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Abstract. NPLCS’s are a new model for nondeterministic channel systems where
unreliable communication is modeled by probabilistic message losses. We show
that, forω-regular linear-time properties and finite-memory schedulers, qualita-
tive model-checking is decidable. The techniques extend smoothly to questions
where fairness restrictions are imposed on the schedulers. The symbolic proce-
dure underlying our decidability proofs has been implemented and used tostudy
a simple protocol handling two-way transfers in an unreliable setting.

1 Introduction

Channel systems[15] are systems of finite-state components that communicate via
asynchronous unbounded fifo channels.Lossychannel systems [17, 6], shortly LCS’s,
are a special class of channel systems where messages can be lost while they are in
transit. They are a natural model for fault-tolerant protocols where communication is
not supposed to be reliable (see example in Fig. 1 below). Additionally, the lossiness
assumption makes termination and safety properties decidable [22, 17, 6, 4, 20, 8] while
reliable, i.e., non-lossy, systems are Turing-powerful.

LCS’s are a convenient model for verifying safety properties of asynchronous pro-
tocols, and this can be automated [4]. However, they are not adequate for verifying
liveness and progress properties: firstly these propertiesare undecidable for LCS’s [5],
and secondly the model itself is too pessimistic when liveness is considered. Indeed, to
ensure any kind of progress, one must assume that at least some messages will not be
lost. This is classically obtained via fairness assumptions on message losses [18] but
fairness assumptions in LCS’s make decidability even more elusive [5, 21].

Probabilistic LCS’s, shortly PLCS’s, are LCS’s where message losses are seen as
faults having aprobabilisticbehavior [27, 10, 31, 1, 29, 2, 7]. Thanks to its probabilistic
framework, this model automatically fulfills strong fairness conditions on the message
losses. Additionally it allows one to state so-calledqualitative questions, whether a
linear-time property will be satisfied “with probability 1”, that are decidable. However,
PLCS’s are not a realistic model for protocols because they consider that the choices
between different actions are made probabilistically rather than nondeterministically.
When modeling communication protocols,nondeterminismis an essential feature. It
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is used to model the interleaved behavior of distributed components, to model an un-
known environment, to delay implementation choices at early stages of the design, and
to abstract away from complex control structures at later stages.

This prompted us to introduce NPLCS’s, i.e., channel systems where message losses
are probabilistic and actions are nondeterministic [13, 14]. These systems give rise to
infinite-state Markov decision processes, and are a more faithful model for analyzing
protocols. The drawback is that they raise very difficult verification problems.

Qualitative verification for NPLCS’s. Our early results in [14] rely on the assumption
that idling was always a possible choice. This simplifies theanalysis considerably, but
is an overkill: a necessary ingredient for most liveness properties of a compound system
is the inherent liveness of the components, which disappears if they can idle.

We developed new techniques and removed the idling limitation in [9] where we
show that decidability can be maintained if we restrict our attention tofinite-memory
schedulers (strategies for the nondeterministic choices). This seems like a mild restric-
tion, and we adopt it in this paper since we aim for automatic verification.

Our contributions. In this paper we extend the preliminary work from [9] in three
directions: (1) We allow linear-time formulas referring tothe contents of the channels
rather than just the control locations. We did not consider this extension earlier because
we lacked the techniques for proving the convergence of fixpoint computations. How-
ever, the extension is required in practical applications where fairness properties have to
express that “a rule is firable,” which depends on channel contents for read actions. (2)
We develop symbolic representations and algorithms for sets of NPLCS configurations.
These algorithms have been implemented in a prototype tool that we use to analyze a
simple communication protocol. (3) We consider qualitative verification with quantifi-
cation overfair schedulers, i.e., schedulers that generate fair runs almost surely.

Outline of the paper. Section 2 recalls the necessary technical background for non-
deterministic probabilistic channel systems, and section3 introduces the new symbolic
framework we use for handling sets of configurations. We present our decidability re-
sults in sections 4 (for finite-memory schedulers) and 5 (forfair schedulers). Finally
we apply our algorithms on Pachl’s protocol in section 6. Allproofs omitted in this
extended abstract can be found in the complete version available on the web.

2 Nondeterministic probabilistic channel systems

We assume the reader has some familiarity with the verification of Markov decision pro-
cesses, or MDPs, (otherwise see [11]) and refer to [9] for complete definitions regarding
our framework. Here we recall the main definitions and notations without motivating or
illustrating all of them.

Lossy channel systems.A lossy channel system (a LCS) is a tupleL = (Q,C,M,∆) of a
finite setQ= {p,q, . . .} of controllocations, a finite setC = {c, . . .} of channels, a finite
message alphabetM = {m, . . .} and a finite set∆ = {δ, . . .} of transition rules. Each rule



Symbolic verification of communicating systems with probabilistic message losses 3

has the formq
op−→ p whereop is anoperationof the formc!m (sending messagemalong

channelc), c?m (receiving messagem from channelc), or
√

(an internal action with
no communication). For example, the protocol displayed in Fig 1, is naturally modeled
as a LCS: building the asynchronous product of the two processesPL andPR yields a
bona fide LCS with two channels and a five-message alphabetM = {a0,a1,d0,d1,eod}.

Operational semantics.A configurationof L as above is a pairs= (q,w) of a location
and a channel valuationw : C → M∗ associating with any channel its current content
(a sequence of messages).M∗C, or M∗ when |C| = 1, denotes the set of all channel
valuations, andConf the set of all configurations.ε denotes both the empty word and
the empty channel valuation. The size|s| of a configuration is the total number of mes-
sages ins. The rules ofL give rise to transitions between configurations in the obvious
way [9]. We write∆(s) for the set of rulesδ ∈ ∆ that are enabled in configurations.

We writes
δ−→perf s′ whens′ is obtained by firingδ in s. The “perf” subscript stresses

the fact that the step is perfect, i.e., no messages are lost.However, in lossy systems, ar-
bitrary messages can be lost. This is formalized with the help of the subword ordering:
we writeµ⊑ µ′ whenµ is a subword ofµ′, i.e.,µcan be obtained by removing (any num-
ber of) messages fromµ′, and we extend this to configurations, writing(q,w) ⊑ (q′,w′)
whenq = q′ andw(c) ⊑ w′(c) for all c∈ C. As a consequence of Higman’s Lemma,⊑
is a well-quasi-order (awqo) between configurations ofL . Now, we definelossy steps

by lettings
δ−→ s′′

def⇔ there is a perfect steps
δ−→perf s′ such thats′′ ⊑ s′. This gives rise

to a labeled transition systemLTSL
def
= (Conf,∆,→). Here the set∆ of transition rules

serves as action alphabet. In the following we assume that for any locationq ∈ Q, ∆
contains at least one ruleq

op−→ p whereop is not a receive operation. This hypothesis
ensures thatLTSL has no deadlock configuration and makes the theory smoother.It is
no real loss of generality as demonstrated in [2, § 8.3].

An example.Pachl’s protocol [22] handles two-way communications overlossy chan-
nels and is our case study for our algorithms. It consists of two identical processes,
PL(eft) andPR(ight), that exchange data over lossy channels using an acknowledgment
mechanism based on the alternating bit protocol. See Fig 1 below. The actual contents
of the data messages is abstracted away, and we just used0,d1 ∈ M to record the alter-
nating control bit. Messagesa0,a1 ∈ M are the corresponding acknowledgments. The
protocol starts in configuration(L0,R4) wherePL is the sender andPR the receiver. At
any time (provided its last data message has been acknowledged) the sender may signal
the end of its data sequence with theeod ∈ M control message and then the two pro-
cesses swap their sending and receiving roles. Note thateod does not need to carry a
control bit, and that its correct reception is not acknowledged. In section 6 we explain
how such a two-process protocol is modeled as an LCS, and givesome outcomes of our
automated analysis.

From LCS’s to NPLCS’s. A NPLCSN = (L ,τ) is a LCSL further equipped with a
fault rateτ ∈ (0,1) that specifies the probability that a given message stored inone of
the message queues is lost during a step [13, 14]. The operational semantics of NPLCS’s
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Fig. 1.Pachl’s communication protocol, from [22].

has the form of an infinite-state Markov decision processMDPN
def
= (Conf,∆,PN ). The

stepwise probabilistic behavior is formalized by a three-dimensional transition proba-
bility matrix PN : Conf×∆×Conf → [0,1]. For a given configurationsand an enabled
rule δ ∈ ∆(s), PN (s,δ, ·) is a distribution overConf, while PN (s,δ, ·) = 0 for any tran-
sition ruleδ that is not enabled ins. The intuitive meaning ofPN (s,δ, t) = λ > 0 is that
with probabilityλ, the system moves from configurations to configurationt whenδ is
the chosen transition rule ins.

For lack of space, this extended abstract omits the technically heavy but quite natu-
ral definition ofPN , and only lists its two essential properties:
1. the labeled transition system underlyingMDP(L ,τ) is exactlyLTSL .
2. the setQε = {(q,ε) | q ∈ Q} of configurations where the channels are empty is an
attractor, i.e., from any starting configuration,Qε will eventually be visited with prob-
ability 1 [2, 7].

Schedulers and probability measure.The nondeterminism in an MDP is resolved by
a scheduler, also often called “adversary”, “policy” or “strategy”. Here a “scheduler”
is ahistory-dependent deterministic schedulerin the classification of [28]. Formally, a
scheduler forN is a mappingU that assigns to any finite pathπ in N a transition rule
δ ∈ ∆ that is enabled in the last state ofπ. The given pathπ specifies the history of the
system, andU (π) is the rule thatU chooses to fire next. A schedulerU only gives rise

to certain paths: we sayπ = s0
δ1−→ s1

δ2−→ ·· · is compatible withU or, shortly, is aU -path,

if PN (si−1,δi ,si) > 0 for all i ≥ 1, whereδi+1 =U (s0
δ1−→ ·· · δi−→ si) is the rule chosen by

U at stepi alongπ. In practice, it is only relevant to define howU evaluates on finite
U -paths.

A finite-memory, or fm-, schedulerU = (U,D,η,u0) is specified via a finite setU of
modes, astarting mode u0 ∈U , adecision rule D: U ×Conf → ∆ choosing the next rule
D(u,s)∈∆(s) based on the current mode and the current configuration, and anext-mode
functionη : U ×Conf →U specifying the mode-changes ofU . The modes are used to
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store some relevant information about the history. An fm-schedulerU is memorylessif
it has a single mode: thenU is not history-dependent and can be specified more simply
as a mappingU : Conf → ∆.

Now, given an NPLCSN , a starting configurations = s0 and a schedulerU , the
behavior ofN underU can be formalized by an infinite-state Markov chainMCU . For
arbitrary schedulers, the states ofMCU are finite paths inN , while for fm-schedulers
it is possible to consider pairs(u,s) of a mode ofU and a configuration ofN . One
may now apply the standard machinery for Markov chains and define (for fixed starting
configurations) a sigma-field on the set of infinite paths starting ins and a probability
measure on it, see, e.g., [28, 23, 11]. We shall write PrU

(
s |= . . .

)
to denote the standard

probability measure inMCU with starting states.

LTL/CTL-notation. We use simple LTL and CTL formulas to denote properties of re-
spectively paths and configurations inMDPL . Here configurations and locations serve
as atomic propositions: for example�♦s (resp.�♦q) means thats∈ Conf (resp.q∈Q)
is visited infinitely many times, andq Until s means that the control location remains
q until configurations is eventually reached. These notations extend to sets and, for
T ⊆ Conf and P ⊆ Q, �♦T and�♦P have the obvious meaning. ForP ⊆ Q, Pε is
the set{(p,ε) | p∈ P} so that♦Qε means that eventually a configuration with empty
channels is reached. It is well-known that for any schedulerU , the set of paths starting
in some configurations and satisfying an LTL formula, or anω-regular property,ϕ is
measurable [32, 16]. We write PrU

(
s |= ϕ

)
for this measure.

Reachability analysis.For a setA⊆Conf and a ruleδ∈ ∆, we letPre[δ](A)
def
= {s | ∃t ∈

A,s
δ−→ t} denote the set of configurations from whichA can be reached in one step with

rule δ. Pre(A)
def
=

⋃
δ∈∆ Pre[δ](A) contains allone-step predecessors, andPre∗(A)

def
=

A∪Pre(A)∪Pre(Pre(A))∪·· · all iterated predecessors. The successor setsPost[δ](A),
Post(A), andPost∗(A) are defined analogously. Recall that reachability between config-
urations of LCS’s is decidable [6, 30], which is also impliedby Theorem 3.2 below.

Constrained reachability. We sometimes need to reach a setA using only rules that
cannot get us out of some setT ⊆ Conf. Formally, forT,A⊆ Conf, we define

P̂reT(A)
def
= {s∈ Conf | ∃δ ∈ ∆(s) s.t.Post[δ](s)∩A 6= /0 andPost[δ](s) ⊆ T}.

In other words,s is in P̂reT(A) if there is a ruleδ that may takes to some state in
A but that cannot take it outsideT. The set of iteratedT-constrainedpredecessors is

P̂re
∗
T(A)

def
= A∪ P̂reT(A)∪ P̂reT(P̂reT(A))∪·· ·

3 Symbolic representations for sets of configurations

Symbolic model-checking relies on symbolic objects representing sets of configura-
tions, and algorithmic methods for handling these objects meaningfully.

In this section, we present a symbolic framework for NPLCS’sbased ondifferences
of prefixed upward-closures. This extends previous techniques from [4, 3, 20] in that it
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permits dealing with set differences and checking which is the first message in a chan-
nel. For simplicity in the presentation,we assume that the NPLCS under consideration
only has a single channel. We also omit most of the algorithmic details pertaining to
data structures, normal forms, canonization, . . . , that arepresent in our prototype im-
plementation (see section 6).

Recall that a setT ⊆ Conf is upward-closed(resp.,downward-closed) if for all

s∈T, and for alls′ ⊒ s(resp.,s′ ⊑ s), s′ ∈T. ForT ⊆Conf, we let↑T
def
= {s∈Conf|∃s′ ∈

T ∧ s′ ⊑ s} denote theupward-closureof T, and↓ T
def
= {s∈ Conf|∃s′ ∈ T ∧ s⊑ s′}

denote thedownward-closureof T. For singleton sets we write shortly↑ t and↓ t rather
than↑ {t} and↓ {t}.

Our symbolic sets are defined with the following abstract grammar:

prefix: α := ε | m m∈ M

prefixed closure: θ := α↑u u∈ M∗

sum of prefixed closures: σ := θ1 + · · ·+ θn n≥ 0
simple symbolic set: ρ := 〈q,θ−σ〉 q∈ Q is a location

symbolic set: γ := ρ1 + · · ·+ ρn n≥ 0

Prefixed (upward-)closures and their sums denote subsets ofM∗ defined withJα↑uK
def
=

{αv | u ⊑ v} andJθ1 + · · ·+ θnK
def
= Jθ1K∪ ·· · ∪ JθnK. Symbolic sets denote subsets of

Conf defined withJ〈q,θ− (θ1 + · · ·+ θn)〉K def
= {〈q,v〉 ∈ Conf | v∈ JθKr (Jθ1K∪ ·· · ∪

JθnK)}. A region is any subset ofConf that can be denoted by a symbolic set. It is a
control regionif can be written under the form∑i〈qi ,ε↑ε〉, where channel contents are
unrestricted.

We abuse notation and write/0 to denote both empty (i.e., withn = 0) sums of
prefixed closures and empty symbolic sets. We also sometimeswrite ↑v for ε↑v, θ−
θ1−·· ·−θn for θ− (θ1 + · · ·+ θn), andθ for θ− /0. We writeγ ≡ γ′ whenJγK = Jγ′K,
i.e., whenγ andγ′ denote the same region.

Theorem 3.1 (Effective symbolic computation: basics).

Boolean closure: Regions are closed under union, intersection, and complementation.
Moreover, there exist algorithms that given symbolic setsγ1 and γ2 return terms
denotedγ1⊔ γ2, γ1⊓ γ2 and¬γ such thatJγ1⊔ γ2K = Jγ1K∪ Jγ2K, Jγ1⊓ γ2K = Jγ1K∩
Jγ2K andJ¬γK = Conf r JγK.

Upward closure: Regions are closed under upward closure. Moreover, there exists an
algorithm that given a symbolic setγ returns a term denoted↑γ such thatJ↑γK =
↑JγK.

Vacuity: It is decidable whetherJγK = /0 given a regionγ.
One-step predecessors:Regions are closed under the Pre(_) andP̂re_(_) operations.

Moreover, there exist algorithms that given symbolic setsγ and γ′ return terms
denoted Pre(γ) and P̂reγ′(γ), and such thatJPre(γ)K = Pre(JγK) and JP̂reγ′(γ)K =

P̂reJγ′K(JγK).

Theorem 3.1 provides the basic ingredients necessary for symbolic model-checking
of LCS’s. These ingredients can then be used for computing sets defined as fixpoints.
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For example, using standardµ-calculus notation, a symbolic set denotingPre∗(JγK)
would be defined asµX.γ ⊔Pre(X). In [8] we show how a symbolic representation
for sets defined by such fixpoint expressions can be computed effectively (when some
guardedness condition holds).

Theorem 3.2 (Effective symbolic computation: fixpoints).

Iterated (constrained) predecessors:Regions are closed under the Pre∗(_) and the

P̂re
∗
_(_) operations. Moreover, there exist algorithms that given symbolic setsγ and

γ′ return terms denoted Pre∗(γ) andP̂re
∗
γ′(γ), and such thatJPre∗(γ)K = Pre∗(JγK)

andJP̂re
∗
γ′(γ)K = P̂re

∗
Jγ′K(JγK).

Safe sets (see section 4):For any regionγ, the setνX.
(
γ⊓ P̂reX(Conf)

)
is a region,

and a term for it can be computed effectively.
Promising sets (see section 4):For any regionγ, the setνX.P̂re

∗
X(γ) is a region, and a

term for it can be computed effectively.
∃CTL: The set of configurations satisfying an∃CTL formula (i.e., a CTL formula

where only the modalities “∃(_ Until _)” and “ ∃Next_” are allowed) is a region
when the atomic propositions are themselves regions. Moreover, a symbolic set for
that region can be obtained algorithmically from the∃CTL formula.

4 Verifying safety and liveness properties for NPLCS’s

This section considers various types of safety and livenessproperties where regions
serve as atoms, and presents algorithms for checking the existence of a fm-schedulerU
such that PrU (s |= ϕ) is > 0, = 1, < 1 or= 0.

We start with reachability properties♦A and invariants�A for some regionA.
For eventually properties with the satisfaction criteria “with positive probability”,

decidability relies on the computation of iterative predecessors in (non-probabilistic)
lossy channel systems:

Theorem 4.1. Let s∈ Conf and A⊆ Conf. There exists a schedulerU with PrU (s |=
♦A) > 0 iff PrU (s |= ♦A) > 0 for some memoryless schedulerU iff s∈ Pre∗(A).

For other satisfaction criteria, or for other properties, we have to develop more ad-
hoc characterizations of the sets of configurations where the qualitative properties hold.

For invariants�A, we introduce the concept of safe sets:

Definition 4.2 (Safe sets).Let A,T ⊆ Conf. T is calledsafefor A if T ⊆ A and for all
s∈ T, there exists a transition ruleδ enabled in s such that Post[δ](s) ⊆ T.

Since the union of safe sets is safe, the largest safe set forA, denotedSafe(A), exists.
There exists a simple fixpoint characterization forSafe(A) (here and in the sequel,

we use the standardµ/ν-notations for fixpoints).

Lemma 4.3. For any A⊆ Conf, Safe(A) = νX.A∩ P̂reX(Conf).

Thus, if A is a region,Safe(A) is a region too, and a symbolic representation can be
computed effectively (Theorem 3.2). This is the key for verifying invariants:
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Theorem 4.4 (Safe sets and invariants).Let A⊆ Conf and s∈ Conf.

(a) s∈ Safe(A)
iff there exists a schedulerU such thatPrU (s |= �A) = 1
iff there exists a memoryless schedulerU such thatPrU (s |= �A) = 1.

(b) s|= ∃(A Until Safe(A))
iff there exists a schedulerU such thatPrU (s |= �A) > 0
iff there exists a memoryless schedulerU such thatPrU (s |= �A) > 0.

The corollary is that, for a regionA, we can compute a symbolic representation for the
set of all configurations where PrU (s |= �A) > 0 or= 1 for some schedulerU .

Definition 4.5 (Promising sets).Let A,T ⊆ Conf. T is calledpromisingfor A if for all

s∈ T there exists a path s= s0
δ1−→ s1

δ2−→ ·· · δm−→ sm with m≥ 0 such that sm ∈ A and for
all 1≤ i ≤ m, Post[δi ](si−1) ⊆ T.

As for safe sets, the largest promising set forA exists: we denote itProm(A).

Lemma 4.6. For any A⊆ Conf, Prom(A) = νX.P̂re
∗
X(A).

Thus, if A is a region,Prom(A) is a region too, and a symbolic representation can be
computed effectively (Theorem 3.2).

Theorem 4.7 (Promising sets and almost sure reachability).Let s∈ Conf and A⊆
Conf. s∈ Prom(A) iff PrU (s |= ♦A) = 1 for some schedulerU iff PrU (s |= ♦A) = 1 for
some memoryless schedulerU .

The corollary is that, for a regionA, we can compute the set of all configurationsssuch
that PrU (s |= ♦A) > 0 or= 1 for someU .

We now consider repeated reachability and persistence properties. The question
whether a repeated reachability property�♦A holds under some scheduler with pos-
itive probability is undecidable when ranging over the fullclass of schedulers, but is
decidable for the class of fm-schedulers. This was shown in [14, 9] for the case whereA
is a set of locations (i.e.a control region). We now show that the decidability even holds
if A is a region. More precisely, we show that ifA is a region andϕ ∈ {�♦A,♦�A},
then the set of configurationss where PrU (s |= ϕ) > 0 or = 1 for some fm-scheduler is
a region.

For A ⊆ Conf let Prom≥1(A) denote the largest setT of configurations such that

for all t ∈ T there exists a finite paths= s0
δ1−→ s1

δ2−→ ·· · δm−→ sm with m≥ 1, sm ∈ A and
Post[δi ](si−1) ⊆ T for all 1≤ i ≤ m. Note that the definition ofProm≥1(A) is different
from Prom(A) since the paths must have length at least 1. We then haveProm≥1(A) =

νX.P̂re
+

X (A), and, ifA is a region then so isProm≥1(A). Thus, the following theorem
provides the decidability of repeated reachability and persistence properties:

Theorem 4.8 (Repeated reachability and persistence).Let s∈ Conf and A⊆ Conf.
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(a) s∈ Prom≥1(A) iff PrU (s |= �♦A) = 1 for some schedulerU
iff PrU (s |= �♦A) = 1 for some memoryless schedulerU .

(b) s∈ Pre∗(Prom≥1(A)) iff PrU (s |= �♦A) > 0 for some fm-schedulerU
iff PrU (s |= �♦A) > 0 for some memoryless schedulerU .

(c) s∈ Prom(Safe(A)) iff PrU (s |= ♦�A) = 1 for some schedulerU
iff PrU (s |= ♦�A) = 1 for some memoryless schedulerU .

(d) s∈ Pre∗(Safe(A)) iff PrU (s |= ♦�A) > 0 for some schedulerU
iff PrU (s |= ♦�A) > 0 for some memoryless schedulerU .

We now consider the Streett formulaϕS =
∧

1≤i≤n�♦Ai → �♦Bi whereA1, . . . ,An

andB1, . . . ,Bn are regions. Here again we only consider fm-schedulers since the prob-
lem is undecidable for the full class of schedulers [9].

For A,B⊆ Conf, let Prom≥1
A (B) be the largest subsetT of A such that for allt ∈ T

there exists a patht = s0
δ1−→ ·· · δm−→ sm with m > 0, sm ∈ B andPost[δi ](si−1) ⊆ T for

all 1 ≤ i ≤ m. We haveProm≥1
A (B) = νX.P̂re

+

X (B)∩A and if A,B are regions then so
is Prom≥1

A (B). In addition,s∈ Prom≥1
A (B) iff PrU (s |= �♦B∧�A) = 1 for some fm-

schedulerU .
The above is useful to show decidability of the questions whether PrU (s |= ϕS) < 1

or = 0 for some fm-schedulerU . For this, we use the fact that PrU (s |= ϕS) < 1 iff
PrU (s |= �♦Ai → �♦Bi) < 1 for somei iff PrU (s |= �♦Ai ∧♦�¬Bi) > 0 for somei.

Theorem 4.9 (Streett property, probability less than 1).There exists a fm-scheduler
U with PrU (s |= �♦A∧♦�¬B) > 0 iff there exists a memoryless schedulerU with
PrU (s |= �♦A∧♦�¬B) > 0 iff s∈ Pre∗(Prom≥1

¬B(A)). In particular, PrU (s |= ϕS) < 1
for some fm-schedulerU iff s∈ ⋃

1≤i≤nPre∗(Prom≥1
¬Bi

(Ai)).

Let Ti be the set of all configurationst ∈Conf such that PrW (s|= �♦Ai ∧♦�¬Bi) =
1 for some fm-schedulerW . Note thatTi = Pre∗(Prom≥1

¬Bi
(Ai)) is a region. Thus,TS =

T1∪T2∪·· ·∪Tn is a region too. This and the following theorem yields the decidability
of the question whether PrU (s |= ϕS) = 0 for some schedulerU .

Theorem 4.10 (Streett property, zero probability). There exists a fm-schedulerU
such thatPrU

(
s |= ϕS) = 0 if and only if s∈ Prom(TS).

We next consider the satisfaction criterion “with positiveprobability”. The treat-
ment of the special case of a single strong fairness formula�♦A→ �♦B≡ ♦�¬A∨
�♦B is obvious as we have: There exists a finite-memory (resp. memoryless) sched-
uler U such that PrU (s |= �♦A → �♦B) > 0 iff at least one of the following condi-
tions holds: (i) there exists a fm-schedulerV such that PrV (s |= ♦�¬A) > 0 or (ii)
there exists a fm-schedulerW such that PrW (s |= �♦B) > 0. We now extend this
observation to the general case (several Streett properties). For I ⊆ {1, . . . ,n}, let AI

denote the set of configurationss such that there exists a finite-memory scheduler sat-
isfying PrU (s |= ∧

i∈I �♦Bi ∧
∧

i /∈I �¬Ai) = 1 and letA be the union of allAI ’s, i.e.,
A =

⋃
I⊆{1,...,n}AI . Then, the setsAI andA are regions. Thus, the algorithmic treatment

of Streett properties the satisfaction criteria “positiveprobability” and “almost surely”
relies on the following theorem:
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Theorem 4.11 (Streett properties, positive probability and almost surely).

(a) There exists a fm-schedulerU such thatPrU (s |= ϕS) > 0 iff s∈ Pre∗(A).
(b) There exists a fm-schedulerU such thatPrU (s |= ϕS) = 1 iff s∈ Prom(A).

We conclude with the following main theorem gathering all previous results:

Theorem 4.12 (Qualitative model-checking).For any NPLCSN and Streett property
ϕ =

∧
i �♦Ai → �♦Bi where the Ai ’s and Bi ’s are regions, the set of all configurations

s s.t. for all fm-schedulersU PrU (s |= ϕ) satisfies a qualitative constraint “= 1”, or
“ < 1”, or “ = 0”, or “ > 0”, is a region that can be computed effectively.

With the techniques of [9, § 7], Theorem 4.12 extends to allω-regulars properties

5 Verification under fair finite-memory schedulers

We now address the problem of verifying qualitative linear time properties under fair-
ness assumptions. Following the approaches of [19, 32, 12],we consider here a notion
of scheduler-fairnesswhich rules out some schedulers that generate unfair paths with
positive probability. This notion of scheduler-fairness has to be contrasted with extreme-
and alpha-fairness introduced in [24–26] which require a “fair” resolution of probabilis-
tic choices and serve as verification techniques rather thanfairness assumptions about
the nondeterministic choices.

A schedulerU is calledfair if it generates almost surely fair paths, according to
some appropriate fairness constraints for paths. We deal here with strong fairnessfor
selected sets of transition rules. I.e., we assume a setF = { f0, . . . , fk−1} where fi ⊆
∆ and require strong fairness for allfi ’s. (The latter means whenever some transition
rule in fi is enabled infinitely often then some transition rule infi will fire infinitely
often.) For instance, process fairness fork processesP0, . . . ,Pk−1 can be modelled by
F = { f0, . . . , fk−1} where fi is the set of transition rules describingPi ’s actions.

A set f ⊆ ∆ is called enabled in configurations if there is a transition ruleδ ∈ f
that is enabled ins, i.e., if ∆(s)∩ f 6= /0. If F is a subset ofF ands∈ Conf thenF is
called enabled ins if some f ∈ F is enabled ins, i.e., if ∃ f ∈ F. f ∩∆(s) 6= /0. We write
Enabl(F) to denote the set of configurationss∈ Conf whereF is enabled.

Definition 5.1 (Fair paths, fair schedulers).Let F ∈ 22∆
be a (finite) set consisting

of subsets of∆. An infinite path s0
δ1−→ s1

δ2−→ ·· · is calledF -fair iff for all f ∈ F either
δ j ∈ f for infinitely many j or there is some i≥ 0 such that f is not enabled in the
configurations sj for all j ≥ i. SchedulerU is calledF -fair (or briefly fair) if for each
starting state s, almost allU -paths areF -fair.

We first considerreachabilityproperties♦A and show that fairness assumptions are
irrelevant for the satisfaction criteria “with positive probability”and “almost surely”.
This follows from the fact that from the moment on where a configuration inA has been
entered one can continue in an arbitrary, butF -fair way. Thus:

∃ V F -fair s.t. PrV (s |= ♦A) > 0 iff ∃ U s.t. PrU (s |= ♦A) > 0
∃ V F -fair s.t. PrV (s |= ♦A) = 1 iff ∃ U s.t. PrU (s |= ♦A) = 1
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By the results of section 4, given an NPLCSN , starting configurations and regionA,
the questions whether there exists aF -fair schedulerU such that PrU (s |= ♦A) > 0 or
= 1 are decidable.

The treatment ofinvariant properties�A under fairness constraints relies on gener-
alizations of the concept of safe and promising sets. ForA,B⊆Conf, PromA(B) denotes

the largest setT ⊆ A∪B such that for allt ∈ T there exists a patht = s0
δ1−→ ·· · δm−→ sm

with m≥ 0, sm ∈ B andPost[δi ](si−1) ⊆ T for all 1≤ i ≤ m. The fixed-point definition
of PromA(B) would beνX.P̂re

∗
X(B)∩ (A∪B).

For F ⊆ 2∆ and A ⊆ Conf, let SafeF (A) =
⋃

F⊆F Safe[F ](A) whereSafe[F ](A)
is defined as follows. IfF is a nonempty subset ofF then Safe[F ](A) denotes the
largest setT ⊆ Ar Enabl(F r F) such that for allt ∈ T and f ∈ F there is a path

s0
δ1−→ ·· · δm−→ sm with t = s0, m≥ 1, δm ∈ f andPost[δi ](si−1) ⊆ T for all 1 ≤ i ≤ m.

Moreover,SafeF [ /0](A) = Safe(ArEnabl(F )).
SinceEnabl(F r F) can be expressed byPre[F r F ](Conf), we get the following

mu-calculus terms forSafe[ /0](A) andSafe[F ](A):

– Safe[ /0](A) = νX.
(
ArPre[F ](Conf)

)
∩ P̂reX(Conf), and

– Safe[F ](A) = νX.
(
ArPre[F rF ](Conf)

)
∩⋂

f∈F P̂re
∗
X(P̂reX[ f ](Conf)).

Theorem 5.2 (Fair invariants). Let A⊆ Conf and s∈ Conf.

(a) There is aF -fair fm-schedulerV s.t.PrV (s|= �A) > 0 iff s |= ∃(AUntil SafeF (A)).
(b) There is aF -fair fm-schedulerV s.t.PrV (s |= �A) = 1 iff s∈ PromA(SafeF (A)).

Observe that, for a regionγ, SafeF (JγK) andPromA(SafeF (JγK)) are regions that can
be built effectively (based on the same reasoning that we usefor Theorem 3.2). Thus,
Theorem 5.2 yields the decidability of the questions whether for a given NPLCS, region
A and configurations, there exists aF -fair fm-schedulerU such that PrU (s |= �A) > 0
or = 1.

In the sequel, forA⊆ Conf, we denote byTF
�A the set of all configurationss such

that PrU (s |= �A) = 1 for someF -fair fm-schedulerU .
We now come torepeated reachability�♦A andpersistence♦�A properties under

fairness constraints. ForA⊆ Conf, we defineTF
�♦A =

⋃
F⊆F TF whereTF is the largest

subset ofConf rEnabl(F rF) such that for allt ∈ TF :

– there is a finite paths0
δ1−→·· · δm−→ sm with m≥1,t = s0, sm∈AandPost[δi ](si−1)⊆TF

for all 1≤ i ≤ m,

– for each f ∈ F there is a finite paths0
δ1−→ ·· · δm−→ sm with t = s0, m≥ 1, δm ∈ f and

Post[δi ](si−1) ⊆ TF for all 1≤ i ≤ m.

Theorem 5.3 (Fair repeated reachability and persistence).Let A⊆ Conf and s∈
Conf.

(a) There exists aF -fair fm-schedulerU with PrU (s |= �♦A) = 1 iff s∈ Prom(TF
�♦A).

(b) There exists aF -fair fm-schedulerU with PrU (s |= �♦A) > 0 iff s∈ Pre∗(TF
�♦A).

(c) There exists aF -fair fm-schedulerU with PrU (s |= ♦�A) = 1 iff s∈ Prom(TF
�A).
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(d) There exists aF -fair fm-schedulerU with PrU (s |= ♦�A) > 0 iff s∈ Pre∗(TF
�A).

With similar arguments as forProm(A), the sets of configurationTF
�♦A andTF

�A =
PromA(SafeF (A)) are regions wheneverA is a region. This entails the decidability of
the questions whether given regionA, there exists aF -fair fm-schedulerU such that
PrU (s |= ϕ) = 1 or> 0 whereϕ = �♦A or ♦�A.

We next considerlinear timeproperties, formalized by LTL formulasϕ where re-
gions serve as atomic propositions. The idea is to encode thefairness constraints in the
model (the NPLCS) by a Streett property

fair =
∧

f∈F
(�♦Af → �♦Bf )

(with regionsAf ,Bf ⊆ Conf) that will be considered in conjunction withϕ. We modify
the given LCSL = (Q,C,M,∆) and construct a new LCSL ′ = (Q′,C,M,∆′) as follows.
We introduce new locationsqF for all subsetsF of F andq ∈ Q, i.e., we deal with
Q′ = {qF : q ∈ Q,F ⊆ F }. ∆′ is the smallest set of transition rules such thatpG

op−→
qF ∈ ∆′ if p

op−→ q ∈ ∆, G ⊆ F andF = { f ∈ F : p
op−→ q ∈ f}. For f ∈ F , Bf is the

set of configurations〈qF ,w〉 in L ′ such that f ∈ F , while Af denotes the set of all
configurations〈qF ,w〉 of L ′ where f is enabled in the configuration〈q,w〉 of L . We
finally transform the given formulaϕ into ϕ′ by replacing any regionC of L that appears
as an atom inϕ with the regionC′ = {〈qF ,w〉 : 〈q,w〉 ∈ C,F ⊆ F }. For instance, if
ϕ = �♦(q∧ (c 6= ε)) thenϕ′ = �♦

(
(q∨ ∨

F⊆F
qF)∧ (c 6= ε)

)
.

In the sequel, letN = (L ,τ) be the NPLCS that we want to verify againstϕ and let
N ′ = (L ′,τ) the associated modified NPLCS. Obviously, for each fm-schedulerU for
N there is a “corresponding” fm-schedulerU ′ for N ′, and vice versa. Corresponding
means thatU ′ behaves asU for the current configuration〈q,w〉 with q ∈ Q. If the
current configuration ofU ′ is 〈qF ,w〉 thenU ′ behaves asU for 〈q,w〉. Then, PrU (s |=
ϕ) = PrU ′(s |= ϕ′) for all configurationss in N . Here, each configurations= 〈q,w〉 of
N is identified with the configuration〈q/0,w〉 in N ′. Moreover,U isF -fair iff PrU ′(s|=
fair) = 1. This yields part (a) of the following lemma. Part (b) follows from the fact that
PrU (s |= ϕ) = 1−PrU (s |= ¬ϕ) for each schedulerU .

Lemma 5.4. Let s be a configuration inN (andN ′) andϕ an LTL formula. Then:

(a) There exists aF -fair fm-schedulerU for N such thatPrU (s |= ϕ) = 1 if and only
if there exists a fm-schedulerU ′ for N ′ such thatPrU ′(s |= fair ∧ϕ′) = 1.

(b) There exists aF -fair fm-schedulerU for N such thatPrU (s |= ϕ) = 0 if and only
if there exists a fm-schedulerV for N ′ such thatPrV (s |= fair ∧¬ϕ′) = 1.

(c) There exists aF -fair fm-schedulerU for N such thatPrU (s |= ϕ) > 0 if and only
if there exists a fm-schedulerV for N ′ such thatPrV (s |= fair ∧ϕ′) > 0.

(d) There exists aF -fair fm-schedulerU for N such thatPrU (s |= ϕ) < 1 if and only
if there exists a fm-schedulerV for N ′ such thatPrV (s |= fair ∧¬ϕ′) > 0.

Lemma 5.4 even holds for arbitraryω-regular properties. It provides a reduction
from the verification problem for qualitative LTL formulas in NPLCS’s and fair fm-
schedulers to the same problem for the full class of fm-schedulers. Thus, all decidability
results that have been established for NPLCS’s and qualitative verification problems for
the class of fm-schedulers (see 4) also hold when fairness assumptions are made.
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6 Automatic verification of Pachl’s protocol

Fig. 1 directly translates into a LCSLPachlwhen the asynchronous product ofPL andPR
is considered.LPachlhas 6×6= 36 control locations and(18+18)×6= 216 transition
rules. In order to reason about notions like “a ruleδ has been fired”, that are ubiquitous
in fairness hypothesis, our tool adds an history variable recording the last fired rule
(actually, only its action label). This would further multiply the number of states and of
transitions by 20, but not all pairs (location,last action)are meaningful so that the final
model can be stripped down to 144 locations and 948 rules. In all our results below
we do not use the names of these 144 locations, but rather project them to the more
readable underlying 36 locations.

6.1 Safety analysis

Pachl [22] computed manually the setPost∗(Init) of all configurations reachable in
LPachlfrom the initial empty configurationInit = (L0,R4,ε,ε), and such forward com-
putations can sometimes be done automatically with the techniques described in [4] (al-
though termination of the forward-reachability computations cannot be guaranteed in
general). These computations show that the protocol does indeed preserve the integrity
of communication in the sense that no confusion between datamessages is introduced
by losses.

Our calculus for regions is geared towards backward computation, where termina-
tion is guaranteed. Our implementation can compute automatically the set of deadlock
configurations:

Dead
def
= Conf rPre(Conf) = 〈L4,R4,ε,ε〉.

Hopefully, Dead is not reachable fromInit. We can compute the setPre∗(Dead)
of all unsafe configurations, that can end up in a deadlock. Intersecting with↑Init, we
obtain the set of unsafe starting channel contents:

Pre∗(Dead)⊓↑Init =

〈L0,R4,↑ε,↑a0d0〉 + 〈L0,R4,↑eoda0,↑a0〉 + 〈L0,R4,↑d0eoda0,↑ε〉.

Thus eventual deadlock is possible from location(L0,R4) if the channels initially con-
tain the appropriately unsafe contents.

6.2 Liveness analysis

We now come to what is the main motivation of our work: provingprogress under fair-
ness hypothesis. In this case study, the problem we address is in general to compute
the set of all configurations satisfying some PrU (s |= �♦A) = 1 for all schedulersU
satisfying some fairness conditionsF . Following equivalences of section 5, this is re-
lated to the computation ofTF

�♦A. More precisely:{s|∀U F -fair PrU (s|= �♦A) = 1}=

Conf rPre∗(TF
�♦A).



14 C. Baier, N. Bertrand, and Ph. Schnoebelen

When computingTF
�♦A, all subsets ofF have to be considered and this induces

a combinatorial explosion for largeF . Since we did not yet develop and implement
heuristics to overcome this difficulty, we only checked examples considering “small”
F sets (meaning a number of fairness sets, each of which can be alarge set of rules) in
this preliminary study. For example, we considered “strongprocess fairness”Fprocess =
{Fleft,Fright} (with obvious meaning for the sets of transitionsFleft, Fright), or “strong
fairness for reading”Fread = {Fread}.

Regarding the target setA, we consider questions whether a given transition (inPL
or PR) is fired infinitely often (using the history variable), or whether a process changes
control states infinitely often, etc. Observe that a conjunction of “PrU (s |= �♦Ai) = 1”
gives PrU (s |= ∧

i �♦Ai) = 1, so that we can check formulas like
∧

i �♦Li∧∧
i �♦Ri,

expressing progress in communication between the two processes.
In the three following cases :

– F = Fread andA = Afterleft

– F = Fread andA = Afterleft−move

– F = {Fread,Fright−read} andA = Afterleft

our prototype model checker yields thatInit∈Conf rPre∗(TF
�♦A). This means that, in

all three cases, starting fromInit, the set of configurationsA will be visited infinitely
often almost surely, under allF -fair schedulers.

7 Conclusion

We introduced NPLCS’s, a model for nondeterministic channel systems where mes-
sages are lost probabilistically, and showed the decidability of qualitative verification
question of the form “doesϕ holds with probability 1 for allF -fair finite-memory
schedulers?” whereϕ is anω-regular linear-time property andF a strong fairness con-
dition.

When atomic propositions can refer to the contents of channels, which is required
when one wants to express fairness and firability of rules, our decidability results rest
upon a new notion of symbolic regions based on “prefixed upward-closures”. These
symbolic methods can be implemented rather directly and we used them to analyze
simple systems.

These results are the outcome of a research project that started in [13, 14] with the
first early definition of NPLCS’s and was continued in [9] where the key notions for
reducing to constrained reachability questions have been first identified in a simplified
framework. Further developments will focus on incorporating algorithmic ideas from
symbolic verification (normal forms, caches, sharing, . . . )in our naive prototype veri-
fier, turning it into a more solid analysis tool.
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