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Abstract. This paper describes the design and the prototype implementation of
a middleware, called Java Signal Core Layer (JSCL), for coordinating distributed
services. JSCL supports the coordination of distributed services by exploiting an
event notification paradigm. The design and the implementation of JSCL has been
inspired and driven by its formal specification given as a process calculus, the
Signal Calculus (SC). At the experimental level JSCL has been exploited to im-
plement Long Running Transactions (LRTs).

1 Introduction

One important challenge of the Software Engineering field is represented by the so
called Service Oriented Architectures (SOAs) [? ]. In the SOA approach applications
are developed by coordinating the behavior of autonomous components distributed over
an overlay network. Middleware for coordinating services are extremely important to
the success of SOAs. Several research and implementation efforts are currently de-
voted to design and to implement middleware for coordinating distributes services (see
ORC [? ], BPEL [? ], WS-CDL [? ] and SIENA [? ] to cite a few). However, research
is still underway. The aim of this paper is to contribute to this theme of research by de-
veloping a middleware for coordinating services based upon a formal basis. The strict
integration between theory and practice is the key feature of our proposal. In particular,
this paper describes the design and the prototype implementation of the JSCL middle-
ware. At the abstract level JSCL takes the form of a process calculus, SC, a dialect of the
Ambient Calculus [? ] with asynchronous communication facilities. At the implemen-
tation level, JSCL takes the form of a collection of Java APIs.

The starting point of our work is the event-notification paradigm. We assume to co-
ordinate service behaviors through the exchange of (typed) signals. The basic building
blocks of our middleware are called components. A component represents a “simple”
service interacting though a signal passing mechanism. Components are basic compu-
tational units performing some internal operations and can be composed and distributed
over a network. Composition of components, yields a new one that can be used in fur-
ther compositions. Each component is identified by an unique name, which, intuitively,
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can be through as the URI of the published service. In this paper we assume as given
the set of names of the components involved into a system with no assumption on the
mechanisms adopted to retrieve them (e.g. UDDI service directories, registries, etc.).

The signals exchanged among components are basically messages containing infor-
mation regarding the managed resources and the events raised during internal compu-
tations. Signals are tagged with a meta type representing the class of events they belong
to. Such meta type information is often referred to, in the literature (e.g. [? ]), with the
term topic. Hence components are reactive blocks that declare the subset of signals they
are interested in together with their reactions upon event notifications. The reactions
are modeled by associating functional modules to topics of received signals. Once a
signal of a well defined topic is received, the proper reaction is activated.

The way the events are notified to the subscribed components is strictly related to
the specific coordination pattern chosen. Different conversational styles can be adopted
to implement the way the participants are involved into a coordination, mainly split into
two main groups: orchestration and choreography (as discussed in [? ]). Briefly, the first
solution defines an intermediate agent, the orchestrator, that is responsible to decide,
at each step, which are the actions that must be performed by each component. The
choreography, instead, identifies a more distributed scenario in which, each participant
is responsible for its moves and the whole work-flow is executed following a pre-defined
plan. Basically, the orchestration suggests a centralization point that is responsible for
implementing the subscriptions and the notification forwarding. Such solution is closely
related to the ideas of tuple space based systems and brokered event notification. Using
the choreography, instead, each component can act both as publisher or subscriber for
other components and the delivering of signals is implemented through peer-to-peer
like structures. In this paper, we adopt the choreography approach since it better fits
with the signal passing paradigm.

This paper is organized as follows. Section 2 introduces the Signal Calculus (SC). SC
is a calculus for describing coordination primitives for components interacting through a
signal passing mechanism. Section 3 describes JSCL APIs and the way components can
be programmed. Basically, JSCL is a ligthweight framework for modeling distributed
services by composing components that use signals for notifying events to other inter-
ested components in the style of SC. In section 4, as a case study, we describe the usage
of JSCL as programming middleware for Long Running Transactions (LRTs) [? ].

2 Signal Calculus: SC

The Signal Calculus (SC) is a process calculus in the style of [? ? ] specifically designed
to describe coordination policies of services distributed over a network. SC describes
computation via the choreography of local service behavior. In this section, we present
the syntax and the operational semantics of SC.

2.1 SC Syntax

The main concepts of SC are signals, components, reactions, flows and networks. The
data carried by a signal are the signal name and the conversation schema. A signal



JSCL: a Middleware for Service Coordination 3

name represents an identifier of the current conversation (e.g. the session-id) and a
conversation schema represents the kind of event (e.g. onMouseOver). New signals
can be sent either by autonomous components or as reaction to other signals. In this
paper, we present SC focusing only on the primitives needed to design coordination
protocols. Hence, operations on conversation schemata are not defined, since they can
be expressed at a higher level detail of abstraction. Of course, SC can be extended by
adding types for conversation schemata (e.g. in the form of XML Schema) [? ? ? ? ].
A SC component is a wrapper for a behavior. Intuitively a SC component represents an
autonomous service available over a network. Each SC component is uniquely identified
by its name and contains a local behavior and an interface. Components can behave ei-
ther as signal emitters or as signal handlers. Similarly to the event-notification pattern,
signal handlers are associated to signals and are responsible for their management. The
SC component interface is structured into reactions and flows. Reactions describe com-
ponent behavior and the action of variable binding upon signal reception. Indeed, the
reception of a signal acts like a trigger that activates the execution of a new behavior
within the component.

Orchestration among components is implemented through flows. Flows represent
the local view (component view) of the choreography, that is the set of local commu-
nications that have to be performed to satisfy the choreography demands. Each com-
ponent flow declares the associations among signals, the conversation schema and the
set of handlers. The connections among components are strictly related to a particular
conversation schema thus offering the possibility to express different topologies of con-
nectivity, depending on the schema of the outgoing signals. Both component reactions
and flows are programmable, and they can be dynamically modified by the components.

Components are structured to build a network of services. A network provides the
facility to transport envelopes containing the signals exchanged among components.

We now introduce the main syntactic categories of our calculus together with some
notational machineries. We assume a finite set of conversation schemata ranged by
τ1, ...,τk, a finite set of component names ranged by a,b,c... and a finite set of signal
names ranged by s1,s2, .... We also assume a set Var of variable names whose typical
elements are x,y,z.... We use ~a to denote a set of names a1, ...,an. Finally, we use σ to
denote a substitution from variable names to signal names.

Reactions (R) are described by the following grammar:

(REACTIONS) R ::= 0 Nil
∗(x : τ → B) Unit reaction
R|R Composition

A reaction is a set (possibly empty) of unit reactions. A unit reaction ∗(x : τ → B) trig-
gers the execution of the behavior B upon reception of a signal tagged by the schema
τ. Notice that x : τ acts as a binder for the variable x within the behavior B. The syntax
of behaviors will be given below. As usual we assume to work up-to alpha-conversion.
Free and bound names are defined in the standard way.
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Flows (F) are described by the following grammar:

(FLOWS) F ::= 0 Nil
τ.~a Unit flow
F •F Composition

A flow is a set (possibly empty) of unit flows. A unit flow τ .~a describes the set of
component names ~a where outgoing signals having τ as conversation schema have to
be delivered.

Reactions and flows are defined up-to a structural congruence (≡). Indeed, we assume
that • and | are associative, commutative and with 0 behaving as identity. Notice that
such equations allow us to freely rearrange reactions and flows.
We define two auxiliary schema functions S(R) and S(F) that, respectively, return the
set of conversation schemata on which the reaction R and the flow F are defined.

S(0) = /0 S(0) = /0

S(∗(x : τ → B)) = {τ} S(τ.~a) = {τ}
S(R1|R2) = S(R1)∪S(R2) S(F1|F2) = S(F1)∪S(F2)

We say that a reaction is well-formed (and we write RX) if there is no overlay among
the conversation schemata triggered. The notion of well-formed reaction is inductively
defined below.

0X ∗(x : τ → B)X

R1X R2X S(R1)∩S(R2)≡ /0

(R1|R2)X

We also introduce two projection functions R ↓s:τ and F ↓τ; the first takes a well-formed
reaction R and a signal s of schema τ and returns a pair consisting of the variable sub-
stitution and the activated behavior. The second projection takes a flow F and a schema
τ and returns the set of component names linked to the flow having schema τ. The two
projections are defined below.

0 ↓s:τ = ({},0) 0 ↓τ = {}
(∗(x : τ → B)|R) ↓s:τ = ({s/x},B) (τ.~a•F) ↓τ =~a∪ (F ↓τ)
(∗(x : τ1 → B)|R) ↓s:τ = R ↓s:τ i f τ1 6= τ (τ1 .~a•F) ↓τ = F ↓τ i f τ1 6= τ

Finally we say that a flow is well-formed (and we write FX) if there is no overlay
among the linked components for all conversation schemata. The notion of well-formed
flow is inductively defined below.

0X (τ.~a)X

F1X F2X ∀τ∈(S(F1)∪S(F2))(F1 ↓τ ∩F2 ↓τ≡ /0)

(F1 •F2)X

Hereafter, we assume that reactions and flows are always well-formed.
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Component behaviors (B) are defined by the following grammar:

(BEHAVIORS) B ::= 0 Nil
+R[x : τ → B] Reaction update
+F [τ.~a] Flow update
s̄ : τ.B Asynchronous signal emission
B|B Parallel composition
!B Bang

A reaction update +R[x : τ → B] extends the reaction part of the component interface,
providing the ability to react to a signal of schema τ activating the behavior B. Such
operation ensures that the resulting reaction is well-formed and permits to dynamically
change the reaction interface. Similarly, a flow update +F [τ.~a] extends the component
flows, appending the component names in~a to the set of component names to which the
signals of schema τ are delivered. An asynchronous signal emission s̄ : τ.B first spawns
into the network a set of envelopes containing the signal s, one for each component
name declared in the flow having schema τ, and then activates B. As usual, the bang
replication !B represents a behavior that can always activate a new copy of the behavior
B. When it is clear from the context, we will omit the Nil behavior, writing s̄ : τ for
s̄ : τ.0 and B for B|0.

Networks (N) are defined by the following grammar:

(NETWORKS) N ::= /0 Empty net
a[B]RF Component
N||N Parallel composition
< s : τ@a > Signal envelope

A component a[B]RF describes a component of name a with behavior B, reaction R and
flow F . A signal envelope < s : τ@a > describes a message containing the signal s of
schema τ whose target component is the component named a. We use ∑x∈~a B to denote
the parallel composition of B{n/x} for each name n in the set ~a. A SC component is
closely related to the notion of ambient [? ] as it describes a behavior wrapped within a
named context. Differently from the ambient calculus, SC networks are flat, that means
there is no hierarchy of components.

Examples To better present how the basic SC concepts can be used to model ser-
vice coordination we introduce a simple example. Suppose to have a producer p and
a consumer c both accessing a shared data space. We assume a synchronization pol-
icy, namely a consumer can get its resource only after a producer has produced it. The
problem can be modeled as displayed in Figure 1. P starts its execution performing the
(internal) behavior Bp that modifies the state of the data space that has to be read by C.
When the data have been modified, Bp executes a signal emission of a signal of schema
produced (s̄ : produced) in order to inform C that the required resources are now avail-
able. Upon notification, C automatically starts and takes the resource in the data space
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performing its internal behavior Bc. We assume that Bc executes a signal emission of
a signal of schema consumed (x̄ : consumed) in order to inform P that it can produce
a new resource. Notice that the name of the signal emitted is the same of the signal
received. Moreover C is not a running process, it is an idle entity that is activated only
at signal reception.

P , p[s̄ : produced]x:consumed→x̄:produced
produced.c C , c[0]x:produced→x̄:consumed

consumed.p Net , P||C

Fig. 1. Components p and c share a data space

In the previous example, we presented two components with a statically defined
choreography. However the producer and the consumer can be dynamically linked to-
gether (e.g. at the start up phase) using reaction update and flow update, thus provid-
ing a dynamic choreography scenario. This example is expressed in SC through the
components and the network defined in Figure 2. Notice that, since component name
passing has not been modeled in SC, we assume each component knows the names of
the externally published components. We can enrich the SC core providing component
name communication, thus yielding a true dynamic choreography in the style of the
π-calculus [? ].

P , p[+F [produced . c]|+R[x : consumed → x̄ : produced.0]|s̄ : produced]00
C , c[+F [consumed . p]|+R[x : produced → x̄ : consumed.0]]00
Net , P||C

Fig. 2. Components p and c share a data space

2.2 SC Semantics

SC semantics is defined in a reduction style [? ]. We first introduce a structural congru-
ence over behaviors and networks. The structural congruence for component behaviors
(≡B) is defined by the following rules:

B1|B2 ≡B B2|B1 (B1|B2)|B3 ≡B B1|(B2|B3) /0|B ≡B B !B ≡B B|!B

As usual the bang operator allows us to express recursive behaviors.
Structural congruence for networks ≡N is defined by the following rules:

N||M ≡N M||N (M||N)||O ≡N M||(N||O) /0||N ≡N N

a[ /0]0F ≡N /0
F1 ≡ F2 R1 ≡ R2 B1 ≡B B2

a[B1]R
1

F1 ≡N a[B2]R
2

F2
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A component having nil behavior and empty reaction can be considered as the empty
network since it has no internal active behavior and cannot activate any behavior upon
reception of a signal. Two components are considered structurally congruent if their
internal behaviors, reactions and flows are structurally congruent. When it is clear from
the context, we will use the symbol ≡ for both ≡B and ≡N .

The reduction relation of networks (→) is defined by the rules in Figure 3. The rule
(RUPD) extends the component reactions with a further unit reaction (the parameter
of the primitive). The rule requires that the resulting reaction is well-formed. The rule
(FUPD) extends the component flows with a unit flow. Also in this case a well-formed
resulting flow is required. The rule (OUT) first takes the set of component names~a that
are linked to the component for the conversation schema τ and then spawns into the
network an envelope for each component name in the set. The rule (IN) allows a signal
envelope to react with the component whose name is specified inside the envelope.
Notice that signal emission rule (OUT) and signal receiving rule (IN) do not consume,
respectively, the flow and the reaction of the component. This feature provides SC with a
further form of recursion behavior. The rules (STRUCT) and (PAR) are standard rules.
In the following, we use N →+ N1 to represent a network N that is reduced to N1 after
a finite number of steps.

R| ∗ (x : τ → B)X
(RUPD)

a[+R[x : τ → B]|Q]RF → a[Q]R|∗(x:τ→B)
F

F • τ.~aX
(FUPD)

a[+F [τ.~a]|Q]FR → a[Q]RF•τ.~a

F ↓τ=~a
(OUT )

a[s̄ : τ.P|Q]RF → a[P|Q]RF | ∑
ai∈~a

< s : τ@ai >

R ↓s:τ= (σ,B)
(IN)

< s : τ@a > |a[Q]RF → a[Q|σB]RF

N ≡ N1 → M2 ≡ N3
(ST RUCT )

N → N3

N → N1
(PAR)

N|N2 → N1|N2

Fig. 3. Semantic Rules

Examples To describe how SC semantics rules work, we provide a short description
of the execution of the examples given in Figure 1 and 2. As a shorthand, we write τp
for the conversation schema produced and τc for consumed. The network in Figure 1
contains only one active component; namely the producer p emits the signal, spawning
into the network an envelope for the consumer c. This is represented by:

(τp . c) ↓τp= c
(OUT )

p[s̄ : τp]
(x:τc→x̄:τp)
(τp.c) → p[0](x:τc→x̄:τp)

(τp.c) |< s : τp@c >
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The envelope reacts with the consumer component, activating inside the component the
behavior of the corresponding reaction:

(x : τp → x̄ : τc) ↓s:τp= ({s/x}, x̄ : τc)
(IN)

< s : τp@c > |c[0](x:τp→x̄:τc)
(τc.p) → c[s̄ : τc]

(x:τp→x̄:τc)
(τc.p)

In a similarly way, the consumer component c sends an envelope to the producer p, thus
activating the proper internal behavior:

p[0](x:τc→x̄:τp)
(τp.c) |c[s̄ : τc]

(x:τp→x̄:τc)
(τc.p) →+ p[s̄ : τp]

(x:τc→x̄:τp)
(τp.c) |c[0](x:τp→x̄:τc)

(τc.p)

In the second example all the two components have active internal behaviors. The
producer can update its flow by adding the link to the consumer for signals of schema
τp, as follows:

(0• τp . c)X

p[+F [τp . c] | +R[x : τc → x̄ : τp] | s̄ : τp]00 → p[+R[x : τc → x̄ : τp] | s̄ : τp]0(τp.c)

Then we apply the reduction rule for the reaction update of the producer:

(0|x : τc → x̄ : τp)X

p[+R[x : τc → x̄ : τp]|s̄ : τp]0(τp.c) → p[s̄ : τp]
(x:τc→x̄:τp)
(τp.c)

After these reductions the producer component has created a link to the consumer for
signals of schema τp and can receive signals of schema τc. In a similar way the con-
sumer component updates its reaction and flow:

p[s̄ : τp]
(x:τc→x̄:τp)
(τp.c) |c[+F [τc . p]|+R[x : τp → x̄ : τc]]00 →+ p[s̄ : τp]

(x:τc→x̄:τp)
(τp.c) |c[0](x:τp→x̄:τc)

(τc.p)

3 Java Signal Core Layer

Java Signal Core Layer (JSCL) consists of a collection of Java API implementing the co-
ordination primitives formally described by SC. In JSCL, known concepts of the event-
based paradigm are considered in a distributed and open environment where compo-
nents can be allocated on different execution sites and can join existing execution of
other components. In the following, we often refer to components as services mean-
ing that the current version of JSCL is specifically tailored to coordinate web services.
However JSCL can be easily adapted to different technologies (e.g. CORBA). The es-
sential ingredients of JSCL are signals, components, signal links and input ports cor-
responding, respectively, to the concepts of signals, components, flows and reactions
defined in section 2. The notion of SC network is implemented by introducing an in-
termediate layer, the Inter Object Communication Layer (IOCL). The IOCL contains
the set of primitives for creating, publishing, retrieving and connecting components.
These operations are strictly related to the execution environment. To support multiple
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definitions of IOCL, these primitives have been developed as plugins that can be di-
rectly accessed at run-time. Such layer has been introduced to make JSCL more flexible
and allows the interoperability of different technologies for inter object communication
like CORBA, Web Services (see [? ] for more details). In particular, the IOCL layer
provides the mechanisms to implement the data serialization (e.g. SOAP message en-
velops for WSs, etc.) and the deployment phase (e.g. stub generation, dynamic proxy
binding, etc.). Moreover each IOCL plugin defines the way components are identified
by extending the basic interface ComponentAddress. The way components are named
in JSCL strictly depends over the underlying overlay network adopted (e.g. an URL if
the selected iocl plugin is based on WSs or CORBA, a couple (IP, port) if sockets are
used, an unique name if memory access is used etc.).

In JSCL, the set of information conveyed in each signal is split into two parts. The
first contains information useful for coordination: the unique name of the signal in-
stance and its type. The second part contains the payload of current request, the session
data. Notice that the session data are not modeled in SC since the calculus only deals
with the primitives needed for implementing the coordination among components. Sig-
nals are classified into signal types (types for short) that associate each signal to the
class of events they belong to. Signal types are namely the SC conversation schemata.
Signals have been modeled as non persistent entities; once the notification for an event
has been delivered to all the interested handlers, the corresponding signal is removed
from the system. This property is mandatory if we want to keep the distribution of the
connections and their management. This feature, however, is not a limitation: persis-
tent signals can be easily introduced in our middleware. Signals, in JSCL, are always
sent in non anonymous way, meaning that it is always possible to know the sender of
each signal. Such constraint is useful, at implementation level, if we want to extend the
middleware with authoring primitives on the links.

The event notification mechanism of subscription is implemented through the cre-
ation of input ports and signal links connecting components. These operations corre-
spond respectively to the primitives reaction update and flow update defined in SC.

An input port is a tuple i = (sigT ,Task) meaning that the port can receive signals
of type sigT whose handler is the process Task. Each component is able to specify only
one input port for each sigT . The notion of input port i, signal type sigT and handling
task Task map respectively the reaction R, the conversation schema τ and the behavior
B defined in SC. The component interface is obtained by taking the set of sigT for which
there is a bound input port, and the set of sigT for which there is at least a signal link
defined. Such sets in SC are given respectively by the auxiliary schema functions S(R)
and S(F). Figure 4 shows a graphical notation for JSCL input ports.

Connections between two components are implemented through signal links. A sig-
nal link is a tuple l = (sigT ,S,R) and represents an virtual channel among the signals
of type sigT emitted by S and the handler R. Creating a new link between S and R re-
quires that the input port corresponding to sigT has been previously created by R with
the right permissions for S. Basically, signal links are the linguistic device of JSCL for
subscription/notification. We already pointed out that several receivers can be linked
with the same signal type and the same sender. All the signal links created are well
formed conforming to the rules defined in section 2.1. Namely further creations of links
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Fig. 4. JSCL input port

(sigT ,S,R) are idempotent. The primitive for creating new signal links can be invoked
outward the components by an external application that will connect all (or a subset
of) the components among them and this will be the only agent conscious of the topol-
ogy of the network. This assumption is useful to preserve the autonomy of the com-
ponents from the particular system in which they are acting. The creation of a link is
implemented through the IOCL component. Links in JSCL are typed, unidirectional and
“peer-to-peer”. More complex scenarios (e.g., multi-casting, bi-directionality, etc.) can
be obtained by introducing the suitable notions of links. For instance, multi-casting is
achieved by connecting the same emitter to several handlers.

Example We now describe how the producer/consumer example modeled in SC in sec-
tion 2.2 can be implemented by exploiting the JSCL APIs. This provides a basic idea
of the programmability offered by the middleware. The Figure 5 displays the chore-
ography between two components P and C representing respectively the services im-
plementing a producer and a consumer. The topics of signals exchanged in the system
are sigprod and sigcons corresponding to notifications for events produced and consumed
which can be raised respectively from P and C.

Fig. 5. JSCL: producer-consumer example.

The designing of the whole application can be logically split into three phases: i)
the creation of the components, ii) the declaration of the reactions associated to the
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components and iii) the publication of services and the designing of the connections.
In the following, we assume to exploit the XSOAP [? ] IOCL plugin, and to use the
ServiceAddress3 class, essentially an URL, to define component names.

IOCLPluginLoader l o a d e r = new IOCLPluginLoader ( ” j s c l . c o r e . IOCL . XSoap . IOCLImpl ” ) ;
IOCLPluginI i o c l = l o a d e r . g e t I O C L I n s t a n c e ( ) ;
S e r v i c e A d d r e s s P a d d r e s s = new S e r v i c e A d d r e s s ( ” h t t p ” , ” j o r d i e ” , 9092 , ” ” , ” P r o d u c e r ” ) ;
S e r v i c e A d d r e s s C a d d r e s s = new S e r v i c e A d d r e s s ( ” h t t p ” , ” j o r d i e ” , 9092 , ” ” , ” Consumer ” ) ;
Gener icComponent p r o d u c e r = i o c l . c r ea t eComponen t ( P a d d r e s s ) ;
Gener icComponent consumer = i o c l . c r ea t eComponen t ( C a d d r e s s ) ;

Code 1: Producer & consumer creation.

The Code 1 illustrates the JSCL code for creating the needed services. First we
instantiate a new IOCLPlugin that will be used to create the components. The creation
of new components occurs by invoking the method createComponent, whose parameter
is the address of the component itself. Alternatively, the iocl layer can be used to retrieve
already published services by invoking the method iocl.getComponent which, given
an address, returns a component proxy bound to it. Once our components have been
built, we must program their reactions by binding them to new input ports as shown
in Code 2. Roughly Code 2 describes the processes corresponding to the Taskcons and
Taskprod depicted in Figure 5.

consumer . a d d I n p u t P o r t (
new S i g n a l I n p u t P o r t ( S i g n a l T y p e s . S i g p r o d ,

new S i g n a l H a n d l e r T a s k ( consumer ){
p u b l i c O b j e c t h a n d l e ( S i g n a l s i g n a l ){

t r y {
/ / Consumes t h e r e s o u r c e
. . .
s i g n a l . s e t T y p e ( S i g n a l T y p e s . S i g c o n s ) ;
t h i s . g e t P a r e n t ( ) . e m i t S i g n a l ( s i g n a l ) ;

} catch ( G e n e r i c E x c e p t i o n e ){
e . p r i n t S t a c k T r a c e ( ) ;

}
re turn n u l l ;

}
}

)
) ;

p r o d u c e r . a d d I n p u t P o r t (
new S i g n a l I n p u t P o r t ( S i g n a l T y p e s . S i g c o n s ,

new S i g n a l H a n d l e r T a s k ( p r o d u c e r ){
p u b l i c O b j e c t h a n d l e ( S i g n a l s i g n a l ){

t r y {
/ / Produces t h e r e s o u r c e
. . .
s i g n a l . s e t T y p e ( S i g n a l T y p e s . S i g p r o d ) ;
t h i s . g e t P a r e n t ( ) . e m i t S i g n a l ( s i g n a l ) ;

} ca tch ( G e n e r i c E x c e p t i o n e ){
e . p r i n t S t a c k T r a c e ( ) ;

}
re turn n u l l ;

}
}

)
) ;

Code 2: Binding of input ports.

The last step is the publication of the created services and the creation of links as
shown in Code 3.

/ / Component p u b l i c a t i o n
i o c l . r e g i s t e r C o m p o n e n t ( p r o d u c e r ) ;
i o c l . r e g i s t e r C o m p o n e n t ( consumer ) ;

/ / C r e a t i o n o f l i n k s
i o c l . c r e a t e L i n k ( S i g n a l T y p e s . S i g p r o d , Padd re s s , C a d d r e s s ) ;
i o c l . c r e a t e L i n k ( S i g n a l T y p e s . S i g c o n s , Caddress , P a d d r e s s ) ;

Code 3: Link creation.

3 ServiceAddress is an implementation of ComponentAddress defined in section 3.
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Once the orchestration has been declared, we can start its execution by the signal
emission of the producer component, which is the only active internal behavior. Here,
for simplicity, the primitives for creating and publishing the components depicted in
Code 1 and in Code 3, for simplicity, are collapsed into an unique block, using the same
machine. Obviously more sophisticated strategies can be adopted, e.g. the component
can be deployed into different machines, in such case the method createComponent is
replaced by the getComponent method.

JSCL environment We have presented above the primitives provided by JSCL for
declaring reactive components and for coordinating them via event notification. Other
systems have been introduced in [? ] to describe these issues (service declaration and
coordination) in XML. On the one side, each component can be defined with an XML
structure giving the signal types to which it reacts, the iocl support and the address
to which it will be bound. These files are processed to obtain the corresponding Java
skeleton code. On the other side, the coordination among components can be described
in a separated XML document containing the definition of the services involved and
their connections. Such file can be interpreted so to create the required coordination
structure.

4 Long Running Transaction

JSCL has been adopted in [? ] for implementing a framework for Long Running Trans-
actions. The deployment phase has been driven by Naı̈ve Sagas [? ], a process calculus
for compensable transactions, which defines Long Running Transactions in terms of
logical blocks (transactional flows) orchestrating to reach a common goal. The build-
ing block of Naı̈ve Sagas is the compensation pair construct. Given two actions A and
B, the compensation pair A÷B corresponds to a process that uses B as compensation
for A. Intuitively, A÷B yields two flows of execution: the forward flow and the back-
ward flow. During the forward flow, A÷B starts its execution by running A and then,
when A finishes: (i) B is “installed” as compensation for A, and (ii) the control is for-
wardly propagated to the other stages of the transactions. In case of a failure in the rest
of the transaction, the backward flow starts so that the effects of executing A must be
rolled back. This is achieved by activating the installed compensation B and afterward
by propagating the rollback to the activities that were executed before A. Notice that B
is not installed if A is not executed.

With JSCL the transactional blocks are obtained by suitable wrappers, Transac-
tional Gates (T G), that use signal passing for activating the flows. The possible sig-
nal types that can be exchanged are: sigFW , which activates the forward flow, sigRB, for
activating the backward flow (rollback), sigCM , propagated to notify that the whole or-
chestration has been successful executed (commit) and sigEX , exchanged to notify that
the rollback phase has failed and the state of the whole transaction is inconsistent (also
referred as abnormal termination). When a T G receives a signal typed sigFW , it tries
to execute the main activity A; whenever the execution of A normally terminates, the
signal is propagated to the next stage. On the contrary, if A throws an exception, a signal
typed sigRB is propagated to the previous stage (the rollback is propagated in backward
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way). Analogously when a sigRB is received by a T G, it tries to execute the compen-
sating activity B, if it fails, throwing an exception, the signal is set to sigEX to notify
that the rollback phase has failed and the state of the whole transaction is inconsistent,
otherwise the rollback signal is propagated. The JSCL implementation of Naı̈ve Sagas
provides components implementing parallel and sequential structural composition of
transactional gates. The composition constructs keep the structure of T G and can be
reused in further compositions. In Figure 6 it is shown how a Naı̈ve Sagas compensable
process A1÷B1;A2÷B2;A3÷B3, is implemented using the JSCL graphical notation.

Fig. 6. JSCL Transactional Gates: an example.

The JSCL implementation of transactional flows can be formally described in SC as
follows. We assume given two functions [[A]] f w(x) and [[A]]rb(x) that translate the Naı̈ve
Sagas atomic activity A to SC internal behaviors, working on signal named x. We as-
sume that the first function translates the successful return statements into the signal
emission x̄ : f w.0 and the exception rising into x̄ : rb.0, and that the second function
translates the successful return statements into the signal emission x̄ : rb.0 and the ex-
ception rising into x̄ : ex.0. The example Naı̈ve Sagas compensable process, previously
described, is so represented by the SC network [[P]]:

[[A1÷B1]] , p1[0]
x: f w→[[A1]] f w(x) | x:rb→[[B1]]rb(x)
f w.p2

[[A2÷B2]] , p2[0]
x: f w→[[A2]] f w(x) | x:rb→[[B2]]rb(x)
f w.p3•rb.p1

[[A3÷B3]] , p3[0]
x: f w→[[A3]] f w(x) | x:rb→[[B3]]rb(x)
rb.p2

[[P]] , [[A1÷B1]] | [[A2÷B2]] | [[A3÷B3]]

5 Concluding remarks

We have introduced a core framework to formally describe coordination of distributed
services. This framework has driven the implementation of a middleware for program-
ming coordination policies by exploiting the event notification paradigm. In our ap-
proach the event notification paradigm supports fully distribution.

Unlike the current industrial technologies concerning service coordination (e.g.
BPEL [? ]), our solution is based on top of a clear foundational approach. This should
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provide strategies to prove coordination properties based on model checking or type
systems. A semantic definition of the basic set of primitives can also drive the imple-
mentation of translators from industrial specification languages (e.g. WS-CDL [? ]) to
our framework. Our approach differs from other event based proposals (e.g. SIENA [?
]), since focuses the implementation on the more distributed environment of services.
Our formal approach is based on process calculus literature (e.g. ccs [? ], π-calculus [?
]). Differently from π-calculus, the computation is boxed into components, in the style
of Ambient Calculus [? ]. Moreover we avoid components nesting, to model a flat topol-
ogy of the network and to provide a more loose-coupled programming model. As de-
scribed before, SC models connections among components with peer-to-peer like struc-
tures (flows). Moreover, such flows can be logically grouped into multicast-channels,
identified by the conversation schema. This provides a communication pattern closed
to the one presented in [? ], even if SC does not deal with connection mobility.
There are several coordination models based on connection among components that
provide dynamic reconfiguration (e.g. Reo [? ]). Our work mainly differs from Reo on
the communication model adopted for composition. Reo is a channel based framework,
while SC is an event based one. Hence, Reo handles component migration and channel
management as basic notions, while SC focuses on the activities performed and on the
coordination over dynamic network topologies.

In this paper, we focused on the coordination aspects. However the calculus SC can
be enriched by considering signals as tagged nested lists [? ? ], which represent XML
documents, and conversation schemata as abstractions for XML Schema types [? ]. This
extension of conversation schemata lead to a more general notion of reaction based on
pattern matching or unification in the style of [? ]. A further extension can provide
component and schema name passing, modelling a more dynamic scenario.

SC can describe dynamic orchestrations trough reaction and flow update primitives.
These primitives have effects only on the component view of the choreography, namely
a component cannot update the reaction or the flow of another component. Flow man-
agement can be enriched providing a primitive to update remote flows. This primitive
should spawn a flow update envelope into the network. The update of remote reaction
is more difficult, since a reaction contains code and than is necessary to formalize and
implement the code migration.


