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Abstract. In order to check the conformance of an IUT (implemen-
tation under test) with respect to a specification, it is not feasible, in
general, to test the whole set of IUT available behaviors. In some situ-
ations, testing the behavior of the IUT assuming that it is stimulated
by a given usage model is more appropriate. Specifically, if we consider
that specifications and usage models are defined in probabilistic terms,
then by applying a finite set of tests to the IUT we can compute a rel-
evant metric: An upper bound of the probability that a user following
the usage model finds an error in the IUT. We also present a method to
find an optimal (with respect to the number of inputs) set of tests that
minimizes that upper bound.

1 Introduction

In order to test the behavior of an IUT (implementation under test) sometimes
it is preferable to check only some functionalities that are specially relevant or
critical. In this line, we can consider that the IUT is analyzed in the context
of a specific usage model or, more generally, in terms of its interaction with a
(probably abstract) user that represents some manners to interact with the IUT.
Let us note that if only the functional behavior of systems is considered (that is,
we just check what must or must not be done), then this kind of user-customized
approach consists in testing a subset of the behaviors defined by the specification.
However, if other kinds of features are taken into account then this approach
might provide some interesting possibilities. In particular, if specifications and
user models are defined in probabilistic terms then we can calculate a measure
that cannot be computed otherwise: After a finite set of tests is applied to
the IUT, we can calculate a measure of the probability that a user behaving
according to the user model finds a wrong behavior in the IUT. That is, after
a finite subset of the infinite set of relevant behaviors is analyzed, we will be
provided with a global measure of correctness of the IUT.

We can do it as follows. First, we choose some tests that exercise some behav-
iors concerned by the user model. Then, we apply the tests to the IUT to check
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whether the behaviors exercised by these tests are correct with respect to the
specification. Basically, tests induce some stimuli (sequences of inputs) and we
observe the response (sequences of outputs) produced by the IUT. We cannot
observe if the IUT produces a with probability 0.5; what we can observe is the
fact that a is produced or not, but not the value 0.5. In fact, our process to as-
sess the IUT will be probabilistic. For each specific behavior case (i.e., sequence
of inputs) analyzed by tests, we apply a hypothesis contrast to check whether
we can claim, for a given level of confidence α, that the answers (i.e., sequences
of outputs) produced by the IUT behave as required by the specification. For
instance, if the specification says that a and b are produced with 0.5 probability
each, then the confidence will be high if they are observed 507 and 493 times, re-
spectively. However, if they are produced 614 and 386 times then the confidence
will be lower.

Let us suppose that, after a suitable hypothesis contrast is applied, a given
IUT behavior case is validated with confidence α. Then we can assume, with that
confidence, that the probability of each IUT response (in that behavior case) is
actually defined as in the specification. Under this confidence, we can calculate
the probability that a sequence of inputs/outputs whose behavior was validated
is produced during the interaction of the IUT and the user model. By using
this information we will calculate our correctness metric: An upper bound of the
probability that a wrong probabilistic behavior is observed when the user model
and the IUT interact. In the worst case all behaviors that have not been either
validated or observed are wrong. Hence, after a finite test suite is applied, we can
compute the probability of taking a non-validated behavior, which is incorrect
in the worst case (with confidence α).

Let us note that this measure cannot be computed in other testing frameworks.
In particular, if the probabilistic behavior of systems is not considered (or it is,
but user models are not regarded), then after a finite test suite is applied the
coverage of all relevant cases is null in general: Among an infinite set of behavior
cases to be analyzed, an infinitesimal part of them are tested. Thus, without
any additional assumptions, nothing about the correctness of this IUT can be
claimed. Though the capability of a finite test suite to detect errors in an IUT
can be assessed, it is done either in heuristic terms [8,10,2] or by adding some
hypotheses about the IUT behavior that allow to reduce the number of cases to
be tested [1,11,21,17,18]. On the contrary, our metric provides a (probabilistic)
non-heuristic correctness measure without reducing the testing space.

In this paper we continue a previous work [12]. In that approach, the behavior
of the composition of the IUT and the user model is probabilistically compared
to the behavior of the composition of the specification and the user model. A
single hypothesis contrast is used to compare the former (denoted by means of
a single random variable) and the latter (represented by a sample denoting all
observations). Though this approach is simple and elegant, it has a drawback:
Even if we assume that user models are correct by definition, their probabilistic
behavior may be a source of sampling noise. For instance, let us suppose that
the user model chooses between a and b with equal probability. Then, in both
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cases, the specification answers c and d, again with equal probabilities. Though
it is not very probable, the interaction of the user model and a correct IUT
could produce a/c 100 times and b/c 100 times. In this case, we would (wrongly)
deduce that the IUT is incorrect, because the specified probability of both a/c
and b/c is 0.5 · 0.5 = 0.25 ̸≃ 100

200 . Similarly, a/c and a/d could be produced 100
times each, which again is not accepted. However, the latter sample is rejected
due to a (rare) behavior of the user model. On the contrary, in this paper we
will apply a hypothesis contrast for each behavior case (i.e., sequence of inputs).
Each hypothesis contrast application checks whether responses (i.e., sequences of
outputs) are properly given for the considered sequence of inputs. In the previous
example, the correctness of the IUT when a or b are produced is independently
checked. Hence, the sample cannot be ruined by a rare behavior of the user
model (of course, it can still be ruined by a rare behavior of a correct IUT).
Besides, in this paper we will use the metric of error probability of the IUT to
find optimal sets of tests. Let us note that our metric does not only provide a
correctness measure, but it also can be used to guide the testing process: If we
compute that passing a given test suite Ω1 would provide an error measure 0.3,
while passing another suite Ω2 would provide an error measure 0.2, then the
suite Ω2 is preferable.

In terms of other related work, there is significant work on testing preorders
and equivalences for probabilistic processes [4,16,19,5,3,20,14,13]. Most of these
proposals follow the de Nicola and Hennessy’s style [6,9], that is, two processes
are equivalent if the application of any test belonging to a given set returns the
same result. Instead, we are interested in checking whether an implementation
conforms to a specification. In particular, our relations are similar to the ones
introduced in [21,15].

The rest of the paper is structured as follows. In the next section we present
some basic notions; in Section 3 we introduce tests and we define the interaction
between machines and users; in Section 4 we present the relations that allow
to relate specifications and implementations; next, in Section 5 we describe our
method to calculate an upper bound of the error probability of an IUT after it
is tested, and we use this notion to find optimal test suites; finally, in Section 6
we present our conclusions and some lines of future work.

2 Basic Notions

First, we introduce some statistics notions. An event is any reaction we can detect
from a system or environment; a random variable is a function associating each
event with its probability.

Definition 1. Let A be a set of events and ξ : A → [0, 1] be a function such
that

∑
α∈A ξ(α) = 1. We say that ξ is a random variable for the set of events A.

If we observe that the event α ∈ A is produced by a random source whose
probabilistic behavior is given by ξ then we say that α has been generated by ξ.
We extend this notion to sequences of events as expected: If we observe that
the sequence of events H = ⟨α1, . . . , αn⟩ is consecutively produced by a random
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source whose probabilistic behavior is given by ξ then we say that H has been
generated by ξ or that H is a sample of ξ.

Given the random variable ξ and a sequence of events H , we denote the
confidence that H is generated by ξ by γ(ξ, H). ⊓(

This definition introduces a simple version of discrete random variable where all
the events are independent. The actual definition of a random variable is more
complex but it is pointless to use its generality in our setting. In the previous
definition, the application of a suitable hypothesis contrast is abstracted by the
function γ. We have that γ(ξ, H) takes a value in [0, 1]. Intuitively, a sample
will be rejected if the probability of observing that sample from a given random
variable is low. Due to lack of space we do not present here an actual definition
of the function γ. An interested reader can find it in [12]. It is worth to point
out that the results of this paper do not depend on the formulation of γ, being
possible to abstract the actual definition.

Next we present the formalism we will use to define specifications and imple-
mentations. A probabilistic finite state machine is a finite state machine where
each transition is equipped with a probability. Thus, a transition s

i/o−−−−→ p s′

denotes that, if the machine is in state s and the input i is received then, with
probability p, it moves to the state s′ and produces the output o. We will as-
sume that the environment stimulates the machine with a single input at any
time. Thus, given s and i, the addition of all values p such that there exist o,
s′ with s

i/o−−−−→ p s′ must be equal to 1. In contrast, there is no requirement
binding the probabilities departing from the same state and receiving different
inputs because each one describes (part of) a different probabilistic choice of the
machine. In other words, we consider a reactive interpretation of probabilities
(see [7,16]).

Definition 2. A Probabilistic Finite State Machine, in short PFSM, is a tuple
M = (S, I, O, δ, s0) where

– S is the finite set of states and s0 ∈ S is the initial state.
– I and O, with I ∩ O = ∅, denote the sets of input and output actions,

respectively.
– δ ⊆ S × I × O × (0, 1] × S is the set of transitions. We will write s

i/o−−−−→p s′

to denote (s, i, o, p, s′) ∈ δ.

Transitions and states fulfill the following additional conditions:

– For all s ∈ S and i ∈ I, the probabilities associated with outgoing transitions
add up to 1, that is,

∑
{p | ∃ o ∈ O, s′ ∈ S : s

i/o−−−−→p s′} = 1.
– PFSMs are free of non-observable non-determinism, that is, if we have two

transitions s
i/o−−−−→p1 s1 and s

i/o−−−−→p2 s2 then p1 = p2 and s1 = s2.
– In addition, we will assume that implementations are input-enabled, that is,

for all state s and input i there exist o, p, s′ such that s
i/o−−−−→p s′. ⊓(
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Although PFSMs will be used to define specifications and implementations, a
different formalism will be used to define user models. Specifically, we will use
probabilistic labeled transition systems. A user model represents the external en-
vironment of a system. User models actively produce inputs that stimulate the
system, while passively receive outputs produced by the system as a response.
The states of a user model are split into two categories: Input states and output
states. In input states, all outgoing transitions denote a different input action.
Since inputs are probabilistically chosen by user models, any input transition is
endowed with a probability. In particular, s i−−→ p s′ denotes that, with prob-
ability p, in the input state s, the input i is produced and the state is moved
to s′. Given an input state s, the addition of all probabilities p such that there
exists i, s′ with s i−−→p s′ must be lower than or equal to 1. If it is lower then we
will consider that the remainder up to 1 implicitly denotes the probability that
the interaction with the system finishes at the current state. Regarding output
states, all transitions departing from an output state are labeled by a different
output action. However, output transitions do not have any probability value
(let us remind that outputs are chosen by the system). Input and output states
will strictly alternate, that is, for any input state s, with s i−−→ p s′, s′ is an
output state, and for any output state s, with s o−−→ s′, s′ is an input state.

Definition 3. A probabilistic labeled transition system, in short PLTS, is a tuple
U = (SI , SO, I, O, δ, s0) where

– SI and SO, with SI ∩ SO = ∅, are the finite sets of input and output states,
respectively. s0 ∈ SI is the initial state.

– I and O, with I∩O = ∅, are the sets of input and output actions, respectively.
– δ ⊆ (SI × I × (0, 1] × SO) ∪ (SO × O × SI) is the transition relation. We will

write s i−−→ p s′ to denote (s, i, p, s′) ∈ SI × I × (0, 1] × SO and s o−−→ s′ to
denote (s, o, s′) ∈ SO × O × SI .

Transitions and states fulfill the following additional conditions:

– For all input states s ∈ SI and input actions i ∈ I there exists at most one
outgoing transition from s: |{s i−−→p s′ | ∃ p ∈ (0, 1], s′ ∈ SO}| ≤ 1.

– For all output states s ∈ SO and output actions o ∈ O there exists exactly
one outgoing transition labeled with o: |{s o−−→ s′ | ∃ s′ ∈ SI}| = 1.

– For all input state s ∈ SI the addition of the probabilities associated with
the outgoing transitions is lower than or equal to 1, that is, cont(s) =∑

{p| ∃ s′ ∈ SO : s i−−→ p s′} ≤ 1. So, the probability of stopping at that
state s is stop(s) = 1 − cont(s). ⊓(

By iteratively executing transitions, both PFSMs and PLTSs can produce se-
quences of inputs and outputs. The probabilities of these sequences are given by
the probabilities of the transitions. Next we introduce some trace notions.

Definition 4. A probability trace π is a finite sequence of probabilities, that
is, a possibly empty sequence ⟨p1, p2, . . . , pn⟩ ∈ (0, 1]∗. The symbol ϵ denotes
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the empty probability trace. Let π = ⟨p1, p2, . . . , pn⟩ be a probability trace. We
define its sef-product, denoted by

∏
π, as

∏
1≤i≤n pi. Since

∏
a∈∅ = 1, we have∏

ϵ = 1. Let π = ⟨p1, p2, . . . , pn⟩ and π′ = ⟨p′1, p′2, . . . , p′m⟩ be probability traces.
Then, π · π′ denotes their concatenation that is, ⟨p1, p2, . . . , pn, p′1, p

′
2, . . . , p

′
m⟩,

while π∗π′ and π/π′ denote their pairwise product and division respectively, that
is, ⟨p1∗p′1, p2∗p′2, . . . , pr∗p′r⟩ and ⟨p1/p′1, p2/p′2, . . . , pr/p′r⟩, where r = min(n, m).

A trace ρ is a finite sequence of input/output actions (i1/o1, i2/o2, . . . , in/on).
The symbol ϵ denotes the empty trace. Let ρ and ρ′ be traces. Then, ρ · ρ′

denotes their concatenation. A probabilistic trace is a pair (ρ, π) where ρ is a
trace (i1/o1, i2/o2, . . . , in/on) and π = ⟨p1, p2, . . . , pn⟩ is a probability trace. If ρ
and π are both empty then we have the empty probabilistic trace, written as (ϵ, ϵ).
Let (ρ, π) and (ρ′, π′) be probabilistic traces. Then, (ρ, π) · (ρ′, π′) denotes their
concatenation, that is, (ρ · ρ′, π · π′).

An input trace ϱ is a finite sequence of input actions (i1, i2, . . . , in). We extend
the previous notions of empty trace and concatenations to input traces in the
expected way. If ρ = (i1/o1, i2/o2, . . . , in/on) then we denote by i(ρ) the input
trace (i1, i2, . . . , in). A probabilistic input trace is a pair (ϱ, π) where ϱ is an input
trace (i1, i2, . . . , in) and π = ⟨p1, p2, . . . , pn⟩. We also consider the concepts of
concatenation and empty probabilistic input traces. ⊓(

Next we define how to extract traces from PFSMs and PLTSs. First, we consider
the reflexive and transitive closure of the transition relation, and we call it gen-
eralized transition. Then, probabilistic traces are constructed from generalized
transitions by considering their sequences of actions and probabilities.

Definition 5. Let M = (S, I, O, δ, s0) be a PFSM. We inductively define the
generalized transitions of M as follows:

– We have that s
ϵ==⇒ ϵ s is a generalized transition of M for all s ∈ S.

– If s
ρ

==⇒π s′ and s′
i/o−−−−→p s1 then s

ρ·i/o
===⇒π·⟨p⟩ s1 is a generalized transition

of M .

We say that (ρ, π) is a probabilistic trace of M if there exists s ∈ S such that
s0

ρ
==⇒π s. In addition, we say that ρ is a trace of M and that i(ρ) is an input

trace of M . The sets pTr(M), tr(M), iTr(M) denote the sets of probabilistic
traces, traces, and input traces of M , respectively. ⊓(

The previous notions can also be defined for PLTSs. In order to obtain sequences
of paired inputs and outputs, traces begin and end at input states.

Definition 6. Let U = (SI , SO, I, O, δ, s0) be a PLTS. We inductively define the
generalized transitions of U as follows:

– We have that s
ϵ==⇒ ϵ s is a generalized transition of U for all s ∈ SI .

– If s ∈ SI , s
ρ

==⇒ π s′, and s′ i−−→ p s′′ o−−→ s1 then s
ρ·i/o

===⇒ π·⟨p⟩ s1 is a
generalized transition of U .
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We say that (ρ, π) is a probabilistic trace of U if there exists s ∈ SI such that
s0

ρ
==⇒ π s. In that case we will also say that (i(ρ), π) is a probabilistic input

trace of U . In addition, we say that ρ is a trace of U and that i(ρ) is an input
trace of U . We define the probability of U to stop after ρ, denoted by stopU (ρ),
as stop(s). The sets pTr(U), piTr(U), tr(U) and iTr(U) denote the set of
probabilistic traces, traces, and input traces of U respectively. ⊓(

Next we identify PLTS that terminate, that is, such that all infinite traces have
probability 0.

Definition 7. Let U be a PLTS. We say that U is a terminating PLTS if for all s

such that there exists ρ and π with s0
ρ

==⇒π s we have that there exists s′, ρ′, π′

such that s
ρ′

==⇒π′ s′ and stopU (ρ · ρ′) > 0. ⊓(

Proposition 1. A PLTS U is terminating iff
∑

(ρ,π)∈pTr(U) (
∏

π)∗stopU (ρ) = 1
⊓(

As we will see, PLTS will be used to denote user models. In particular, any user
model will be supposed to be a terminating PLTS.

3 Tests and Composition of Machines

In this section we define our tests as well as the interaction between the notions
introduced in the previous section (PFSMs and PLTSs). As we said before, we
will use PLTSs to define the behavior of the external environment of a system,
that is, a user model. Moreover, PLTSs are also appropriate to define the tests
we will apply to an IUT. Tests are PLTSs fulfilling some additional conditions.
Basically, a test defines a finite sequence of inputs; we will use them to check a
given secuence of inputs. Since tests consider a single sequence of inputs, each
intermediate input state of the sequence contains a single outgoing transition
labeled by the next input and probability 1. Output states offer transitions with
different outputs.

Definition 8. A test T = (SI , SO, I, O, δ, s0) is a PLTS such that for all s ∈ SI

there is at most one transition s i−−→p s′ (and if it exists then p = 1), and for all
s ∈ SO there is at most one next input state s o−−→ s′ with a continuation, that
is, |{s′′ | ∃ i ∈ I, o ∈ O, s′′′ ∈ SO, p ∈ (0, 1] : s o−−→ s′′ i−−→p s′′′}| ≤ 1. ⊓(

Let us note that, contrarily to other frameworks, tests are not provided with di-
agnostic capabilities on their own. In other words, tests do not have fail/success
states. Since our framework is probabilistic, the requirements defined by spec-
ifications are given in probabilistic terms. As we will see in the next section,
deciding whether the IUT conforms to the specification will also be done in
probabilistic terms. In particular, we will consider whether it is feasible that the
IUT behaves as if it were defined as the specification indicates. We will check
this fact by means of a suitable hypothesis contrast.
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Our testing methodology consists in testing the behavior of a system under
the assumption that it is stimulated by a given user model. Thus, tests will
be extracted from the behavior of the user model. Next we show how a test is
constructed from a probabilistic trace of a user model. The input and output
states of the test are identified with natural numbers. All the input states (but
the first one) are also endowed with an output action. In order to distinguish
between input and output states we decorate them with • and ⋆, respectively.
Tests extracted from user model sequences fulfill an additional condition: All
input states reached from a given output state (via different outputs) are con-
nected with the same output state through the same input, up to the end of the
sequence. A single test can process any answer to a given sequence of inputs,
that is, it detects any sequence of outputs produced by the IUT as response.

Definition 9. Let ϱ = (i1, i2, . . . , ir) be an input trace, I be a set of input
actions such that {i1, . . . ir} ⊆ I, and O be a set of output actions. We define
the test associated to ϱ, assoc(ϱ), as the test (SIT , SOT , I, O, δT , 0•), where

– SIT = {0•, r•} ∪ {(j, o)•|o ∈ O, 1 ≤ j ≤ r} and SOT = {j⋆|1 ≤ j ≤ r}.
– For all 1 ≤ j < r, o ∈ O: (j, o)•

ij+1−−−−→ 1 (j + 1)⋆ , j⋆ o−−→ (j, o)• ∈ δT . We
also have 0• i1−−→1 0⋆. ⊓(

Next we define the composition of a PFSM (denoting either a specification or
an IUT) with a PLTS (denoting either a user model or a test) in terms of its
behavior, that is, in terms of traces and probabilistic traces. The set of traces is
easily computed as the intersection of the traces produced by both components.
In order to define the set of probabilistic traces, the ones provided by both
components are considered. For a given input/output pair i/o, the probability
of producing i will be taken from the corresponding transition of the PLTS, while
the probability of producing o as a response to i will be given by a transition
of the PFSM. Let us note that the states of a specification do not necessarily
define outgoing transitions for all available inputs, that is, specifications are
not necessarily input-enabled. So, a PFSM representing a specification could not
provide a response for an input produced by a PLTS. Since the specification does
not define any behavior in this case, we will assume that the PFSM is allowed
to produce any behavior from this point on. The composition of a PLTS and a
PFSM will be constructed to check whether the traces defined by the specification
are correctly produced by the implementation. Hence, undefined behaviors will
not be considered relevant and will not provide any trace to the composition of
the PLTS and the PFSM. In order to appropriately represent the probabilities of
the relevant traces, their probabilities will be normalized if undefined behaviors
appear. We illustrate this process in the following example.

Example 1. Let us suppose that a user model can produce the inputs i1, i2, and i3
with probabilities 1

2 , 1
4 and 1

4 , respectively. At the same time, the corresponding
specification provides outgoing transitions with inputs i1 and i2, but not with
i3. Since the specification does not define any reaction to i3, the probabilities
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of taking inputs i1 or i2 in the composition of the specification and the user
model are normalized to denote that i3 is not considered. So, the probability of
i1 becomes 1/2

3/4 = 2
3 while the probability of i2 is 1/4

3/4 = 1
3 . ⊓(

The next definition finds an appropriate normalization factor when these situa-
tions appear (in the previous example, this factor is 3

4 ). Besides, we show how
to recompute the probabilities of all traces in a PLTS when only sequences of
inputs that are accepted by a a given PLTS are considered. Finally, we consider
the behavior of the composition of a PFSM and a PLTS. The set of traces of this
composition is provided by the intersection of the set of traces of each machine.
In order find the probabilistic traces we consider, on the one hand, the proba-
bilistic traces of the PFSM and, on the other hand, the probabilistic traces of the
PLTS normalized to this PFSM.

Definition 10. Let M = (SM , I, O, δM , s0M ) be a PFSM and let us consider a
PLTS U = (SIU , SOU , I, O, δU , s0U ) such that s0M

ρ
==⇒π1 s1 and s0U

ρ
==⇒π2 s2.

We define:

– The sum of the probabilities of continuing together after ρ as

contM∥U (ρ) =
∑

{
p

∣∣∣∣∣
∃i ∈ I, o ∈ O, s′2 ∈ SOU , s′1 ∈ SM , r ∈ (0, 1] :

s2
i−−→p s′2 ∧ s1

i/o−−−−→r s′1

}

– The normalization factor of M ∥ U after ρ as the sum of the previous prob-
ability plus the probability of U to stop after ρ, that is normM∥U (ρ) =
contM∥U (ρ) + stopU (ρ).

We inductively define the probabilistic traces of U normalized to M as follows:

– (ϵ, ϵ) is a normalized probabilistic trace.
– Let (ρ, π) be a normalized probabilistic trace. Let us suppose that we have

s0M
ρ

==⇒ π1 s′1
i/o−−−−→ p1 s1 and s0U

ρ
==⇒ π2 s′2 s′2

i−−→ p2 s′′ o−−→ s2. Then,
(ρ · i/o, π · ⟨p⟩) is a normalized probabilistic trace, where p is the product
of p1 and p2 normalized with respect to the normalization factor of M ∥ U
after ρ, that is, p = p1·p2

normM∥U (ρ) .

Let (ρ, π) be a normalized probabilistic trace where we have s0U
ρ

==⇒ π′ s for
some π′, s. We say that (i(ρ), π) is a normalized probabilistic input trace. In
addition, we say that ρ is a normalized trace and that i(ρ) is a normalized input
trace. We define the probability of U to stop after ρ normalized to M , denoted by
nstopU,M (ρ), as stop(s)

normM∥U (ρ) . The sets npTrM (U), npiTr(U, M), ntr(U, M) and
niTr(U, M) denote the set of normalized probabilistic traces, normalized traces,
and normalized input traces of U to M respectively.

The set of traces generated by the composition of M and U , denoted by
tr(M ∥ U), is defined as tr(M)∩tr(U). The set of probabilistic traces generated
by the composition of M and U , denoted by pTr(M ∥ U), is defined as

{(ρ, π1 ∗ π2)|(ρ, π1) ∈ pTr(M) ∧ (ρ, π2) ∈ npTrM (U)}
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The set of input traces generated by the composition of M and U , denoted
by iTr(M ∥ U), is defined as the set {i(ρ) | ρ ∈ tr(M ∥ U)}. ⊓(

Proposition 2. Let M be a PFSM and let U be a PLTS, then

tr(M ∥ U) = {ρ | ∃p ∈ (0, 1] : (ρ, p) ∈ pTr(M ∥ U)} ⊓(

Let us remark that the probabilistic behavior of the traces belonging to the
composition of PFSMs and PLTSs is completely specified: The probabilities of
inputs are provided by the PLTS while the probabilities of outputs are given by
the PFSM. Since our method consists in testing the behavior of the IUT for some
sequences of inputs, we will be interested in taking those traces that share a
given sequence of inputs. Next we develop these ideas for sequences and sets of
sequences.

Definition 11. Let Tr be a set of traces and ϱ an input trace. We define the set
of traces of Tr modulo ϱ, denoted by trϱ(Tr), as the set {ρ | i(ρ) = ϱ, ρ ∈ Tr}.
If M is a PFSM and U is a PLTS, for the sake of clarity, we write trϱ(M), trϱ(U),
and trϱ(M ∥ U) instead of trϱ(tr(M)), trϱ(tr(U)), and trϱ(tr(M ∥ U)), re-
spectively. Let Tr be a set of traces and iTr a set of input traces. We de-
fine the set of traces of Tr modulo iTr , denoted by probpTr (iTr), as the set
{trϱ(Tr)|ϱ ∈ iTr}. ⊓(

We will construct a random variable denoting the probability of each trace in the
composition of a specification and a user. Unfortunately, taking the probability
associated to each trace in the composition is not appropriate. In fact, the sum of
the probabilities of all traces may be higher than 1. This is because traces denote
events such that some of them include others. For instance, if the event (a/b, c/d)
is produced then we know that (a/b) is also produced. We solve this problem
by taking into account a factor that is not explicitly considered in the traces:
The choice of a user to stop in a state. In particular, the event representing that
(a/b, c/d) is produced and, afterwards immediately, the user finishes does not
imply that (a/b) is produced and then the user stops.

Proposition 3. Let M be a PFSM and let U be a terminating PLTS. We have
∑

(ρ,π)∈pTr(M∥U)

(∏
π
)

∗ nstopU,M (ρ) = 1
⊓(

By the previous result, we can use traces up to termination to construct a random
variable denoting the probability of observe any trace in the composition of a
specification and a user.

Definition 12. Let M be a PFSM and let U be PLTS. We define the traces random
variable of the composition of M and U as the function ξM∥U : pTr(M ∥ U) −→
(0, 1] such that for all (ρ, π) ∈ pTr(M ∥ U) we have

ξM∥U (ρ) =
(∏

π
)

∗ nstopU,M (ρ) ⊓(
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4 Probabilistic Relations

In this section we introduce our probabilistic conformance relations. Following
our user customized approach, they relate an IUT and a user model with a
specification and the same user model. These three elements will be related
if the probabilistic behavior shown by the IUT when stimulated by the user
model appropriately follows the corresponding behavior of the specification. In
particular, we will compare the probabilistic traces of the composition of the IUT
and the user with those corresponding to the composition of the specification
and the user. Let us remind that IUTs are input-enabled but specifications might
not be so. So, the IUT could define probabilistic traces including sequences of
inputs that are not defined in the specification. Since there are no specification
requirements for them, these behaviors will be ignored by the relation. In order
to do it, an appropriate subset of the traces of the composition of the IUT and
the user must be taken. The probability of each trace belonging to this set will
be recomputed by considering a suitable normalization. Later we will see another
relation where, due to practical reasons, this requirement will be relaxed.

Definition 13. Let S, I be PFSMs and U be a PLTS. We define the set of prob-
abilistic traces generated by the implementation I and the user model U modulo
the specification S, denoted by pTr(I ∥ U)S as the set

{(ρ, πi ∗ πo) | i(ρ) ∈ iTr(S) ∧ (ρ, πi) ∈ npTrS(U) ∧ (ρ, πo) ∈ pTr(I)}

Let S, I be PFSMs and U be a PLTS. We say that I conforms to S with respect
to U , denoted by I confU S, if pTr(I ∥ U)S = pTr(S ∥ U). ⊓(

The previous result provides a diagnostic by comparing the complete set of
traces of the composition of the specification and the user with the full set of
traces of the implementation and the user (up to the specification). We can also
perform local comparisons: A local diagnostic is obtained by comparing only
those traces that have a given sequence of inputs. Though we can compare these
traces by comparing their corresponding probabilities, we will manipulate these
probabilities before. In particular, we will divide the probability of each of them
by the probability its sequence of inputs. These values will denote the probability
of performing the sequence of outputs of the trace provided that the sequence
of inputs is the considered one. Though this transformation is not needed to
perform the current comparison, using these probabilities will be useful in further
analyses.

Definition 14. Let A be a set of probabilistic traces and (ϱ, π) be a probabilistic
input trace. We define the restriction A to (ϱ, π), denoted by A\(ϱ, π), as the set
{(ρ, π′/π) | (ρ, π′) ∈ A ∧ i(ρ) = ϱ}. ⊓(

Definition 15. Let S, I be PFSMs, U be a PLTS, and (ϱ, π) ∈ npiTr(U, S) such
that ϱ ∈ iTr(S). We say that I conforms to S with respect to U in the input
trace ϱ, denoted by I confU,ϱ S, if pTr(I ∥ U)S\(ϱ, π) = pTr(S ∥ U)\(ϱ, π). ⊓(
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Next we relate our notions of conformance and conformance for a given sequence
of inputs. If we have local conformance for all sequences of inputs, then the global
conformance is met.

Proposition 4. Let S, I be PFSMs, and U and be a PLTS, then I confU S iff
for any probabilistic input trace (ϱ, π) ∈ piTr(U) such that ϱ ∈ iTr(S) we have
I confU,ϱ S. ⊓(

Our tests are designed to check any input trace. The parallel composition of
the test with the specification S ∥ T performs traces that are not present in
the parallel composition of the user and the specification S ∥ U . However, if we
remove the probabilities associated to the input trace in the user model then
the probability of the traces that are in both compositions is the same. Thus,
if the implementation conforms the specification with respect to the test T (i.e.
I confT S), then it also conforms the specification with respect to the user in
the trace (i.e. I confU,ϱ S).

Proposition 5. Let S be a PFSM, U and be a PLTS, (ϱ, π) ∈ npiTr(U, S) such
that ϱ ∈ iTr(S), and T = assoc(ϱ). Then

– For all ρ ∈ tr(S ∥ U) ∩ tr(S ∥ T ) we have ξS∥T (ρ) ∗
∏

π = ξS∥U (ρ)
– if I confT S then I confU,ϱ S. ⊓(

Although the previous relation properly defines our probabilistic requirements, it
cannot be used in practice because we cannot read the probability attached to a
transition in a black-box IUT. Let us note that even though a single observation
does not provide valuable information about the probability of an IUT trace, an
approximation to this value can be calculated by interacting a high number of
times with the IUT and analyzing its reactions. In particular, we can compare the
empirical behavior of the IUT with the ideal behavior defined by the specification
and check whether it is feasible that the IUT would have behaved like this if,
internally, it were defined conforming to the specification. Depending on the
empirical observations, this feasibility may be different. The feasibility degree
of a set of samples with respect to its ideal probabilistic behavior (defined by
a random variable) will be provided by a suitable contrast hypothesis. We will
rewrite the previous relation I confT S in these terms.

Definition 16. Let M be a PFSM and U be a PLTS. We say that a sequence
⟨ρ1, ρ2, . . . , ρn⟩ is a trace sample of M ∥ U if it is generated by ξM∥U . ⊓(

Definition 17. Let S be a PFSM and H = ⟨ρ1, ρ2, . . . , ρn⟩ be a sequence of
traces. HS denotes the sub-sequence ⟨ρr1, ρr2, . . . , ρrn⟩ of H that contains all
the probabilistic traces whose input sequences can be produced by S, that is,
i(ρri) ∈ iTr(S).

Let S and I be PFSMs, and U be a PLTS. Let ϱ ∈ iTr(S), T = assoc(ϱ),
and H = ⟨ρ1, ρ2, . . . , ρn⟩ be a trace sample of I ∥ T , and 0 ≤ α ≤ 1. We write
S confα

H I if γ(ξS∥T , HS) ≥ α. ⊓(
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5 Optimal Test Suites

In this section we will focus on two aspects: How to find a suitable test suite
and how to provide a metric that allows us to measure the quality of test suites.
Test suites will we be chosen when they have a good value in that metric.

5.1 Testing Quality Measurement

Let us suppose that we have a test suite. We apply each test to validate a single
trace. By iterating the process for each test, we can get a set of validated input
traces. Since not all the traces are checked, we have to know how accurate is
our judgment about the correctness of the specification. We will measure this
accuracy in probabilistic terms. We assume that only the tested and validated
input traces are correct and that all the others are incorrect. So, the probability of
executing one of those untested traces gives us an upper bound of the probability
that the user finds an error in the implementation. In order to compute this
upper bound, we have to calculate the probability with which the user executes
one of the validated traces. The complementary of that probability will be the
upper bound we are looking for. In order to compute those probabilities we use
the random variable ξS∥U . For any tested input trace ϱ, its probability is equal
to the probability of the set of traces of S ∥ U whose input traces are those of ϱ.

Definition 18. Let S be a PFSM and U be a PLTS. Then,

1. If ϱ ∈ iTr(S ∥ U) then we denote by probS∥U (ϱ) the probability of the set
of events trϱ(tr(S ∥ U)) assigned by the random variable ξS∥U .

2. For any set iTr ⊆ iTr(S ∥ U), we denote by probS∥U (iTr) the probability
of the set of events triTr (pTr(S ∥ U)) assigned by ξS∥U . ⊓(

In the random variable ξS∥U we consider only full execution of traces, i.e. until
the user decides to stop. For that reason we have that all events are independent.

Proposition 6. Let S be a PFSM and U be a PLTS. If ϱ ∈ iTr(S ∥ U) then

probS∥U (ϱ) =
∑{(∏

π
)

∗ nstopU,S(ρ) | i(ρ) = ϱ ∧ (ρ, π) ∈ pTr(S ∥ U)
}

For any set iTr ⊆ iTr(S ∥ U), probS∥U (iTr ) =
∑{

probS∥U (ϱ) | ϱ ∈ iTr
}

. ⊓(

Next we show how to compute the aforementioned upper bound. The scenario is
the following. We have applied tests corresponding to some input traces and we
have obtained some samples. Then, we consider only those traces such that the
corresponding sample passes the hypothesis contrast. The upper bound that the
user finds a error is calculated by considering that the rest of input traces be-
haves incorrectly. So, we calculate the probability to execute one of the validated
traces, that is probS∥U (iTr), being the complementary probability the bound we
are looking for. Let us remark that the IUT does not appear in the expression
probS∥U (iTr ). The reason is that we have already tested the implementation in
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the input traces of the set iTr . Thus, we can assume that the implementation
behaves for those traces as indicated by the specification. Besides, we cannot
compute that probability from the implementation since it is a black box : We
can only test it and take samples from it.

Definition 19. Let S, I be PFSMs and U be a PLTS.

– Let ϱ be an input trace, H be a sample of I ∥ assoc(ϱ), and α be a feasibility
degree. We say that ϱ is (H, α)-tested if I confα

H S.
– Let iTr be a set of input traces and H be the set of samples {Hϱ | ϱ ∈

iTr , Hϱ is a sample of I ∥ assoc(ϱ)}. We say that iTr is (H, α)-tested if
I confα

Hϱ
S for all ϱ ∈ iTr .

Let iTr ⊆ iTr(S ∥ U) be a (H, α)-tested set of input traces for a set of samples
H and a feasibility degree α. Then, the upper bound of error probability of the user
U to find and error in I with respect to the input trace set iTr , ubErrH,α

iTr (I, U),
is the probabity of executing a trace ρ such that i(ρ) ̸∈ iTr :

ubErrH,α
iTr (I, U) = 1 − probS∥U (iTr ) ⊓(

5.2 Obtaining a Good Test Suite

Now we give a criteria to choose the best test suite. This criteria will be equivalent
to the 0/1 knapsack problem. Due to its intrinsic complexity, good enough test
suites will be obtained by applying one of the known suboptimal algorithms.

Since each test checks a single input trace, our test suite will try to minimize
the upper bound introduced in Definition 19. So, to find a good test suite is
equivalent to find an input trace set iTr that maximizes probS∥U (iTr ). This will
be our first criterium to choose our test suite. Obviously, the set that maximizes
that probability is the whole set of input traces, that is usually infinite. We need
another criteria to limit the number of tests to be applied. It will consist in
minimizing the size of tests. Since each tests consists in a sequence of n pairs
input/output, it sends and receives exactly n input/output actions. Then, we
consider n as the size of the test.

Definition 20. Let ϱ = (i1, i2, . . . in) be an input trace. We say that the length
of the test T = assoc(ϱ) is n and we write length(T ) = n. Let iTr be a set of
input traces. We define the length of the set T = {assoc(ϱ) | ϱ ∈ iTr}, denoted
by length(T ), as

∑
{length(T ) | T ∈ T }

Let S be a PFSM and U be a PLTS. Let n ∈ IN and iTr ⊆ iTr(S ∥ U). We
say that the set of tests T = {assoc(ϱ) | ϱ ∈ iTr}, with length(T ) ≤ n,
is n-optimum if there does not exist another set of traces iTr ′ ⊆ iTr(S ∥ U)
and a set of tests T ′ = {assoc(ϱ) | ϱ ∈ iTr ′} with length(T ′) ≤ n such that
probS∥U (iTr ′) > probS∥U (iTr). ⊓(

Let us note that, since each trace is independent from the others, the problem
to find an n-optimum test suite is equivalent to the 0/1 knapsack problem: The
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total size of the knapsack is n; the elements are the input traces ϱ = (i1, . . . , ir) ∈
iTr(S ∥ U) such that r ≤ n; the cost of the trace ϱ = (i1, . . . , ir) is r; the value
of a trace ϱ is probS∥U (ϱ). Due to the intrinsic complexity of that problem, it is
not feasible to find an n-optimum test suite. However, we can consider one of the
suboptimal well-known algorithms to solve the problem (see for example [22]).

5.3 Testing Methodology

Finally, let us briefly sketch our testing methodology:

1. We fix n, the combined size of tests belonging to the suite, and α, the feasi-
bility degree to pass the hypotheses contrast.

2. We find a suboptimal test suite T , corresponding to a set of input traces,
for the size n.

3. We generate the trace sample HT for all test T ∈ T .
4. We consider the set of input traces whose samples pass the hypotheses con-

trast with the required feasibility degree H = {HT | ∃T ∈ T : I confα
HT

S},
iTr = {ϱ | ∃T ∈ T : HT ∈ H ∧ T = assoc(ϱ)}.

5. We calculate the probability of error ubErrH,α
iTr (I, U).

6 Conclusions and Future Work

In this paper we have presented a formal methodology to test probabilistic sys-
tems that are stimulated according to a given user model. In particular, we
compare the behavior of a specification when it is stimulated by a user model
with the behavior of an IUT when it is stimulated by the same model. By taking
into account the probabilities of systems we have that, after a finite test suite
is applied to the IUT, we can measure, for a given confidence degree, an upper
bound of the probability that a user behaving as the user model finds an error
in the IUT. Though a previous work [12] introduces a first approach to compute
this metric, this method lies in the idea of comparing a single random variable
denoting all the behaviors in the composition of the specification and the user
with a sample denoting the behavior of the IUT when the user stimulates it. On
the contrary, in this paper we separately study the behavior of the IUT for each
sequence of inputs. Hence, the frequency of sequences of inputs is not part of the
sampled information. This approach requires to use a specific random variable
for each sequence of inputs (instead of a single random variable for all traces),
as well as separately validating each sample with respect to its corresponding
random variable. We use the method to find, for a given number of input actions,
a optimal finite test suite, that is, a suite such that if it is passed then the upper
bound of error probability is lower that the value obtained with any other test
suite of the same size.

As future work, we plan to compact the information collected by samples.
Let us suppose that a sample (a/x, b/y, c/z) is obtained. This implies that if
the sequence of inputs (a, b) would have been offered instead of (a, b, c), then
the sequence of outputs (x, y) would have obtained. That is, if the sample
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(a/x, b/y, c/z) is obtained then the sample (a/x, b/y) is also obtained, as well
as (a/x). Hence, by considering all prefixes of a sample, the number of obser-
vations for some sequences of inputs increases. Since the precision of hypothesis
contrasts is higher when the size of samples is higher, this approach would allow
us to improve the precision of our probabilistic method.
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