
Branching Time Semantics for UML 2.0 Sequence
Diagrams

Youcef Hammal

LSI, Département d’Informatique, Faculté d’Electronique & Informatique
Université des Sciences et de la Technologie Houari Boumediene

BP 32, El-Alia 16111, Bab-Ezzouar, Algiers, Algeria.
E-MAIL : yhammal@wissal.dz

Abstract. This paper presents formal definitions for UML Sequences
Diagrams based on branching time semantics and partial orders in a
denotational style. The obtained graphs are close to lattices and specify
faithfully the intended behaviors rather than trace based semantics. We also
define few generalized algebraic operations on graphs so that it makes it easy to
provide formal definitions in a compositional manner to interaction operators.
Next we extend our formalism with logical clocks and time formulas over
values of these clocks to express timing constraints of complex systems. We
present also some algorithms to extract time annotations that adorn sequence
diagrams and transform them into timing constraints in our timed graphs.
Obviously, this approach alleviates more the hard task of consistency checking
between UML diagrams, specifically interaction diagrams with regards to state
diagrams. Timeliness and performance analysis of timed graphs related to
sequence diagrams could take advantages of works on model checking of timed
automata.

1 Introduction

Scenarios-based specifications have become increasingly accepted as a means of
requirements elicitation for concurrent systems such as telecommunications software.
Indeed scenarios describe in an intuitive and visual way how system components and
users interact in order to provide system level functionality. They are also used during
the more detailed design phase where the precise inter-process communication must
be specified according to formal protocols [3, 4, 7, 10, 12, 8].

The Unified Modeling language (UML [8]) which is an OMG standard and multi-
paradigm language for description of various aspects of complex systems, adopted
early this kind of visual and flexible notations for expressing the interactions between
system components and their relationships, including the messages that may be
dispatched among them. More precisely, UML contains 3 kinds of these interactions
diagrams: sequence diagrams, communication diagrams and timing diagrams [8].

Recently, many established features of MSC (Message Sequence Charts) [5] have
been integrated into the version 2.0 of UML [8], namely the interaction operators
among fragments and the adoption of partial order among interaction events rather
than the related messages.

Each interaction fragment alone is a partial view of the system behavior but when
combined all together by means of the new interaction operators, interactions provide
relatively a whole system description.

However in spite of the expressiveness and precise syntactic aspects of UML
notations, their semantics remain described in natural language with sometimes OCL
formulas. Accordingly, to use automated tools for analysis, simulation and
verification of parts of produced UML models, UML diagrams should be given a
precise and formal semantics by means of rigorous mathematical formalisms [12, 4].

In this context, this paper presents a new formal approach to defining branching
time semantics for UML Sequences Diagrams in denotational style. Our approach
deals with the partial order and yields lattice-like graphs that specify faithfully the
intended behaviors by recording both traces of all interaction components together
with branching bifurcations. We provide our mathematical structure with few
generalized algebraic operations making it easy to give formal definitions of
interaction operators in a compositional manner. Next we extend our formalism with
logical clocks and time formulas over these clocks to express timing constraints of
complex systems. Some given algorithms show how to extract time annotations of
sequence diagrams and transform them into timing constraints in our timed graphs.

Obviously, this approach alleviates more the hard task of consistency checking
between UML diagrams, specifically interaction diagrams with regards to state
diagrams. Timeliness and performance analysis of timed graphs related to sequence
diagrams could take advantage of works on model checking of timed automata [1].

The paper is structured as follows: The next section shows the basic features of

UML Sequences Diagrams (DS) and in section 3 we present our formal model and its
algebraic operations. Then in section 4, the semantics of DS are given in
compositional style by combining the denotations of interaction fragments using our
algebraic operations and section 5 presents a temporal enhancement of our graphs
with logical clocks and temporal formulas and then we give the method to extract into
our timed graphs the timing constraints from time annotations on sequence diagrams.
Finally last sections compare related work with ours and give concluding remarks.

2 Interactions and Sequences Diagrams

The notation for an interaction in a sequence diagram is a solid-outline rectangle of
which upper left corner contains a pentagon. Inside this pentagon, the keyword sd is
written followed by the interaction name and parameters [8].

In a sequence diagram (Fig.1), participants (components, objects …) that
participate in the interaction are located at the top of the diagram across the horizontal
axis. From each component shown using a rectangle, a lifeline is drawn to the bottom
and the dispatching of every message is depicted by a horizontal arc going from the
sender component to the receiver one. These messages are ordered from top to bottom
so that the control flow over time is shown in a clear manner. Each message is defined
by two events: message emission and message reception and events situated on the
same lifeline are ordered from top to down [8].

Accordingly a message defines a particular communication among communicating
entities. This communication can be “raising a signal”, “invoking an operation”,
“creating” or “destroying an instance”. The message specifies not only the kind of
communication but also the sender and the receiver. The various kinds of
communication involved in distributed systems are considered in UML sequence
diagrams. Hence messages may be either synchronous or asynchronous [8].

 Basic interaction fragment only represents finite behaviors without branching
(when executing a sequence diagram, the only branching is due to interleaving of
concurrent events), but these can be composed to obtain more complete descriptions.
Basic interaction fragments can be composed in a composite interaction fragment
called combined interaction or combined fragment using a set of operators called
interaction operators. The unary operators are OPT, LOOP, BREAK and NEG. The
others have more than one operand, such as ALT, PAR, and SEQ. Recurrently the
combined fragments can be combined themselves together until obtaining a more
complete diagram sequence [8] (see fig.1).

The notation for a combined fragment in a sequence diagram is a solid-outline

rectangle. The operator is in a pentagon at the upper left corner of the rectangle.
The operands of a combined fragment are shown by tiling the graph region of the

combined fragment using dashed horizontal lines to divide it into regions
corresponding to the operands.

Finally interactions in sequence diagrams are considered as collections of events
instead of ordered collections of messages as in UML 1.x. These stimuli are partially
ordered based on which execution thread they belong to. Within each thread the
stimuli are sent in a sequential order while stimuli of different threads may be sent in
parallel or in an arbitrary order.
Notations. Let ∑ be a vocabulary of symbols. ∑* is the set of all finite words over ∑
including the empty word ε. Let w∈∑*, |w| denotes the length of w and w(n) denotes
the nth symbol of w. If u, v ∈ ∑*, u.v denotes the concatenation of u and v.

A B

alt

opt

Fig.1. Sequence Diagram.

sd P

Lifeline

Enclosing combined
fragment

Nested combined
fragment

Exchanged
Messages

3 Formal Model for Interaction Behavior

We present below the mathematical model used for the definition of the branching
time semantics of sequence diagrams. This model is a lattice-like graph which records
faithfully from sequences diagrams the intended traces of events together with the
choices possibilities. Moreover it preserves the partial order among events in such a
way that structure may contain diamond-shaped parts.

G = <O, Σ, <Σ, S, s0, T> where :
- O is the set of participants involved in an interaction.
- Σ is the set of events occurrences. Note that Σ contains an unobservable event τ ≠ε

modeling change of control flow. This event τ may be also adorned with a guard.
- <Σ ⊂ Σ x Σ, is a set of pairs of events occurrences where each one represents a

binary relation between two occurrences to describe that one event must occur
before the other in a valid trace. This mechanism provides a partial order on events
occurrences so that the set of possible sequences is more restricted.

- S = {sk : O Σ*, k∈ℵ }
 = {sk : oi w∈Σ* / ∀n≤|w|, ∀m≤n : (w(n) , w(m)) ∉ <Σ }
Every mapping sk from S assigns to each participant some word (trace of events

occurrences) at some point k of its evolution such that the binary relation <Σ among
events remains preserved. Hence, these mappings constitute the nodes of the graph.
- s0 ∈ S represents the initial node where no event is recorded. ∀oi∈O, s0(oi) = ε.
- T : S x Σ S

(si, e) sj
Each transition records any occurring event different from τ onto the trace of the

relating object. For more convenience, we write si |----e-----sj.
If e = τ then ∀o∈O: sj(o) = si(o)
If e ≠ τ then there exits exactly one object o where:
 e∈lifeline(o) ∧ sj(o)=si(o).e ∧∀o’∈O, ∀e’∈si(o’) : (e,e’)∉<∑.
(e should never occur if it precedes any other recorded event via the partial order)
∀o’ ≠ o: sj(o’) = si(o’) (sj does not record e onto o’ trace if o’ ≠ lifeline (e)).

We prefer call final nodes leaf nodes rather than acceptance nodes because

sequence diagrams are only some pieces of the expected behavior. So any recorded
trace is only a prefix of some whole traces we can only compute from State Diagrams.

Below we define two binary and one unary algebraic operations on these kinds of
graphs. These operations are generalized making it possible to define the formal
semantics of interaction operators on interaction fragments in a compositional style.

3.1 Choice Operation

This operation achieves an adjunct of graphs. Choice is made between them via
internal τ-actions. Let G1, G2 be two graphs where:

G1 = <O1,Σ1, <Σ
1, S1, s0

1, T1>, G2 = <O2,Σ2, <Σ
2, S2, s0

2, T2> Such that O1 =O2
G1 ⊕ G2 = <O, Σ, <Σ, S, s0, T> where :
- O = O1 = O2. - Σ = Σ1 ∪ Σ2. - <Σ = <Σ

1
 ∪ <Σ

2

- S = S1 ∪ S2 ∪ {s0} where s0∈S is new initial node.
- T = T1 ∪ T2 ∪ T’ where T’ = {s0 |---τ--- s0

1, s0 |---τ--- s0
2}

3.2 Parameterized Cartesian Product

This product achieves merging of all pairs of traces from the two graphs but in such a
way the partial order among events remain preserved. Whenever we try concatenate
two traces, we should check that none of events occurrences of the second trace is
ordered before an event from the previous trace.

Let G1, G2 be two graphs where:
G1 = <O1,Σ1, <Σ

1, S1, s0
1, T1> , G2 = <O2,Σ2, <Σ

2, S2, s0
2, T2>

G1 ⊗Prior G2 = <O, Σ, <Σ, S, s0, T> where :
- O = O1 ∪ O2. - Σ = Σ1 ∪ Σ2 - <Σ = <Σ

1
 ∪ <Σ

2 ∪ Prior
 Prior ⊆ (Σ1x Σ2)∪(Σ2xΣ1) is a subset of new particular order relations among events.
- S = PRUNE ((S1 ⊗ S2) ∪ (S2 ⊗ S1)).
 sk ∈ S : o sk(o) = si

1(o)⊗ sj
2(o) where si

1∈S1 and sj
2∈S2

si
2(o)⊗ sj

1(o) where si
2∈S2 and sj

1∈S1
 si

1(o)⊗sj
2(o) = si

1(o).sj
2(o) such that o∈O1∩O2 ∧∀e∈si

1(o), ∀e’∈sj
2(o): (e’,e)∉<∑

si
1(o) if o∉ O2

ε otherwise.

si

2(o)⊗sj
1(o) = si

2(o).sj
1(o) such that o∈O1∩O2 ∧∀e∈si

2(o), ∀e’∈sj
1(o): (e’,e)∉<∑

si
2(o) if o∉ O1

ε otherwise.
The function PRUNE removes all unreachable nodes from the initial node through T.
- s0 = s0

1 ⊗ s0
2 = s0

2 ⊗ s0
1 (hence ∀o∈O: s0(o) = ε).

- T : S x Σ S
T={(sk,e,sk’)/sk=si

1⊗sj
2, sk’=sm

1⊗sn
2, ∃o∈O: (si

1(o),e,sm
1(o))∈T1 ∨ (sj

2(o),e,sn
2(o))∈T2}

∪{(sk,e,sk’)/sk=si
2⊗sj

1, sk’=sm
2⊗sn

1, ∃o∈O: (si
2(o),e,sm

2(o))∈T2 ∨ (sj
1(o),e,sn

1(o))∈T1}

3.3 Star Operation

This operation adds to the graph new τ-transitions outgoing from leaf nodes to the
initial node. Furthermore it adds a new empty node sε connected to the initial node by
a τ-transition (see figure 2). Let G1 be the starting graph G1 = <O1,Σ1, <Σ

1, S1, s0
1, T1>

STAR (G) = <O, Σ, <Σ, S, s0, T> where :
- O = O1, Σ = Σ1, <Σ = <Σ

1, S=S’∪S”
- S’ = {sk : O Σ*, k∈ℵ } where for all k we have :

sk : o sk(o) = (sk
1(o))+ if sk ∈ LEAF(S1)

 sk
1(o) otherwise.

- S”={sε: O {ε}}
 The sole node sε records empty traces for all objects.
- s0 = s0

1. Fig.2. Star operation.

τ

τ sε

s0

- T = T1 ∪ T’∪ T” / T’ = {∀sF∈ LEAF(S1): sF |---τ--- s0
1} where

 LEAF(S) = {s ∈S / NOT (∃s’∈S, e∈∑ : s |---e--- s’)}
T” = { s0

1 |---τ--- sε}

Property. The two operations ⊗ and ⊕ on graphs are associative.

Lemma 1. let G be the graph <O, Σ, <Σ, S, s0, T>
∀sk∈S, ∀o∈O: u=sk(o) ⇒ (∀i, j∈ℵ : i , j ≤ |u| ∧ (u(i),u(j)) ∈ <∑) ⇒ i<j.
Proof. Definitions of S and T compel event occurrences concerned by <Σ to occur in a
way so that the partial order remains preserved. The other events may appear in any
order in the sequence.

Definition 1. Let u and w be two sequences from sk(o) (o∈O, sk∈S)
 u and w are equivalent (we write u ≈ w) if and only if ∀a∈∑: a∈u ⇔ a∈w.
The precedence relation is preserved for ordered events in both u and w.

Definition 2. Let si and sj be two nodes from S
si and sj are equivalent (we write si ≈ sj) if and only if ∀o∈O: si(o)≈ sj(o).

Definition 3. Let G be a graph = <O, Σ, <Σ, S, s0, T>. A reduced graph (automaton)
may be obtained from the graph G by reducing the equivalent nodes into equivalence
class of nodes as follows: G = <O, Σ, <Σ, S’, s0, T’>

S’ = {[sk] / sk ∈ S} where [sk] = {si∈S / si≈sk}.
T’ = { [sk] |----e------[sk’] / ∃si∈[sk], ∃sj∈[sk’], ∃ (si |----e-----sj)∈ T}

Remark1. On the other hand side, we can unfold our graph (namely cycles and
diamond shapes) in order to obtain the equivalent transition system.

3.4 Handling of Synchronous Messages

Although the subset “Prior” is used particularly to handle specific features of
interaction operators used among combined fragments (as explained later), we can
also use it to handle synchronous messages when assembling jointly many lifelines in
one interaction fragment or when combining many sequence diagrams by means of
interaction operators. We have only to add into the partial order subset “Prior” other
general orderings with regards to send and receive events of those specific messages.

Let M be the set of synchronous messages between two combined fragments SDi

and SDj (which could be only lifelines of participants).
“Prior” is then increased with the set ∪m∈M(Priorm) where :

Priorm = {(m!,e) / m!∈∑j ∧ ∃e∈∑i : (m?,e) ∈ <∑i}

∪{(m?,e’) / m?∈ ∑i ∧ ∃e’∈∑j: (m!,e’) ∈ <∑j}

This means that once the send event (m!) occurs the executing thread will stop

until the receive event (m?) occurs on the other lifeline thanks to its precedence level
against the successive events of the send event. Similarly, if we observe first a receive

event on the second participant lifeline, the related thread should stop until the send
event occurs on the first participant. Note that only related threads to these events
should synchronize and other concurrent threads could continue performing parallel
activities and generating others events.

4 Formal Semantics of Interaction Fragments and Operators

4.1 Lifeline of a Participant

We associate to each interaction fragment X a related graph denoted |[X]|.
Let P be a participant in some interaction. Its graph is |[P]|=<O,Σ, <Σ, S, s0, T> where:
- O = {P} is a singleton set consisting in the only one participant P.
- Σ = { e /∃m: e = Receive(m)∧Receiver(m)=P ∨ e = Send(m)∧Sender(m)=P}
- <Σ = {(e,e’)∈ΣxΣ / the event occurrence e occurs before e’ on the lifeline(P)}

Frequently the order on a same lifeline is total i.e. if we take two event occurrences
e, e’ on the same lifeline then e<e’ or e’<e. But if the lifeline of P contains a coregion
area then the order of event occurrences on this part is insignificant.
- S = {sk : O Σ*, k∈ℵ }

= {sk : P w / ∀n≤|w|, ∀m≤n : (w(n) , w(m)) ∉ <Σ }
- s0(P) = ε.
- T = {(si,e,sj) / sj(P) = si(P).e ∧ e∈∑}

Thus each transition yields a new trace onto the target node by adding its labeling

event occurrence to the previous trace recorded in the source node of the transition.
In the following example (fig.3), we use notational shorthand called “coregion

area” for combined fragments where the order of events occurrences on the lifeline is
insignificant.

 Fig.3. The graph related to a life-line of one participant (s6≈s7. s8≈s9).

e1 = m1?, e2 = m2!, e3=m3?, e4 = m4?, e5=m5!

S0 =
<ε>

S2 =
<e1>

S3 =
<e1e2>

S4 =
<e1e2e3>

S5 =
<e1e2e4>

S6 =
 <e1e2e3e4>

S7 =
 <e1e2e4e3>

S8 =
 <e1e2e3e4e5>

S9 =
 <e1e2e4e3e5>

e1

e2 e3

e4

e4

e3

e5

e5

A

e1
e2

e3
e4

Coregion

 e5

m1
m2

m3

m4

m5

4.2 Basic Interaction Fragment

Recall that a basic interaction fragment is a piece of an interaction which involves
many participants without using any interaction operator.

Let DS be a basic interaction between two participants P1 and P2. Herein
O1∩O2=∅. The graph related to DS is obtained by a parallel merge of the graphs
relating to the participants lifelines with respect to the partial order between send and
receive events.

|[DS]| = |[P1]| ⊗Prior |[P2]| where :
Prior = {(e,e’)∈(Σ1xΣ2)∪(Σ2xΣ1) / ∃ message m : e=send(m) ∧ e’=receive(m) }

4.3 Choice Operator ALT

Let DS be an interaction fragment combined from two interaction fragments DS1 and
DS2 by means of the choice operator ALT. This operator indicates that the resulting
fragment represent a choice of behavior. At most one the operands will be chosen.

Formally, |[DS1 ALT DS2]|= |[DS1]| ⊕ |[DS2]| (see fig.5)

Fig.4. the graph related to an interaction fragment with two participants.

A

a1
a2

a3

a4

 a5

B

b1

b2

b3

S0 =
<ε,ε>

S1 =
<a1,ε>

S2 =
 <a1a2, ε >

a1

a2

S4 =
 <a1a2, b1>

S3 =
 <a1a2a3, ε>

S5 =
 <a1a2a3, b1>

a3 b1

b1

a3
S7 =

 <a1a2a3, b1b2> b2

S9 =
 <a1a2a3, b1b2b3>

b3

a5

S6 =
 <a1a2a3a5, b1>

b2

S8 =
 <a1a2a3a5, b1b2>

a5

S10 =
 <a1a2a3a5, b1b2b3>

b3

a5

S12 =
 <a1a2a3a5a4, b1b2b3>

a4

a5

a4

S13 =
 <a1a2a3a4a5, b1b2b3>

S11 =
 <a1a2a3a4, b1b2b3>

4.4 Operator BREAK

Even though BREAK is a unary operator which operand is a nested fragment in an
enclosing interaction fragment, this operator can reduce to an interaction operation
ALT between the nested fragment and the remainder of the enclosing interaction
fragment.

4.5 Operator OPT

Let DS’ be a new interaction fragment obtained by applying the operator OPT on
another interaction fragment DS. The operator OPT designates that the resulting
fragment represents a choice of behavior where either the sole operand happens or
nothing happens. Formally, this means:

|[DS’]|=|[OPT(DS)]| = |[DS ALT DS∅]| = |[DS]| ⊕ |[DS∅]|

The empty interaction fragment DS∅ is mapped into an empty graph as follows:

 |[DS∅]| = <O,∅,∅,{s0}, s0, ∅> where O is the same collection of participants in
DS and s0: O {ε} associates to each participant in O an empty sequence of events.

4.6 Operator PAR

Let DS be interaction fragment combined from two interaction fragments DS1 and
DS2 by means of the parallel operator PAR. We realize here an interleaving between
all sequences occurring in diagrams (fig.6) without adding further orderings.

|[DS1 PAR DS2]|= |[DS1]| ⊗Prior |[DS2]| where Prior = ∅.

G1 G2

S0

S0
2 S0

1

τ[Cond] τ[else]

Fig.5. the graph related to an interaction fragment with ALT operator.

A B

alt
Cond

else

C

4.7 Operator of Strict Sequencing

Let DS be an interaction fragment combined from two interaction fragments DS1 and
DS2 by means of the strict sequencing operator SEQs.

Similarly to sequential composition in process algebra, the semantics of strict
sequencing defines a strict ordering of the operands on the first level. So the former
operand should first be carried out entirely. After that only the second one is
executed. Therefore all events occurrences of the first interaction fragment are
granted more priority over those of the second one.

|[DS1 SEQs DS2]|= |[DS1]| ⊗Prior |[DS2]| where Prior = Σ1 x Σ2.
Herein we carry out concatenations between paths belonging respectively to the

two diagrams DS1 and DS2 such that events occurrences from the first diagram always
occur before those of the second diagram.

4.8 Operator of Weak Sequencing

Let DS be an interaction fragment combined from two interaction fragments DS1 and
DS2 by means of the weak sequencing operator SEQw.
The weak sequencing expresses three properties [8]:
- The ordering of events occurrences within each of the operands are maintained in

the result.
- Occurrence specifications on different lifelines from different operands may come in

any order.
- Occurrence specifications on the same lifeline from different operands are ordered

such that an event occurrence of the 1st operand comes before that of the 2nd one.

Fig.6. the graph related to an interaction fragment with PAR operator.

A

a1

a2

a3

B

b1

b2

b3

par

a1

b1 a1

a2

b3

a3

a2 b2

b1 b2 a2

b3

a3

b2

b3

a3

b2

b1

b3

a3

b2

a1

b1

b1

b3

a3b1

b2

b1

b3

a3

b1

b3

a3

a3

b3

a3

a3

b1

b1

Hence the weak sequencing reduces to a parallel merge between events
occurrences on different lifelines but restricted by strict sequencings among events
occurrences belonging to same lifelines (thanks to Prior set of added precedence
relations). Formally, |[DS1 SEQw DS2]|= |[DS1]| ⊗Prior |[DS2]|

 where Prior={(e,e’)∈Σ1xΣ2 / e,e’ belong both to the same lifeline(o)}.

4.9 Operator LOOP

Let DS be a combined fragment from an interaction fragment DS1 by means of the
loop operator LOOP parameterized by a guard G given as un integer ∈{min ..max}.
The loop operator would be repeated a given number of times as long as the guard is
fulfilled. |[LOOP(G, DS)]| = (|[(DS SEQs LOOP(G-1, DS)]|

However this solution does not pay attention when iterating to the evaluation event
of the loop guard. So we have to add τ-transitions to record this internal choice.

|[LOOP(G, DS)]| = (|[(DS SEQs DSτ) SEQs LOOP(G-1, DS)]|
The graph of τ-interaction fragment DSτ is: |[DSτ]|=<O,{τ},∅,{s0,s1}, s0, {s0|--τ---s1}>

When the number of iterations is undefined (max = ∞), the correct solution consists
in using the star operation on traces with adorning loop transitions with τ which
models guard evaluation (see fig. 2). So the related graph should be.

|[LOOP(G,DS)]| = STAR (|[DS]|)

Remark2. we prefer use strict sequencing rather than weak one to avoid a pathological
case of divergence in loop combination when using asynchronous communication

Remark3. All above rules can be used to handle the operator NEG in order to build
the graph containing invalid traces of events with recording all branching choices.

5 Extraction of timing information

The sequence diagram in figure 7 shows how time and timing notations may be
applied to describe time observation and timing constraints [8]. The “User” sends a
message “Code” and its duration is measured. The “ACSystem” will send two
messages back to the “User”. “CardOut” is constrained to last between 0 and 13 time
units. Furthermore the interval between sending of Code and the reception of “OK” is
constrained to last between d and 3*d where d is the measured duration of the “Code”
signal. We also notice the observation of the time point t at the sending of “OK” and
how this is used to constrain the time point of the reception of “CardOut”.

Our approach consists in extracting time formulas over logical clocks from the
time annotations in sequence diagrams. Then we adorn related nodes and transitions
in our graph by these timing conditions in a similar way to timed automata [1].

Definition 4 (timing constraint). Let H be a finite set of clocks ranging over ℜ>0
(set of non negative real numbers). The set Ψ(H) of timing constraints on H is defined
by the following syntax: ψ ::= true | x 〈〈 c | x - y 〈〈 c | not ψ | ψ∧ψ

where x, y ∈ H, c ∈ ℜ (Integers) and 〈〈 ∈{<, ≤}.

Other assertions such as, x>3, 2≤x<y+5, ψ∨ψ’ can be defined as abbreviations.

5.1 Enhancing graphs with timing constrains

We add two mappings δ1, δ2 as follows:
δ1 : S → Ψ(H)
δ2 : T 2H,

The first mapping δ1 assigns to each node a condition called activity condition

which may be true. The second mapping δ2 associates with each transition a set of
clocks initializations which may be empty.

The behavior of the new timed graph becomes as follows:
The control could stay in a node si (Fig.8) while the constraint δ1(s) is fulfilled but

once δ1(s) becomes false we should leave si by execution of an instantaneous event
occurrence e (an event occurs with no duration [8]). It’s obvious that the control could
stay indefinitely in sj (Fig.8) if its activity condition is true.

When a transition t occurs, all clocks (hi ∈ δ2(t)) are reset to zero. So these clocks
start measuring time progress since this point but may be used later at different
instants.

5.2 Extracting time constrains from sequence diagrams

Time observations, timing constraints are related to points on the lifelines of the
sequence diagram. These points are the instances at which send or receive events
occur. Likewise, duration observations or constraints are related to messages, each
one of them is related to two events on the same lifeline or on two different lifelines.

The main idea of our approach to handling time constraint is to generate a logical
clock “h” at any related time observation point “t”. Any outgoing arc from this point

Si Sj
h1<h2+5

e, h3 :=0
true

Fig.8. Timed graphs.

Fig.7. Sequence Diagram with timing concepts.

:User :ACSystem

t = now
OK

{d..3*d}

CardOut {0..13}

code d=duration

{t..t+3}

Sd UserAccepted

Time observation

Duration observation

Time constraint

Duration
constraint

Duration
constraint

a1

a2

a3

b1

b2

b3

will be adorned with initialization of the clock h making it possible to count time
progress from this starting point.

For a time constraint of the form “t+a...t+b”, we search out in our graph the set of
nodes of which outgoing transitions are labeled with the event related to this
constraint. Every such a node should receive a timing constraint of the form a≤h≤b.

Algorithm Extract_time & Duration_constraints

Input SD : Sequence Diagram; G : Graph
Output G’ : a timed graph.

H := ∅;
For each s∈S do δ1(s) = true;

For each time observation “t” at an event occurrence e
Do {

Generate a new clock h; H := H ∪ {h};
// h measures time progress since the observation point
Find out the set A of transitions labeled with e;
For each t∈A do δ2(t) = δ2(t) ∪(h,0);

For each time constraint c of the form {a...b} on event
occurrence e’;
Do {

Find out the set N of nodes which outgoing transi-
tions are labeled with e’;
For each s∈N do δ1(s) = δ1(s) ∧ h≥a ∧ h ≤b;

}
}

Likewise, for handling duration constraint, we generate two logical clocks; “h1” at

start point and “h2” at final point related to duration observation “d”. Any outgoing
arc from these points will be tagged with initializations of related clocks so that the
difference between their values (h1-h2) gives later the duration between the two
events.

For any duration constraint of the form “a(d)..b(d)” between two events e and e’,
we add in a similar way a clock h3 related to the first event e for counting the time
progress since this first point. Next we search out in our graph the set of nodes of
which outgoing transitions are labeled with the second event e’. Every such a node
should then receive a timing constraint of the form a(h1-h2) ≤ h3 ≤ b(h1-h2).

For each duration observation d on a message m
Do {

Let e be the event occurrence related to sending (m);
Let e’ be the event occurrence related to receiving (m);
Generate two new clocks h1 and h2; H := H ∪ {h1, h2};
// h1 starts at the sending moment of m.
Search out the set A of transitions labeled with e;
For each t∈A do δ2(t) = δ2(t) ∪(h1,0) ;
// h2 starts at the receiving moment of m.
Find out the set B of transitions labeled with e’;
For each t∈A do δ2(t) = δ2(t) ∪(h2,0);

For each duration constraint c of the form {a(d)...b(d)}
between two events (e”,e”’) or on a message m’
Do {

Let e” be the first event occurrence or the sending
event of m’;
Let e”’ be the second event occurrence or the re-
ceiving event of m’;
Generate a new clock h3; H := H ∪ {h3};
// h3 measures time since the occurrence of e”
Find out the set A of transitions labeled with e”;
For each t∈A do δ2(t) = δ2(t) ∪(h3,0) ;
Find out the set N of nodes which outgoing transi-
tions are labeled with e”’
For each s∈N do δ1(s)=δ1(s)∧ h3≥a(h1-h2)∧ h3≤b(h1-h2);

}
}

For each duration constraint c of the form {a...b} between
two events occurrences (e,e’) or on a message m
Do {

Let e be the first event occurrence or the sending event
of m;
Let e’ be the second event occurrence or the receiving
event of m;
Generate a new clock h; H := H ∪ {h};
Find out the set A of transitions labeled with e;
For each t∈A do δ2(t) = δ2(t) ∪(h,0) ;
Find out the set N of nodes which outgoing transitions
are labeled with e’
For each s∈N do δ1(s) = δ1(s) ∧ h≥a ∧ h ≤b;

}
At last we notice that the above approach can be also extended in straight way to

handle other possible cases of time constraints.

The timed graph related to the diagram of fig.7 is the following:

(ε,ε)
(a1,ε) (a1,b1) (a1,b1b2)

(a1a2, b1b2)

(a1,b1b2b3)

(a1a2,b1b2b3)

a1 b1 b2

a2

b3

a2

b3
(a1a2a3,b1b2b3)

a3

h1=0, h2=0
h3=0 h4=0

h2-h3≤ h1≤3*(h2-h3)

h5=0

h2-h3≤ h1≤3*(h2-h3)

0≤ h4≤3 ∧ 0≤ h5≤13

h5=0

Fig.9. the timed graph related to the sequence diagram depicted by figure 7.

6 Related Work

Because of the widespread use of interaction diagrams in complex systems, many
efforts have been made to give them formal meanings in order to allow systematic
tool support during design, implementation and validation phases.

Besides the textual semantics given in UML specification document [8], many
approaches [4], [10] present formal semantics of sequence diagrams (SD) where the
runs are widely defined in terms of pairs of valid and invalid traces and do not record
information about choice opportunities and coordination actions. Hence contrary to
our approach, these linear time semantics are not enough faithful to allow complete
consistencies checking over UML dynamic diagrams particularly in concurrent
systems. Moreover, timing constraints are not handled within these models.

On the other hand side, some papers attempt to synthesize high level diagrams
(StateCharts [12] [3], Petri nets [2]) from SD or MSC. However in our opinion as are
assembly languages for high level programming ones, the sequence diagrams are less
structured description languages in spite of the recent improvements. Furthermore the
built high level models seem too unfolded or flattened and their high level syntactic
constructs are not suitably used and may generate some inconsistencies with regards
to the original sequence diagrams [12]. In this later work, the authors try to retrieve
state diagrams of objects involved in interactions described by means of relatively
simple sequence diagrams. The approach consists in deriving flat automata of some
object from its lifelines in all interaction fragments and then combines them by means
of simple interaction operators (choice, strict sequencing and loop). The other
operators are discarded as the parallel operator so that the resulting automaton is flat
and unfolded (without orthogonality) and may generate some irregular behaviors
because of the removal of coordination information when extracting partial views.

An interesting work [3] considers good and bad interactions of reactive systems as
safety and liveness properties that are described in terms of Büchi automata allowing
refinement. SD traces become only prefixes of accepted infinite sequences and the
various combinations between automata are not specified with regard to SD operators.

Another paper [7] uses process algebra terms to characterize the traces of scenario
based specification that are defined by a causal ordering. It proves a canonical
solution for correcting race conditions within the system behavior by weakening the
causal relationship.

Note that many papers were proposed to overcome shortcomings of UML 1.x
specification that relies on the ordering of messages instead of related actions. Hence
authors of [2] and [9] proposed a formal semantics to the interaction diagrams of
UML 1.x by the generation of an order relation that schedules the message emissions
and receptions and can be automatically translated into a flattened Petri net or
automata. Similarly, [6] presented a methodology to convert UML 1.x SD to a
context-free grammar and applied parsing theory to locate non-determinism behavior.
Additional information is discussed to attain deterministic behaviors for embedded
systems modeling. Also, the approach of [11] proposes a formal semantics of UML
1.x sequence diagrams in terms of ordered hierarchical tree structure that represents
the hierarchical relations among the messages (method invocations).

 However, the new specification of UML 2.0 [8] adopts an ordering over events
occurrences corresponding to sending and receiving of messages. Also high level

features of MSC [5] have been included in UML interactions allowing description of
more complex behaviors. Moreover all the above works do not pay attention to time
annotations on sequence diagrams.

7 Conclusion

In this paper, we have given a formal semantics for UML 2 sequence diagrams by
using a faithfully branching time structure rather than traces. This model (a lattice-like
graph) records both traces of all interaction components together with branching
bifurcations and can be directly unfolded into a transition system capturing the
intended behavior. The graphs related to interaction fragments are equipped with few
generalized algebraic operations which help us define the formal semantics of all
interaction operations in compositional manner. Moreover, we have proposed a
method to extract time properties of UML interactions into time constraints we add to
our graph in order to achieve timeliness and performance analysis.

Hence resulting graphs modeling valid and invalid behaviors would be compared
to the state diagram to achieve semantically and temporal consistencies checking.

8 References

1. R. Alur, D. Dill. A theory of timed automata. Theorical Computer Science. 126 (1994)
183-235.

2. J. Cardoso, C. Sibertin-Blanc. An operational semantics for UML interaction: sequencing
of actions and local control. European Journal of Automatised Systems. APII-JESA 36
P.1015-1028 (ISBN 2-7462-0573-4), Hermés-Lavoisier 2002.

3. R. Grosu and S.A. Smolka. Safety-Liveness Semantics for UML 2.0 sequence diagrams. In
Proc. of ACSD’05, the 5th International Conference on Application of Concurrency to
System Design, Saint-Malo, France. June 2005.

4. ∅. Haugen, K.E. Husa, R.K. Runde, K. St∅len. STAIRES towards formal design with
sequence diagrams. Software & System Modeling, online first: 1-13, 2005.

5. ITU-T. Z.120. Message sequence charts (MSC), November 1999.
6. E. Latronico and P. Koopman, Representing Embeded System Sequence Diagrams as a

Formal Language. In Proc. of UML’2001 Conference, Toronto Ontario, 3-5 Oct.2001.
7. B. Mitchell. Inherent Causal Orderings of Partial Order Scenarios. In proc. of International

Colloquium on Theorical Aspects of Computing, Guiyang, China, (LNCS 3407) PP 114-
129. September 2004.

8. OMG. Unified Modeling Language: Superstructure version 2.0, Final Adopted
Specification. Object Management Group, 2004 Available from http:// www.omg.org.

9. C. Sibertin-Blanc, O. Tahir and J. Cardoso. Interpretation of UML sequence diagrams as
causality flows. In Proc. of ISSADS’2005, (LNCS 3563), pp. 126-140. 2005.

10. H. Störrle. Trace semantics of interactions in UML 2 .0. Technical Report TR 0403,
University of Munich, Germany. 09/2004.

11. Xiaosham Li , Zhiming-Liu and He Jifeng. A formal semantics of UML sequence Diagram.
In Proc. of Australian Software Engineering Conference 2004, Australia. April 2004.

12. T. Ziadi, L. Hélouët, J-M. Jézéquel. Revisiting statechart synthesis with an Algebraic
Approach. In proc. of International conference on Software Engineering (ICSE’04). 2004.

