 0) sums of
prefixed closures and empty symbolic sets. We also sometirigs v for v, 6 —
01 —---—6,for 86— (61+---+6,), and6 for 8 — 0. We writey =y when[y] = [Y],
i.e., wheny andy denote the same region.

Theorem 3.1 (Effective symbolic computation: basics).

Boolean closure: Regions are closed under union, intersection, and compieatien.
Moreover, there exist algorithms that given symbolic sgtand y, return terms
denotedy; LIY,, y1My2 and -y such thatly; Livo] = [y1] Ulyz], [yaryz] = [ya] 0

[y2] and[—y] = Conf \ [y].
Upward closure: Regions are closed under upward closure. Moreover, thassean

algorithm that given a symbolic sgtreturns a term denotedly such that[1y] =

TIV-
Vacuity: It is decidable whethefy] = 0 given a regiory.

One-step predecessorsRegions are closed under the Pr¢ and ﬁFe_(_) operations.
Moreover, there exist algorithms that given symbolic sesnd Y return terms
denoted Préy) and Prey (y), and such thafPre(y)] = Pre([y]) and [Pre, (y)] =

Pregy (IV])-

Theorem 3.1 provides the basic ingredients necessary fobaljc model-checking
of LCS’s. These ingredients can then be used for computitgydedined as fixpoints.
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For example, using standagdcalculus notation, a symbolic set denotiRge™([y])
would be defined agX.yL Pre(X). In [8] we show how a symbolic representation
for sets defined by such fixpoint expressions can be comptfettieely (when some
guardedness condition holds).

Theorem 3.2 (Effective symbolic computation: fixpoints).

Iterated (constrained) predecessors:Regions are closed under the Pfe) and the
ﬁFei(_) operations. Moreover, there exist algorithms that givemisglic setyy and
Y return terms denoted Préy) and FgFe; (y), and such thajPre*(y)] = Pre*([y])

and [Pre, (v)] = Preyy} ([V])-

Safe sets (see section 4For any regiony, the seth.(yﬂ I5Fex(Conf)) is a region,
and a term for it can be computed effectively.

Promising sets (see section 4)For any regiony, the sele.F?e; (y) is aregion, and a
term for it can be computed effectively.

JCTL: The set of configurations satisfying aCTL formula (i.e., a CTL formula
where only the modalities3(_ Until _)” and “ INext_" are allowed) is a region
when the atomic propositions are themselves regions. Merga symbolic set for
that region can be obtained algorithmically from tRETL formula.

4 Verifying safety and liveness properties for NPLCS'’s

This section considers various types of safety and livepesgerties where regions
serve as atoms, and presents algorithms for checking theege of a fm-scheduler
suchthatPg(s=¢)is>0,=1,<1or=0.

We start with reachability properti€sA and invariant$]A for some regiorA.

For eventually properties with the satisfaction criteneith positive probability”,
decidability relies on the computation of iterative pregisors in (non-probabilistic)
lossy channel systems:

Theorem 4.1. Let s€ Conf and AC Conf. There exists a scheduler with Pr; (s =
OA) > 0iff Pry (s|= OA) > 0for some memoryless scheduteriff s € Pre*(A).

For other satisfaction criteria, or for other properties, ave to develop more ad-
hoc characterizations of the sets of configurations whergtialitative properties hold.
For invariantsJA, we introduce the concept of safe sets:

Definition 4.2 (Safe sets)Let AT C Conf. T is calledsafefor Aif T C A and for all
se T, there exists a transition rul@enabled in s such that Pdé}(s) C T.

Since the union of safe sets is safe, the largest safe sat flmotedSaféA), exists.
There exists a simple fixpoint characterization &aféA) (here and in the sequel,
we use the standafd'v-notations for fixpoints).

Lemma 4.3. For any AC Conf, Safé¢A) = vX.AN Prex (Conf).

Thus, if A is a region,SaféA) is a region too, and a symbolic representation can be
computed effectively (Theorem 3.2). This is the key for fyénig invariants:
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Theorem 4.4 (Safe sets and invariants)Let AC Conf and sc Conf.

(a) se SafdA)

iff there exists a scheduler such thatPr, (s|=0A) =1

iff there exists a memoryless schedulesuch thatPry, (s = 0A) = 1.
(b) sl=3(AUntil SaféA))

iff there exists a scheduler such thatPr, (s|=0A) >0

iff there exists a memoryless schedulesuch thatPr, (s = CJA) > 0.

The corollary is that, for a regioA, we can compute a symbolic representation for the
set of all configurations where P(s = [A) > 0 or= 1 for some schedulemn .

Definition 4.5 (Promising sets)Let AT C Conf. T is calledpromisingfor A if for all

se T there exists a paths 5 &, St % ... 0 Sm with m> 0 such that § € A and for
all 1<i<m,Pos}é](s_1) CT.

As for safe sets, the largest promising setAaxists: we denote Prom(A).

Lemma 4.6. For any AC Conf, PromA) = vX.I5r\e; (A).

Thus, if Ais a region,Prom(A) is a region too, and a symbolic representation can be
computed effectively (Theorem 3.2).

Theorem 4.7 (Promising sets and almost sure reachability).et s€ Conf and AC
Conf. se Prom(A) iff Pry, (s = OA) = 1 for some schedulet iff Pry; (s}= OA) = 1 for
some memoryless scheduter

The corollary is that, for a regiof, we can compute the set of all configuratiesich
that Pr, (s= OA) > 0 or=1 for someu.

We now consider repeated reachability and persistenceegiiep. The question
whether a repeated reachability propertpA holds under some scheduler with pos-
itive probability is undecidable when ranging over the ftlliss of schedulers, but is
decidable for the class of fm-schedulers. This was showh4nd] for the case wherk
is a set of locationd.g. a control region). We now show that the decidability everdkol
if Ais a region. More precisely, we show thatfis a region andp € {JCA, OTA},
then the set of configuratiorssvhere Py, (sl=¢) > 0 or= 1 for some fm-scheduler is
a region.

For A C Conf let Pron¥1(A) denote the largest s@t of configurations such that

forallt € T there exists a finite path= s &, S % . o Smwithm>1, s, € Aand
Pos{di](s_1) C T for all 1 <i < m. Note that the definition oPron¥1(A) is different
from Prom(A) since the paths must have length at least 1. We then Pare”!(A) =
vX.F?e;(r(A), and, ifA is a region then so iBron?1(A). Thus, the following theorem
provides the decidability of repeated reachability angiséence properties:

Theorem 4.8 (Repeated reachability and persistence)et se Conf and AC Conf.
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(@) se Pron?i(A) iff Pry (s = O0A) = 1 for some schedulew
iff Pry (s}=0O0A) = 1 for some memoryless scheduter
(b) sc Pref(Pron?t(A)) iff Pry (s = COA) > 0 for some fm-schedulen
iff Pr, (si=0O0A) > 0 for some memoryless scheduter
(c) se Prom(SafgA)) iff Pry, (sl= OTA) = 1 for some scheduler:
iff Pry, (s|= OOA) = 1 for some memoryless scheduter
(d) se Pref(SaféA)) iff Pry (s = OOA) > 0 for some schedulet:
iff Pry (s}= OOA) > 0 for some memoryless scheduter

We now consider the Streett formupg = A1, J0A — OOB; whereAq, ..., Ay
andBy, ..., B, are regions. Here again we only consider fm-schedulers sireprob-
lem is undecidable for the full class of schedulers [9].

For A,B C Conf, let Promfl(B) be the largest subs@&tof A such that foralt € T
there exists a path= g & ... 5 Sm with m> 0, sy, € B andPos{di)(s—1) C T for
al1<i<m We havePromil(B) = vX.I5r\e>+<(B) NA and if A,B are regions then so
is Promz*(B). In addition,s € Pront;*(B) iff Pry (s = JOBACIA) = 1 for some fm-
scheduleru .

The above is useful to show decidability of the questionsthdrePr, (s|= ¢s) < 1
or = 0 for some fm-schedulet;. For this, we use the fact that s = ¢s) < 1 iff
Pry (si=0O0A — 00B;) < 1 for soméi iff Pry, (s = O0A A OO-B;) > 0 for some.

Theorem 4.9 (Streett property, probability less than 1).There exists a fm-scheduler
u with Pry, (s = OOAA OO0-B) > 0 iff there exists a memoryless scheduterwith
Pry (s|= OOAA OT-B) > 0iff s € Pre* (Promea(A)). In particular, Pry (s|= ¢s) < 1
for some fm-schedulem iff s € ;<< Pre*(Promféi (A)).

LetT; be the set of all configuratiotis Conf such that Py, (s = O0A AOO-B;) =
1 for some fm-schedulew . Note thatT; = Pre*(ProrrEéi (A)) is aregion. ThusJs =
T1UTU---UTy,is aregion too. This and the following theorem yields theidigility
of the question whether R(s = ¢s) = 0 for some schedulexn .

Theorem 4.10 (Streett property, zero probability). There exists a fm-scheduler
such thatPr, (s|= ¢s) = 0if and only if s Prom(Ts).

We next consider the satisfaction criterion “with positmebability”. The treat-
ment of the special case of a single strong fairness formdla — O0B = OC0-AV
OOB is obvious as we have: There exists a finite-memory (resp.angeass) sched-
uler ¢« such that Py (s = OO0A — O0B) > 0 iff at least one of the following condi-
tions holds: (i) there exists a fm-schedulérsuch that Py (s = 0T—A) > 0 or (ii)
there exists a fm-scheduler such that Py, (s = 0J0B) > 0. We now extend this
observation to the general case (several Streett progerfierl C {1,...,n}, let A
denote the set of configuratiossuch that there exists a finite-memory scheduler sat-
isfying Pry (s = Aict JOBi A Ajgy =A)) = 1 and letA be the union of aliy’s, i.e.,
A=Ucq,..nyA- Then, the setd; andA are regions. Thus, the algorithmic treatment
of Streett properties the satisfaction criteria “positprebability” and “almost surely”
relies on the following theorem:
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Theorem 4.11 (Streett properties, positive probability aml almost surely).

(a) There exists a fm-schedulersuch thatPry, (s|= ¢s) > 0iff s € Pre*(A).
(b) There exists a fm-schedularsuch thatPry, (s = ¢s) = 1iff s € Prom(A).

We conclude with the following main theorem gathering aépous results:

Theorem 4.12 (Qualitative model-checking)For any NPLCS\ and Streett property
¢ = A\;OOA — OOB; where the fs and B'’s are regions, the set of all configurations
s s.t. for all fm-schedulers: Pry (s|= ¢) satisfies a qualitative constraint= 1", or
“<1'or* =0"o0r" >0 is aregion that can be computed effectively.

With the techniques of [9, § 7], Theorem 4.12 extends toxalkgulars properties

5 \Verification under fair finite-memory schedulers

We now address the problem of verifying qualitative lineéaret properties under fair-
ness assumptions. Following the approaches of [19, 32wkt onsider here a notion
of scheduler-fairneswhich rules out some schedulers that generate unfair paths w
positive probability. This notion of scheduler-fairnesstio be contrasted with extreme-
and alpha-fairness introduced in [24—26] which requirea@r™fesolution of probabilis-
tic choices and serve as verification techniques ratherfdiemess assumptions about
the nondeterministic choices.

A scheduleru is calledfair if it generates almost surely fair paths, according to
some appropriate fairness constraints for paths. We dealvi¢h strong fairnesdor
selected sets of transition rules. l.e., we assume & set{ fy,..., fx_1} wheref; C
A and require strong fairness for d|ls. (The latter means whenever some transition
rule in f; is enabled infinitely often then some transition rulefijrwill fire infinitely
often.) For instance, process fairness kqrocesse$, ..., 1 can be modelled by
F ={fo,..., fku1} wheref; is the set of transition rules describiRgs actions.

A setf C Alis called enabled in configuratianif there is a transition rulé € f
that is enabled iis, i.e., if A(s)N f # 0. If F is a subset off ands e Conf thenF is
called enabled isif somef € F is enabled irs, i.e., if 3f € F.f NA(s) # 0. We write
Enabl(F) to denote the set of configuratiosas Conf whereF is enabled.

Definition 5.1 (Fair paths, fair schedulers).Let 7 € 22 pe a (finite) set consisting

of subsets of\. An infinite path @ﬁ St % ... is called 7 -fair iff for all f € 7 either
d; € f for infinitely many j or there is some> 0 such that f is not enabled in the
configurations gfor all j > i. Scheduleru is called 7 -fair (or briefly fair) if for each
starting state s, almost afl -paths are¥ -fair.

We first considereachabilityproperties)A and show that fairness assumptions are
irrelevant for the satisfaction criteria “with positivegirability”and “almost surely”.
This follows from the fact that from the moment on where a guntation inA has been
entered one can continue in an arbitrary, pufair way. Thus:

Jv g-fairs.t. Pr, (s 0A) >0 iff 3 u st Pr(skEO0A) >0
Jv g-fairst. Pr,(sEQ0A) =1 iff JustPr(sEO0A) =1
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By the results of section 4, given an NPL@§, starting configuratios and regionA,
the questions whether there existg &air scheduleru such that Py (s|= OA) > 0 or
=1 are decidable.

The treatment oivariant propertied A under fairness constraints relies on gener-
alizations of the concept of safe and promising setsA-BrC Conf, Proma(B) denotes

the largest seT C AUB such that for alt € T there exists a path= s o, ... % Sm
with m> 0, sy, € BandPos{di|(s-1) C T for all 1 <i < m. The fixed-point definition
of Promx(B) would bevX.I5r\e;(B) N(AUB).

For 7 C 2* and A C Conf, let Safe, (A) = Ugc, SafdF](A) where SaféF](A)
is defined as follows. IF is a nonempty subset of then SaféF](A) denotes the
largest seff C A~ Enabl(# ~ F) such that for alt € T and f € F there is a path

% & o spwitht =5, m>1,0y € f andPos{di|(s_1) CT forall 1<i<m
Moreover,Safe, [0](A) = Saf¢A~ Enabl(7)).

SinceEnabl(# ~ F) can be expressed WBre[# ~ F](Conf), we get the following
mu-calculus terms foBafé0](A) andSaféF](A):

— Safé0](A) = vX.(A Pre[#](Conf)) N Prex(Conf), and
— SaféF|(A) = vX.(A~ Pre[# ~ F](Conf)) N e Prex (Prex[f](Conf)).

Theorem 5.2 (Fair invariants). Let AC Conf and se Conf.

(a) Thereis ar -fair fm-schedulen’ s.t.Pr,, (s}=0A) > Oiff s |= 3(AUntil Safe, (A)).
(b) There is a7 -fair fm-schedulen’ s.t.Pr,, (s = 0A) = 1iff s € Proma(Safe. (A)).

Observe that, for a regiop Safe. ([y]) and Proma(Safe. ([y])) are regions that can
be built effectively (based on the same reasoning that wdanseheorem 3.2). Thus,
Theorem 5.2 yields the decidability of the questions whefitirea given NPLCS, region
Aand configuratiors, there exists & -fair fm-scheduleru such that Py (si=0A) >0
or=1.

In the sequel, foA C Conf, we denote bWDfA the set of all configurationssuch
that Pr, (s = OA) = 1 for somey -fair fm-scheduleru .

We now come taepeated reachability]OA andpersistenc& A properties under
fairness constraints. FéxC Conf, we defineT, , = Urc, Tr whereT is the largest
subset ofConf \ Enabl(# ~ F) such that for alt € Tg:

— there is afinite pattbg ..o Smwithm> 1,t = 59, sn € AandPostdi|(s—1) C Tg
forall1<i<m,

— for eachf € F there is a finite patlsy &% ... 0 Smwitht =55, m> 1,0y € f and
Pos{oi](s—1) CTg forall1<i<m.

Theorem 5.3 (Fair repeated reachability and persistence)_et AC Conf and se
Conf.

(a) There exists & -fair fm-scheduleru with Pry, (sl=00A) = 1iffse Prom(TSOA).
(b) There exists & -fair fm-scheduleru with Pr, (si=00A) > 0iffs € Pre*(TSQA).
(c) There exists & -fair fm-schedulerz with Pry, (s = OOA) = 1iff s € Prom(TZ,).
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(d) There exists & -fair fm-scheduler: with Pr, (s = OOA) > 0iff s € Pre(TZ,).

With similar arguments as fdProm(A), the sets of configuratio‘nﬁ%r<>A andT, =
Proma(Safe. (A)) are regions wheneveX is a region. This entails the decidability of
the questions whether given regignthere exists a -fair fm-scheduleru such that
Pry (s ¢) =1 or> 0 wherep = OOA or QUA.

We next considelinear time properties, formalized by LTL formulads where re-
gions serve as atomic propositions. The idea is to encodmitimess constraints in the
model (the NPLCS) by a Streett property

fair = /\ (O0A; — O0Bs)
fer

(with regionsA;, Bs C Conf) that will be considered in conjunction with We modify
the given LCS. = (Q,C,M,A) and construct a new LCE' = (Q/,C,M,A") as follows.
We introduce new locationgs for all subsetd of ¥ andq € Q, i.e., we deal with
Q ={gr:ge QF C 7}. A" is the smallest set of transition rules such that >
grelifpBgenr GCrandF={fes:pRqgefl Forfer,Biisthe
set of configurationggr,w) in £’ such thatf € F, while A¢ denotes the set of all
configurations(qe,w) of L’ where f is enabled in the configuratiofg,w) of L. We
finally transform the given formuld@ into ¢’ by replacing any regio@ of = that appears
as an atom i with the regionC’ = {(gr,w) : (q,w) € C,F C # }. For instance, if
6 =00(an (c#2) thend’ =00((qV 1V de)A(ce)).

In the sequel, lety. = (£,T1) be the NPLCS that we want to verify agaigsand let
A" = (£',71) the associated modified NPLCS. Obviously, for each fm-saleed: for
2 there is a “corresponding” fm-schedular for 2/, and vice versa. Corresponding
means that’ behaves as: for the current configuratiorig, w) with g € Q. If the
current configuration of:” is (ge,w) then«’ behaves as! for (g,w). Then, Py, (s|=
¢) = Pry/(s = ¢') for all configurationsin 4¢. Here, each configuratie= (g, w) of
2 is identified with the configuratiottp, w) in A¢’. Moreover,u is ¥ -fair iff Pr,/ (s|=
fair) = 1. This yields part (a) of the following lemma. Part (b) fell®from the fact that
Pry(sl=¢) =1—Pry(sl= —¢) for each schedulet:.

Lemma 5.4. Let s be a configuration in{ (anda.’) and¢ an LTL formula. Then:

(a) There exists & -fair fm-scheduleru for A0 such thatPr, (sf= ¢) = 1if and only
if there exists a fm-scheduler’ for 20’ such thatPr,,/ (s = fair A¢') = 1.

(b) There exists & -fair fm-scheduleru for A¢ such thatPr, (s = ¢) = 0if and only
if there exists a fm-schedulet for A" such thatPr,, (s = fair A —¢') = 1.

(c) There exists & -fair fm-scheduleru for A¢ such thatPr, (s= ¢) > 0if and only
if there exists a fm-schedulet for A" such thatPr,, (s = fair A¢’) > 0.

(d) There exists & -fair fm-scheduleru for A0 such thatPr, (sl= ¢) < 1if and only
if there exists a fm-schedulet for A" such thatPr,, (s = fair A —¢’) > 0.

Lemma 5.4 even holds for arbitranyregular properties. It provides a reduction
from the verification problem for qualitative LTL formulas NPLCS’s and fair fm-
schedulers to the same problem for the full class of fm-salegesl. Thus, all decidability
results that have been established for NPLCS’s and queditetrification problems for
the class of fm-schedulers (see 4) also hold when fairnsssrggions are made.
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6 Automatic verification of Pachl's protocol

Fig. 1 directly translates into a LC&4cnwhen the asynchronous productfandPr

is consideredcpachihas 6x 6 = 36 control locations an(lL8+ 18) x 6 = 216 transition
rules. In order to reason about notions like “a réileas been fired”, that are ubiquitous
in fairness hypothesis, our tool adds an history variabt®nding the last fired rule
(actually, only its action label). This would further muplty the number of states and of
transitions by 20, but not all pairs (location,last actiarg meaningful so that the final
model can be stripped down to 144 locations and 948 rulesll wuaresults below
we do not use the names of these 144 locations, but rathesgpithiem to the more
readable underlying 36 locations.

6.1 Safety analysis

Pachl [22] computed manually the deast (Init) of all configurations reachable in
Lpachifrom the initial empty configuratioinit = (LO,R4, €, €), and such forward com-
putations can sometimes be done automatically with thentquks described in [4] (al-
though termination of the forward-reachability compuiati cannot be guaranteed in
general). These computations show that the protocol daethpreserve the integrity
of communication in the sense that no confusion betweenmatsages is introduced
by losses.

Our calculus for regions is geared towards backward contipatavhere termina-
tion is guaranteed. Our implementation can compute aufoatlgtthe set of deadlock
configurations:

Dead %' Conf ~ Pre(Conf) = (L4,R4,¢,€).

Hopefully, Dead is not reachable froninit. We can compute the sBtre*(Dead)
of all unsafe configurations, that can end up in a deadlo¢krsecting withfInit, we
obtain the set of unsafe starting channel contents:

Pre"(Dead) M 1Init =
(LO,R4, 7€, Taogdo) + (LO,R4,Teodag, Tag) + (LO,R4,Tdpeodap, T€).

Thus eventual deadlock is possible from locat{nn, R4) if the channels initially con-
tain the appropriately unsafe contents.

6.2 Liveness analysis

We now come to what is the main motivation of our work: provprggress under fair-
ness hypothesis. In this case study, the problem we addréssgeneral to compute
the set of all configurations satisfying some,Ps = O0A) = 1 for all schedulersu
satisfying some fairness conditioms. Following equivalences of section 5, this is re-
lated to the computation dﬁoA. More precisely{s|Vu # -fair Pry, (s 00A) =1} =

Conf \ Pre*(TH,)-
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When computingTDfQA, all subsets off have to be considered and this induces
a combinatorial explosion for large . Since we did not yet develop and implement
heuristics to overcome this difficulty, we only checked epéaa considering “small”
7 sets (meaning a number of fairness sets, each of which caltabgesset of rules) in
this preliminary study. For example, we considered “stroragess fairnessfprocess =
{Fiett, Frignt } (With obvious meaning for the sets of transitidfises, Frignt), OF “Strong
fairness for reading%eaqa = {Freada }-

Regarding the target sét we consider questions whether a given transitior?(in
or RR) is fired infinitely often (using the history variable), or ether a process changes
control states infinitely often, etc. Observe that a corjoncof “Pry, (s = O0A) =17
gives Py, (s = A\ JOA)) = 1, so that we can check formulas liggOOLi A A; JORA,
expressing progress in communication between the two psese

In the three following cases :

— F = Treaa andA = After ;.
— F = Fread andA = Afterleftfmove
-F = {Fread7 Frightfread} andA = Afterleft

our prototype model checker yields tHati t € Conf Pre*(TmfoA). This means that, in
all three cases, starting frobnit, the set of configuration& will be visited infinitely
often almost surely, under all -fair schedulers.

7 Conclusion

We introduced NPLCS'’s, a model for nondeterministic ch&isgstems where mes-
sages are lost probabilistically, and showed the decidgaloif qualitative verification
question of the form “doeg$ holds with probability 1 for all¥ -fair finite-memory
schedulers?” wherg is anw-regular linear-time property and a strong fairness con-
dition.

When atomic propositions can refer to the contents of chanmélich is required
when one wants to express fairness and firability of rulesdegidability results rest
upon a new notion of symbolic regions based on “prefixed ugvetmsures”. These
symbolic methods can be implemented rather directly and sesl them to analyze
simple systems.

These results are the outcome of a research project thegdstar{13, 14] with the
first early definition of NPLCS’s and was continued in [9] wi¢he key notions for
reducing to constrained reachability questions have bestridentified in a simplified
framework. Further developments will focus on incorpargtalgorithmic ideas from
symbolic verification (normal forms, caches, sharing, in.Qur naive prototype veri-
fier, turning it into a more solid analysis tool.

References

1. P. A. Abdulla, C. Baier, S. Purushothaman lyer, and B. JonsSianulating perfect channels
with probabilistic lossy channel$nformation and Computatiqri97(1-2):22—-40, 2005.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Symbolic verification of communicating systems with probabilistic messagesos 15

. P. A. Abdulla, N. Bertrand, A. Rabinovich, and Ph Schnoebelerifidtion of probabilistic

systems with faulty communicatioinformation and Computatiqr202(2):141-165, 2005.

. P. A. Abdulla, A. Bouajjani, and J. d’'Orso. Deciding monotonic gamés Proc. 17th

Int. Workshop Computer Science Logic (CSL 2003) and 8th Kurt Godil (KGL 2003),
Vienna, Austria, Aug. 200%olume 2803 of ecture Notes in Computer Scienpages 1-14.
Springer, 2003.

. P. A. Abdulla, A. Collomb-Annichini, A. Bouajjani, and B. Jonssonindsforward reacha-

bility analysis for verification of lossy channel systerksrmal Methods in System Design
25(1):39-65, 2004.

. P. A. Abdulla and B. Jonsson. Undecidable verification problemprfagrams with unreli-

able channelsinformation and Computatiqri30(1):71-90, 1996.

. P. A. Abdulla and B. Jonsson. Verifying programs with unreliablenoeés.Information and

Computation127(2):91-101, 1996.

. C. Baier, N. Bertrand, and Ph. Schnoebelen. A note on the attatperty of infinite-state

Markov chains.Information Processing Letter87(2):58-63, 2006.

. C. Baier, N. Bertrand, and Ph. Schnoebelen. On computing fixpwintgell-structured

regular model checking, with applications to lossy channel systems. sRES(£606091,
Computing Research Repository, June 2006. Visible at http://arxivisips CS/0606091.

. C. Baier, N. Bertrand, and Ph. Schnoebelen. Verifying nondétéstic probabilistic channel

systems againsb-regular linear-time properties. RR ¢s.LO/0511023, Computing Relsear
Repository, April 2006. To be published BCM Trans. Computational Logiwisible at
http://arxiv.org/abs/cs.LO/0511023.

C. Baier and B. Engelen. Establishing qualitative properties forghibstic lossy channel
systems: An algorithmic approach. Rioc. 5th Int. AMAST Workshop Formal Methods for
Real-Time and Probabilistic Systems (ARTS '99), Bamberg, Germaay,1809 volume
1601 ofLecture Notes in Computer Scienpages 34-52. Springer, 1999.

C. Baier, B. R. Haverkort, H. Hermanns, J.-P. Katoen, and ikgl&, editors. Validation
of Stochastic Systems — A Guide to Current Reseamclume 2925 ofLecture Notes in
Computer ScienceSpringer, 2004.

C. Baier and M. Kwiatkowska. Model checking for a probabilisticlotang time logic with
fairness.Distributed Computingl11(3):125-155, 1998.

N. Bertrand and Ph. Schnoebelen. Model checking lossy clsasystems is probably de-
cidable. InProc. 6th Int. Conf. Foundations of Software Science and ComputatiantGtes
(FOSSACS 2003), Warsaw, Poland, Apr. 20@3ume 2620 of_ecture Notes in Computer
Sciencepages 120-135. Springer, 2003.

N. Bertrand and Ph. Schnoebelen. Verifying nondeterministicreiaystems with proba-
bilistic message losses. In Ramesh Bharadwaj, editog. 3rd Int. Workshop on Automated
Verification of Infinite-State Systems (AVIS 2004), Barcelona, Sppin2@04 2004.

D. Brand and P. Zafiropulo. On communicating finite-state machilmgnal of the ACM
30(2):323-342, 1983.

C. Courcoubetis and M. Yannakakis. The complexity of probabiligidigation. Journal
of the ACM 42(4):857-907, 1995.

A. Finkel. Decidability of the termination problem for completely specifigieotocols.
Distributed Computing7(3):129-135, 1994.

B. Hailpern and S. Owicki. Verifying network protocols using tempéogic. In Proc.
NBS/IEEE Symposium on Trends and Applications 1980: Computer Ne®votocols,
Gaithersburg, MD, May 198(pages 18—28. IEEE Comp. Soc. Press, 1980.

S. Hart, M. Sharir, and A. Pnueli. Termination of probabilistic corenirprograms ACM
Transactions on Programming Languages and Syst&(3%:356—-380, 1983.

A. KuCera and Ph. Schnoebelen. A general approach to comparing isfiaieesystems
with their finite-state specification3heoretical Computer Scienc2006. To appear.



16

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

C. Baier, N. Bertrand, and Ph. Schnoebelen

B. Masson and Ph. Schnoebelen. On verifying fair lossy chaysedms. IrProc. 27th Int.
Symp. Math. Found. Comp. Sci. (MFCS 2002), Warsaw, Poland,2808. volume 2420 of
Lecture Notes in Computer Scienpages 543-555. Springer, 2002.

J. K. Pachl. Protocol description and analysis based on a statéioranmsodel with channel
expressions. liProc. 7th IFIP WG6.1 Int. Workshop on Protocol Specification, Testind
Verification (PSTV '87), Zurich, Switzerland, May 198&ges 207—-219. North-Holland,
1987.

P. Panangaden. Measure and probability for concurrencyigtecrheoretical Computer
Science253(2):287-309, 2001.

A. Pnueli. On the extremely fair treatment of probabilistic algorithmsProe. 15th ACM
Symp. Theory of Computing (STOC '83), Boston, MA, Apr. 1888es 278-290. ACM
Press, 1983.

A. Pnueliand L. D. Zuck. Verification of multiprocess probabilistiotpcols. Distributed
Computing 1(1):53-72, 1986.

A. Pnueli and L. D. Zuck. Probabilistic verificationlnformation and Computatign
103(1):1-29, 1993.

S. Purushothaman lyer and M. Narasimha. Probabilistic lossynehapstems. IrProc.
7th Int. Joint Conf. Theory and Practice of Software Development ST '97), Lille,
France, Apr. 1997 volume 1214 ofLecture Notes in Computer Sciengmges 667—681.
Springer, 1997.

M. L. Puterman. Markov decision processes: discrete stochastic dynamic programming
John Wiley & Sons, 1994.

A. Rabinovich. Quantitative analysis of probabilistic lossy chanreksys. InProc. 30th
Int. Coll. Automata, Languages, and Programming (ICALP 2003), neén, NL, July
2003 volume 2719 of ecture Notes in Computer Scienpages 1008-1021. Springer, 2003.
Ph. Schnoebelen. Verifying lossy channel systems has nongamétursive complexity.
Information Processing Letter83(5):251-261, 2002.

Ph. Schnoebelen. The verification of probabilistic lossy chans&ss. In Baier et al. [11],
pages 445-465.

M. Y. Vardi. Automatic verification of probabilistic concurrent finitext® programs. In
Proc. 26th IEEE Symp. Foundations of Computer Science (FOCSP8&)and, OR, USA,
Oct. 1985 pages 327-338. IEEE Comp. Soc. Press, 1985.



