
Reducing Software Architecture Models
Complexity: a Slicing and Abstraction Approach

Daniela Colangelo1, Daniele Compare1, Paola Inverardi2, and Patrizio
Pelliccione2

1 Selex Communications, L’Aquila, Italy,
{daniela.colangelo,daniele.compare}@selex-comms.com

2 University of L’Aquila, Computer Science Department
Via Vetoio, 67010 L’Aquila, Italy

{inverard,pellicci}@di.univaq.it

Abstract. Software architectures (SA) represents a critical design level
for software systems. Architectural choices need to be analyzed and ver-
ified to achieve a better software quality while reducing the time and
cost of production. Model-checking is one of the most promising verifi-
cation techniques, however its use for very large systems is not always
possible due to the state explosion problem. In this paper we propose
an approach that slices and abstracts the SA of a system in order to
reduce the model complexity without compromising the verification va-
lidity. This approach exploits the characteristics of the SA model and
the structure of the property of interest. It is applied to an industrial
telecommunication system of the Selex Communications company.

1 Introduction

Recently, Software Architectures (SA) [1, 2] have been largely accepted as a well
suited tool to achieve better software quality while reducing time and cost of
production. SA provide both a high-level behavioral abstraction of components
and of their interactions (connectors) and, a description of the static structure of
the system. The aim of SA descriptions is twofold: on one side they force the de-
signer to separate architectural concerns from other design ones, thus abstracting
away many details. On the other side, they allow for analysis and verification
of architectural choices, both behavioral and quantitative, in order to obtain
better software quality in an increasingly shorter time-to-market development
scenario [3].

Formal Architectural Description Languages (ADL) have been employed to
specify SA in a formal and rigorous way. They are the basis for many methods
and tools for analysis and verification of software architectures, both behav-
ioral and quantitative [3]. One of the most promising verification technique is
model-checking since is fully automated and its use requires no supervision or
formal methods expertise. Due to these reasons, in recent years model checking
has gained popularity and it is increasingly used also in industrial contexts [4,
5]. However the application of model checking techniques is still prevented by



the state explosion problem. As remarked by Gerald Holzmann in [6] no paper
has been published on reachability analysis techniques without a serious discus-
sion of this problem. State explosion occurs either in systems composed of (not
too) many interacting components, or in systems where data structures assume
many different values. The number of global states easily becomes enormous
and intractable. To solve this problem, many methods have been developed by
exploiting different approaches [7]. They can be logically classified into two dis-
joint sets [8]. The first set, that we call Internal Methods, considers algorithms
and techniques used internally to the model checker in order to efficiently repre-
sent transition relations between concurrent processes, such as Binary Decision
Diagrams [9] (used for synchronous processes) and Partial Order Reduction [10]
techniques (used for asynchronous processes). The second set, that we call Exter-
nal Methods includes techniques that operate on the input of the model checker
(models), and can be used in conjunction with Internal Methods. In this set
there are Abstraction [11], Symmetry [12], Compositional Reasoning [13, 14, 8],
and Slicing [15, 16].

In this paper we propose an architectural slicing and abstraction approach
which exploits the characteristic of the SA model and the structure of the prop-
erty of interest for reducing the model complexity without compromising the
verification validity. Program slicing [17] is a technique which attempts to de-
compose the system by extracting elements that are related to a particular com-
putation. It is defined for conventional programming languages and therefore
it is based on the basic elements of a program, i.e. variables and statements.
Architectural slicing is the result of applying the slicing idea to SA [18, 19]. Thus
the basic elements on which is based the Architectural slicing are components,
connectors, ports, roles, and messages exchanged between components. An ar-
chitectural slicing can be considered a subset of the behaviour of a software
architecture with the attempt to isolate its parts that are involved in the slic-
ing criterion. In the approach that we are proposing the slicing criterion is the
property we want to check on the SA. Thanks to the architectural slicing we are
able to extract the parts of the system that play a role on the behavior implied
by the property of interested.

Our approach makes use of TeStor [20], an algorithm that, taking in input
state machines and scenarios expressed in terms of Property Sequence Charts
(PSC) [21, 22], generates test sequences in the form of scenarios. TeStor gen-
erates all traces containing the messages expressed in the input PSC and in the
same order defined in the PSC by suitably abstracting with respect to message
repetitions and loops. In this way it generates a final number of traces. Thus,
given in input the state machines defining the behavior of the components com-
posing the system and the property of interest (expressed in PSC notation),
TeStor identifies all dependencies in the state machines and can be used as
basis for the architectural slicing. In this work, we propose to extend TeStor in
order to colorize the states of the components state machines that are involved
on the considered property. When this step is done we can cut off from the SA
the states that are not colored, thus obtaining a reduced and sliced SA.



After the slicing is performed some architectural abstraction criteria can be
furtherly used to abstract parts of the system that are implied by the property,
but that are not directly involved in its formulation. Finally, the reduced system
model can be model checked by using the Charmy [23, 24] tool. The efficacy of
this approach strictly depends on the characteristic of the SA. However it can
be completely automatized and for some systems offers a good reduction, as in
the industrial case study presented in Section 5. Through the case study, we
show how the traditional approach fails with the used hardware resources, and,
contrariwise, how the system can be successfully verified following this approach.

After an analysis of related work in Section 2, in Section 3 we introduce the
notions and the instruments required to understand the approach. The approach
is detailed in Section 4, and put in practice in Section 5, by presenting an in-
dustrial case study is presented. Finally, in Section 6 we present conclusion and
future work.

2 Related Work

Program slicing was firstly introduced in [25] and later extended in other works [26,
27]. For the sake of brevity, we report here only relevant works at the software
architecture level.

In [19] the authors propose a dependence analysis technique called chain-
ing to support software architectures testing maintenance and so on. Links in
chaining reflect the dependence relationships that are in the architecture de-
scription. The relationships are been both structural and behavioral and based
on components ports. A similar approach is proposed in [16] where is proposed a
dependence analysis based on three different kinds of analysis based respectively
on: relationships between a component and a connector; relationships between
a connector and a component; and relationships inside a connector or a compo-
nent. In this work and in [18] the author suggests to use the system dependence
net to slice architectural descriptions written in the ACME ADL, and in the
WRIGHT ADL respectively. This method produces a reduced textual architec-
tural description just containing the ADL code lines associated with a particular
slicing criterion. The works [19] and [16] are very similar in the main goal; how-
ever [19] does not focus on the description of the components themselves, but
rather on the more abstract nature of the components and the connections. Our
work builds on these prior works and it is based on a well detailed description of
the component itself. Contrary to these works that give an abstract description
of the components, by introducing only a dependence relationship between two
different ports of a component or between two different roles of a connector, our
work is based on a component description in terms of state machines that give
a detailed description of the component behavior.

The works introduced above present static slice and dependence analysis
techniques. In [15] authors propose a dynamic slicing, determined according to
the input at run time. This kind of technique gives a slice that is smaller in size
than the static one, and helps to isolate a specific execution path. Our work,



although is not performed at run time, is strongly related to this work. In fact
we are interested in identifying the execution paths that are implied by the
property that we want to verify on the system. This property is represented, as
already explained, as a PSC diagram and represents the slicing criterion in our
approach. The slicing criterion of the approach presented in [15] contains the
event to be observed, in addition our slicing criterion contains a set of events to
be observed and temporal relationships between them.

3 Background

3.1 Charmy: a tool for SA designing and model-checking

Charmy [23, 24] is a project whose goal is to easy the application of model-
checking techniques to validate the SA conformance to certain properties. In
Charmy the SA is specified through state diagrams used to describe how ar-
chitectural components behave. Starting from the SA description Charmy syn-
thesizes, through a suitable translation into Promela (the specification language
of the SPIN [5] model checker) an actual SA complete model that can be ex-
ecuted and verified in SPIN. This model can be validated with respect to a
set of properties, e.g., deadlock, correctness of properties, starvation, etc., ex-
pressed in Linear-time Temporal Logic (LTL) [28] or in its Büchi Automata rep-
resentation [29]. Charmy allows users to describe temporal properties by using
an extension of UML 2.0 sequence diagrams, called Property Sequence Charts
(PSC) [21, 22], that are successively translated into a temporal property repre-
sentation for SPIN. The model checker SPIN, is a widely distributed software
package that supports the formal verification of concurrent systems permitting
to analyze their logical consistency by on-the-fly checks, i.e., without the need
of constructing a global state graph, thus reducing the complexity of the check.
It is the core engine of Charmy and it is not directly accessible by a Charmy
user.

The state machine-based formalism used by Charmy is an extended subset
of UML state diagrams: labels on arcs uniquely identify the architectural commu-
nication channels, and a channel allows the communication only between a pair of
components. The labels are structured as follows: ‘[‘guard‘]‘event‘(‘parameter list‘)‘
‘/‘op1‘; ‘op2‘; ‘ · · · ‘; ‘opn where guard is a boolean condition that denotes the tran-
sition activation, an event can be a message sent or received (denoted by an
exclamation mark “!” or a question mark “?”, respectively), or an internal op-
eration (τ) (i.e., an event that does not require synchronization between state
machines). Both sent and received messages are performed over defined channels
ch, i.e., connectors. An event can have several parameters as defined in the para-
meters list. op1, op2, · · · , opn are the operations performed when the transition
fires.

3.2 Property Sequence Charts (PSC)

PSC [21, 22] is a diagrammatic formalism for specifying temporal properties in
a user-friendly fashion. It is a scenario-based visual language that is an extended



graphical notation of a subset of UML2.0 Sequence Diagrams. PSC can express a
useful set of both liveness and safety properties in terms of messages exchanged
among the components forming a system. Finally, an algorithm, called Psc2Ba,
translates PSC into Büchi automata.

PSC uses a UML notation, stereotyped so that: (i) each rectangular box
represents an architectural component, (ii) each arrow defines a communication
line (a channel) between two components. Between a pair of messages we can
select if other messages can occur (loose relation) or not (strict relation). Message
constraints are introduced to define a set of messages that must never occur in
between the message containing the constraint and its predecessor or successor.
Messages are typed as regular messages (optional messages), required messages
(mandatory messages) and fail messages (messages representing a fault).

An example of PSC is in Figure 4.

3.3 TEst Sequence generaTOR (TeStor)

TeStor [20] is an algorithm, which, taking in input state machines and scenar-
ios, generates test sequences in the form of scenarios. The algorithm is based on
the idea that scenarios are usually incomplete specifications and represent im-
portant and expected system interactions. Such incomplete specifications may be
“completed” by recovering, from state machines, the missing information. The
output of the algorithm is a set of sequence diagrams (outSD) containing the
sequence of messages expressed by the input sequence diagram (inSD), enhanced
and completed with information gathered by the components’ state machines.

TeStor, focussing on the first (not visited) message m in the selected inSD,
and looking inside each state machine, searches a trace which permits to reach
m, starting from the current state of the state machine. When such trace is
found, TeStor recursively moves to the next (not visited) message m′ in inSD,
and checks a trace which permits to reach m′ starting from the current state.
At the end of this process, TeStor tries to merge together the different trace
portions in a set of traces (the set outSD) which move from the initial state and
covers any message in the inSD.

For more information on the TeStor algorithm, please refer to [20].

4 The Approach

Our proposal makes use of TeStor, the algorithm introduced in Section 3.3,
which aims to extract test sequences from a SA specification (given in terms of
state machines) following the trail suggested by a PSC property. We propose
to use an extension of TeStor, called DepCol, which, instead of returning
a set of sequences, colors the state machines highlighting the parts of the SA
model that are required to correctly verifying the property of interest. After this
step is done the abstraction step can be performed. The idea is to compact, if
and when is possible, some states of a component in only one abstract state.



Since the transition from one state to another is made when a message is ex-
changed between a couple of components, this step is not trivial. When a final
reduced SA model is obtained, cutting off the parts of the system that can be
removed and suitably abstracting the system, Charmy can be used. Charmy
and TeStor use the same representation for state machines. Since the notation
used in Charmy for expressing the property is PSC, the integration between
this approach and Charmy is straightforward. In the following we detail the
approach step by step. Note that the whole approach can be fully automatized.

Charmy SA 
description

Sliced SA

PSC
slicing 

Criterion

DepCol
Abstraction

Engine

Sliced & 
Abstracted 

SA

Charmy verification
Engine

Verified 
SA

Slicing
Engine

Colored
SA 

(A)

(B) (C)

(D)

(E)

Fig. 1. The Approach

Figure 1 summarizes the approach: (A) we start from a Charmy SA de-
scription, i.e. a SA described in terms of components and connectors with com-
municating state machines used to represent components and connectors behav-
iors. The PSC property is our slicing criterion. (B) DepCol, the extension of
TeStor that we propose, gets in input the Charmy SA and the slicing criterion
and returns a colored SA. (C) The colored SA contains information about the
parts of the system that are necessary and the parts of the system that can be cut
off. Thus, the slicing engine gets in input the colored SA, cuts off the unnecessary
parts and returns a sliced SA. (D) The sliced SA is the input of the abstraction
engine that returns a sliced and abstracted SA. (E) Finally, Charmy can be
used to check, through model checking techniques, if the reduced SA satisfies
the property we want to verify, expressed as a PSC.

Section 4.1 explains the steps (A), (B), and (C), while Section 4.2 details
the step (D). The step (E) is the standard use of Charmy and it is explained
in Section 3.1.

4.1 Architectural Slicing

The inputs of this step are the state machines representing the components
behavior and the property of interest expressed as a PSC diagram.



Based on TeStor we define the new algorithm that we call DepCol. This
algorithm colors the parts of the state machines that are required for the SA
verification. Let M be the set of messages that are arrowMSGs or intraMSGs
of the considered PSC. Each start or target state of a m ∈ M in at least one
sequence generated by TeStor is colored. This modification of TeStor is very
easy. Unfortunately it is not enough. In fact the DepCol state machines (the
same used by Charmy) make use also of variables to synchronize and store
the state machines computation state. These variables can be local to a state
machine but can be also shared among different state machines. Thus, let vl be
a local variable contained in a transition that has a colored target state. For
each occurrence of vl in the same state machine, if it is contained in a transition
that has a non colored target state s, then each path leading from the initial
state to s is colored. Analogously, for each shared variable vs contained in a
transition that has a target colored state, every occurrence of vs in each state
machine is identified. Also in this case, if vs is contained in a transition that has
a non colored target state s, each path from the initial state of the component
containing vs leading s is colored.

While coloring the paths, new messages can be considered (messages that
have both start state and target state as colored states). Since messages have a
component sender and a component receiver, new parts of the state machines
require to be colored. Doing this step new messages could be considered, and
then the whole coloring process must be iterated. It is important to note that
only one state machine at a time is considered while coloring, thus we do not
have problems of states explosion.

At the end of this step we have the state machine colored. The following
properties hold:

– each state playing a role in the property is colored;
– each state that is non colored does not play a role in the property;
– is not possible to have a non colored state in the middle of a path that starts

with the initial state of a state machine and that ends with a colored state.
This is assured by construction, since we start from a state and we color
each state traversed in reaching the initial state.

Thus, for each state machine, every message that has a start state or a target
state not colored is cut off. For each state machine, every state not colored is
cut off. Note that, it is impossible with the cut to generate two or more not
connected parts of a state machine.

4.2 Architectural Abstraction

The idea of this step is to reduce the complexity of the model by abstracting
parts of the state machines without compromising the validity of the verification.
In the following we refer to the state machine formalism used by Charmy and
shortly described in Section 3.1. We introduce the following two abstraction
rules:



R1: For each state machine that has only one state, each sent message m /∈ M
could be deleted. In order to do it we have to analyze each reception of m
(on other state machines). Let s0 be the start state and s1 be the target
state of the message m (s0−?m → s1). If outdegree(s0) == 13 then for each
message m′ that has s0 as target state, s1 becomes the new target state of
m′ and the state s0 can be deleted.
If m has a guard, the guard is preserved while m can be deleted. If m has
an operation op, and s0 is the initial state of the state machine, then op is
preserved and m is deleted; otherwise if s0 is not the initial state of the state
machine, then op is added to the operations of each message that has s0 as
target state. A state machine with only one state without messages can be
deleted. The same rule applies for received messages.

R2: Let SM1 be a state machine, for each pair of consecutive exchanged mes-
sages4, s1 −m1 → s2 and s2 −m2 → s3 and with m1, m2 /∈ M , if m1 and
m2 are always exchanged consecutively and in the same order in any other
state machine SM2, s′1 − m1 → s′2, and s′2 − m2 → s′3, then they can be
abstracted and s1 and s3 collapse in the same state inheriting all entering
and exiting messages. The same holds for s′1 and s′3. Note that not necessary
s1 (s′1), s2 (s′2), and s3 (s′3) must be different states.
This rule can be applied iff m1 or m2 are self transitions or the states s2 and
s′2 have degree (i.e. the number of entering and exiting messages) equals to
2, i.e. s2 (s′2) has only one entering message, m1 (m′

1) and only one exiting
message m2 (m′

2). In fact, we cannot abstract if the states s2 or s′2 are
involved in other paths.

These two rules are applied until it is not possible to further abstract the
system.

The algorithm operates separately on each state machine without requiring
they parallel composition.

5 The Integrated Environment for Communication on
Ship (IECS) case study

The Integrated Environment for Communication on Ship (IECS), a project de-
veloped by Selex Communications, operates in a naval communication environ-
ment. IECS provides heterogeneous services on board of the ship.

The purpose of the system is to fulfill the following main functionalities:
i) provide voice, data and video communication modes; ii) prepare, elaborate,
memorize, recovery and distribution of operative messages; iii) configuration of
radio frequency, variable power control and modulation for transmission and
reception over radio channel; iv) remote control and monitoring of the system

3 outdegree(s) is the number of messages that have s as start state
4 Note that here we do not consider send and receive of messages because the rule

is independent of the operations. Thus, if SM1 sends m1, SM2 has to receive it in
order to apply this rule and viceversa.



for detection of equipment failures in the transmission/reception radio chain
and for the management of system elements; v) data distribution service; vi)
implement communication security techniques to the required level of evaluation
and certification. The SA is composed of the IECS Management System (IECS-
MS), CTS, and EQUIPMENT components as highlighted in Figure 2.

IECS-MS


IECS


Manager


DB


WORKSTATION
 CTSM


PROXY


EQUIPMENT


CTS


Fig. 2. IECS Software Configuration

In the following we focus on the IECS-MS, the more critical component since
it coordinates different heterogeneous subsystems, both software and hardware.
Indeed, it controls the IECS system providing both internal and external com-
munications. The IECS-MS complexity and heterogeneity need the definition of
a precise software architecture to express its coordination structure. The sys-
tem involves several operational consoles that manage the heterogenous system
equipment including the ATM based Communication Transfer System (CTS)
through Proxy computers. For this reason the high level design is based on a
manager-agent architecture that is summarized in Figure 2, where the Worksta-
tion (WS) component represents the management entity while the Proxy and
the Communication Transfer System Manager (CTSM) components represent
the interface to control the managed equipment and the CTS, respectively.

The functionalities of interest of the IECS-MS are: i) service activation; ii)
service deactivation; iii) service reconfiguration; iv) equipment configuration; v)
control equipment status; vi) fault CTS. A service, in this context, denotes a unit
base of planning and the implementation of a logic channel of communication
through the resources of communications on the ship. All the above described
functionalities are “atomics”, since it is not possible to execute two different
functionalities at the same time on the system.

In this paper we focus on the Service Activation functionality for showing
how we reduced the complexity of the SA for the verification of properties.

Service Activation Functionality:
The Manager actor requests a service activation to the Workstation com-

ponent that updates the information of the service that the Manager wants to
activate on the DB component. If the CTSM is online, then the Workstation



proceeds in parallel to create the chain of communication and configures the pa-
rameters of the equipments involved in the service. The DB component is finally
updated.

Fig. 3. Workstation internal behavior

5.1 IECS case study: System modeling and verification

In the previous sections we defined the static SA of the IECS-MS system. Now
we extract from the specification, the state machines that describe the inter-
nal behavior of the system components and the PSC scenarios that define the
properties that the system has to satisfy.

Figure 3 shows the state machine for the WS component. This component
has only one thread of execution. The actual size of the system does not permit
to report in the paper details about the whole system. For this reason in the
following we illustrate our approach only on significant excerpts of the system



in order to give an idea of the modeling technique and of the analysis of the
process followed.

Fig. 4. Property: Service Activated

The WS component coordinates and manages all the functionalities of the
system. The access to each functionality is obtained through the reception of
a message from the other components (e.g. USER, CTSM and Equipment);
the reception of this message leads to a state that is the entry state of the
functionality, represented in Figure 3 as a bold state. For example, when WS
receives the message Activate Service it goes in the state S2 to entry the path
that manages the service activation functionality.

Furthermore, in the state machine is represented the “atomicity” of the func-
tionalities of the system that are managed by the WS component. Every time
a new functionality is required, if WS is ready for satisfying the request (i.e.
a request can be satisfied only when previously requested functionalities are
accomplished), this component goes from state S1 to the path that manages
this functionality. Finally, in the state machines are introduced two variables,
one shared, X, for storing the service activation, and one local, Y, for storing
the reconfiguration of the service in case of a fault of the CTS or Equipment
components.

In order to check that the system correctly implements these functionalities,
we define some properties that the SA should satisfy. The properties are modeled
as PSC scenarios. Due to space reasons, in this paper we focus only on one prop-
erty, that we use to show the approach. Figure 4 reports the considered property
that concerns the service activation. The property is composed of two regular
messages (the precondition of the property) that realize the service activation
request. When the precondition is satisfied, if the USER does not deactivate the
service (the constraint of the second message) the service must be activated (the
last two required messages of the scenario).

When state machines and the PSC diagrams are modeled in Charmy, the
runnable Promela prototype of the system and the Büchi Automata of the prop-
erty can be automatically generated. Through the use of the SPIN model checker
we verified that the SA of our system is deadlock free, does not contain invalid
end states, and does not contain unreachable parts (the standard verification of



SPIN). The check is performed by using a PC with 3 Gb of RAM and with 4
processors of 1 Ghz. The size of the model is the following: States = 1.27e + 08
Transitions = 6.15646e + 08 Memory = 2037.528Mb.

Fig. 5. Colored SA on WS state machines

Unlikely, when we tried to verify the properties of interest, we run into the
state explosion problem. Thus, the next step is to apply the approach presented
in Section 4 trying to reduce the complexity of the system.

Slice and abstraction applied to the case study

From the Charmy SA description and the property Service Activated is now
possible to obtain a colored SA, through the use of the algorithm DepCol.
This colored SA, represented in Figure 5, highlights all paths required by the
property.



The path that starts with the state S2 identifies the functionality Service
Activation that is useful for the property we want verify. Instead, the message
DeactivateService conducts to the path that manages the functionality Service
Deactivation, while the messages NotifyAlarmCTS or UpdateTLCFaultEQ rep-
resent the entry in the path that manages the Service Reconfiguration when
there is a fault in the components CTS or Equipment, respectively. The last two
path are colored since they contain operations with shared and local variables.
The states not colored in Figure 5 are then deleted to obtain the sliced SA.

Fig. 6. Sliced and abstracted SA on WS state machines

Then, we proceed with the abstraction on the sliced SA, following the rules
of abstraction presented in Section 4.2. Thanks to the first rule, in the case study
we can delete all the state machines with only one state and containing messages
that do not belong to the property. In the case study we deleted one Thread with
only one state of the component DB, and consequently we deleted the relative
send messages on the other components, e.g. considering the WS components,
all the UpdateServiceInfo and ReadServiceInfo messages are deleted (refer to
Figure 6).

Furthermore, still considering the WS component, the send message Update-
ServiceInfo contains some operations; so, when the message is deleted the oper-
ations are added to the messages that happen before it. The second rule allows



us to delete the message DeleteCreatePtP and AckDeleteCreate. The approach
is iterated until it is not further possible to abstract the system. The obtained
model for the WS component is presented in Figure 6.

In Table 1 we report the result of the verification for all properties, comparing
the resources used for verifying the reduced and the full model. Since for each
property the result of the verification of the full model was out of memory, the
information reported are the last result before the error. As can be noted, the
verifications of the reduced SA are obtained by using very lower resources.

Property System Depth Memory (Mb) States Transitions

Activate full > 8766 > 3034.084 > 1.51433e + 08 > 1.20706e + 09
Service reduced 108.829 239.614 1.6719e + 007 2.8475e + 006

Deactivate full > 8766 > 3034.084 > 1.51433e + 08 > 1.07926e + 09
Service reduced 9253 186.264 2.11009e + 006 1.18284e + 007

Reconfiguration full > 8802 > 3034.084 > 1.51433e + 08 > 1.50446e + 09
Service reduced 2619 153.598 1.65737e + 006 9.73146e + 006

Modify full > 8678 > 3034.084 > 1.51433e + 08 > 9.32346e + 08
Equipment reduced 265 34.302 741 2063

Modify Equipment full > 8678 > 3034.084 > 1.51433e + 08 > 9.32346e + 08
by Service reduced 471 34.302 741 2063

Table 1. Resources used for verification of the properties

6 Conclusion and Future Work

In this paper we presented a slicing and abstraction approach for reducing the
complexity of a SA description. The approach is composed of several steps: the
SA description, in terms of Charmy state machines, is colored by an algorithm
called DepCol that highlights the parts of the system that are required for
the property verification. A slicing engine cuts off the unnecessary parts of the
system. An abstraction engine further reduces the complexity of the model ab-
stracting parts of the state machines without compromising the validity of the
verification. Thus, the reduced SA model can be model checked with respect to
the property of interest. The property of interest is expressed in a graphical for-
malism called PSC and it represents the slicing and abstraction criterion. The
approach has been applied on a Selex Communications company case study in
order to validate its efficacy.

On the future work side we plan to fully automatize the approach and to try
to use it in other case studies. It is also planned to investigate other abstraction
and slicing rules that could further reduce the system SA. For instance the
abstraction rule R1, presented in Section 4.2, can be successfully instantiated
for internal messages.



References

1. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-
Wesley, Massachusetts (1998)

2. Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture. In:
SIGSOFT Software Engineering Notes. Volume 17. (1992) 40–52

3. Bernardo, M., Inverardi, P.: Formal Methods for Software Architectures, Tutorial
book on Software Architectures and Formal Methods. SFM-03:SA Lectures, LNCS
2804 (2003)

4. Compare, D., Inverardi, P., Pelliccione, P., Sebastiani, A.: Integrating model-
checking architectural analysis and validation in a real software life-cycle. In: the
12th International Formal Methods Europe Symposium (FME 2003). number 2805
in LNCS, Springer (2003)

5. Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual. Addison
Wesley (2003)

6. Holzmann, G.J.: The logic of bugs. In: FSE 2002, Foundations of Software Engi-
neering, Charleston, SC, USA (2002)

7. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press (2001)
8. Caporuscio, M., Inverardi, P., Pelliccione, P.: Compositional verification of

middleware-based software architecture descriptions. In: Proceedings of the In-
ternational Conference on Software Engineering (ICSE 2004), Edimburgh (2004.)

9. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Transaction on Computers C-35(8) (1986) 677–691

10. Katz, S., Peled, D.: An efficient verification method for parallel and distributed
programs. In: Workshop on Linear Time, Branching Time and Partial Order Logics
and Models for Concurrency. Volume 354 of LNCS., Springer (1988) 489–507

11. Frantz, F.K.: A taxonomy of model abstraction techniques. In: WSC ’95: Pro-
ceedings of the 27th conference on Winter simulation, New York, NY, USA, ACM
Press (1995) 1413–1420

12. Emerson, F.A., Sistla, A.P.: Symmetry and Model Checking. Formal Methods in
System Design: An International Journal 9(1/2) (1996) 105–131

13. Francez, N.: The Analysis of Cyclic Programs. PhD thesis, The Weizmann Institute
of Science (1976)

14. Pnueli, A.: In transition from global to modular temporal reasoning about pro-
grams. Logics and Models of Concurrent Systems, sub-series F: Computer and
System Science (1985) 123–144 Springer-Verlag.

15. Kim, T., Song, Y.T., Chung, L., Huynh, D.T.: Software architecture analysis: A
dynamic slicing approach. Journal of Computer & Information Science (2) (2000)
91–103

16. Zhao, J.: Using dependence analysis to support software architecture understand-
ing. in M. Li (Ed.), New Technologies on Computer Software, International Aca-
demic Publishers (1997) 135–142

17. Tip, F.: A survey of program slicing techniques. Journal of programming languages
3 (1995) 121–189

18. Zhao, J.: Applying slicing technique to software architectures. In: Proceedings of
4th IEEE International Conference on Engineering of Complex Computer Systems.
(1998) 87–98

19. Stafford, J.A., Wolf, A.L.: Architecture-level dependence analysis for software sys-
tems. International Journal of Software Engineering and Knowledge Engineering
11(4) (2001) 431–451



20. Pelliccione, P., Muccini, H., Bucchiarone, A., Facchini, F.: Deriving Test Sequences
from Model-based Specifications. In: Proc. Eighth International SIGSOFT Sym-
posium on Component-based Software Engineering (CBSE 2005). Lecture Notes
in Computer Science, LNCS 3489, St. Louis, Missouri (USA) (2005) 267–282

21. Autili, M., Inverardi, P., Tivoli, M.: A graphical scenario-based notation for auto-
matically specifying temporal properties. In: 5th International Workshop on Sce-
narios and State Machines: Models, Algorithms and Tools (SCESM’06). (Shanghai,
China, May 27, 2006.)

22. PSC home page: http://www.di.univaq.it/psc2ba: (2005)
23. Charmy Project: Charmy web site. http://www.di.univaq.it/charmy (2004)
24. Inverardi, P., Muccini, H., Pelliccione, P.: Charmy: an extensible tool for archi-

tectural analysis. In: ESEC/FSE-13: Proceedings of the 10th European software
engineering conference held jointly with 13th ACM SIGSOFT international sym-
posium on Foundations of software engineering, New York, NY, USA, ACM Press
(2005) 111–114

25. Weiser, M.: Program slicing. In: ICSE ’81: Proceedings of the 5th international
conference on Software engineering, Piscataway, NJ, USA, IEEE Press (1981) 439–
449

26. Agrawal, H., Horgan, J.R.: Dynamic program slicing. In: Proceedings of the ACM
SIGPLAN ’90 Conference on Programming Language Design and Implementation.
Volume 25., White Plains, NY (1990) 246–256

27. Korel, B., Laski, J.: Dynamic slicing of computer programs. J. Syst. Softw. 13(3)
(1990) 187–195

28. Manna, Z., Pnueli, A.: The temporal logic of reactive and concurrent systems.
Springer-Verlag New York, Inc. (1992)

29. Buchi, R.: On a decision method in restricted second order arithmetic. In Press,
S.U., ed.: Proc. of the Int. Congress of Logic, Methodology and Philosophy of
Science. (1960) 1–11


