Modelling of Complex Software Systems:
a Reasoned Overview *

D. Krob

Laboratoire d’Informatique de I’Ecole Polytechnique (LIX)
CNRS & Ecole Polytechnique **

Abstract. This paper is devoted to the presentation of the key concepts on which a mathematical
theory of complex (industrial) systems can be based. We especially show how this formal framework
can capture the realness of modern information technologies. We also present some new modelling
problems that are naturally emerging in the specific context of complex software systems.

Keywords — Complex system; Information system; Integrated system; Modelling; Software system.

This paper is dedicated to the memory of M.P. Schiitzenberger

1 Introduction

In the modern world, complex industrial systems are just everywhere even if they are so familiar
for us that we usually forgot their underlying technological complexity. Transportation systems
(such as airplanes, cars or trains), industrial equipments (such as micro-electronic or telecom-
munication components) and information systems (such as commercial, production, financial or
logistical software systems) are for instance good examples of complex industrial systems that
we are using or dealing with in the everyday life.

At a superficial level, “complex” refers here to the fact that the design and the engineering of
these industrial systems are incredibly complicated technical and managerial operations. Thou-
sands of specialized engineers, dozens of different scientific domains and hundreds of millions of
euros can indeed be involved in the construction of such systems. In the automobile industry,
a new car project lasts for instance typically 4 years, requires a total human working effort of
more than 1.500 years, involves 50 different technical fields and costs around 1 billion of euros !
In the context of software systems, important projects have also the same kind of complexity.
Recently the unification of the information systems of two important French financial companies
that merged, needed for example 6 months of preliminary studies followed by 2 years of work
for a team of 1.000 computer specialists, in order to rebuild and to mix consistently more than
250 different business applications, leading to a total cost of around 500 millions euros.

At a deeper level, complex industrial systems are characterized by the fact that they are
resulting of a complex integration process (cf. [38,39] for more details). This means that such
systems are obtained by integrating in a coherent way — that is to say assembling through well
defined interfaces — altogether a tremendously huge number of heterogeneous sub-systems and
technologies, that belong in practice to the three following main categories:

1. Physical systems: these types of systems are manipulating and transforming physical quanti-
ties (energy, momentum, etc.). The hardware components of transportation, micro-electronic
or telecommunication systems are for instance typical physical systems.

* This paper was supported by the Ecole Polytechnique and Thales’ chair ”Engineering of complex systems”.
** Address: Ecole Polytechnique — LIX — 91128 Palaiseau Cedex — France — email: dk@lix.polytechnique.fr —
Web site: http://www.lix.polytechnique.fr/~ dk

2. Software systems: these systems are characterized by the fact that they are managing and
transforming data. Operating systems, compilers, databases, Web applications and Business
Intelligence (BI) systems are classical examples of software systems.

3. Human systems: human organizations ' can be considered as systems as soon as their inter-

nal processes have reached a certain degree of normalization. They will then be identified to
the business processes that are structuring them.

Note at this point that the difficulty of integrating coherently the different parts of a complex
industrial system reflects of course in the difficulty of integrating coherently the heterogeneous
formal and informal models — going from partial differential equations and logical specifications
to business process modelling (BPM) methods (cf. [11]) — that one must handle in order to deal
globally with such systems. There is in particular still no real formal general models that can be
used for dealing with complex industrial systems from a global point of view. This lack can also
be seen in the fact that there are no unified tools for managing all the aspects of the realization
cycle of an industrial complex system (which goes from the analysis of needs and the specification
phase up to the final integration, verification, validation and qualification processes).

More generally, one must clearly face a huge lack of theoretical tools that may help to clarify
the question of complexity in practice. Very few research works are for instance studying directly
“heterogeneous” systems in their whole, though a rather important research effort has been done
during the last decades to understand better several important families of homogeneous systems
(such as Hamiltonian systems, dynamical systems, embedded systems, distributed systems, busi-
ness organizations, etc.) which are involved within larger industrial systems. The key point is
here to understand that the problematics are absolutely not the same if one studies a complex
industrial system at local levels (the only ones that the classical approaches are addressing) and
at a global level. We however believe that the existing formal “local” theoretical frameworks can
and should be redeployed to analyze complex industrial system at a holistic level.

An interesting fact that militates in favor of the possibility of progressing in these directions
is the convergence, that can be currently observed in the industry, between the approaches used
for managing the engineering phases 2 of physical and of software systems. This convergence
can in particular be seen at a methodological level since system engineering (see [47,55]) and
software engineering (see [48,51]) are more or more expressing their methods in the same way,
but also at the level of the architectural principles used in physical and software contexts (see
[33]) and of the quasi-formal specifying and modelling tools that are now taking into account
both physical and software frameworks (cf. for instance [8, 53] for the description of SysML that
extends the classical Unified Modelling Language (UML) — [46] — for general systems).

The purpose of this short paper is to make a reasoned overview on what could be a general
theory of systems. After some preliminaries, we therefore present in Section 3 a tentative formal
framework, for approaching in a mathematical way the notion of “complex industrial system”,
that tries to capture the realness both of these systems and of their engineering design processes
(which are very difficult to separate in practice). Section 4 is then devoted both to the analysis of
the modern software industrial ecosystem using the analysis grid provided by our approach and
to the illustration of new types of research problems — of practical interest — that are naturally
emerging from this new point of view on complex software systems.

1 One must obligatory take into account these non technical systems in the modelling of a global system as soon
as the underlying human organizations are strongly interacting with its physical and/or software components.
This situation occurs for instance naturally in the context of complex software systems (see Section 4).

2 Le. design, architecture, integration and qualification processes.

2 Preliminaries

As in the few previous attempts to discuss globally of systems (see for instance [14, 50, 59]), these
objects will be defined here as mechanisms that are able to receive, transform and emit physical
and/or informational quantities among time. This explains why we will first introduce two key
definitions on which are respectively based time and quantity modelling in our approach.

2.1 Time scales

A time scale T refers to any mode of modelling all the possible moments of time starting from
some initial moment ¢ty € R. Time scales can be of two different kinds, i.e. continuous or discrete.
The continuous time scales are of the form T = ¢y +R™. One has more various (regular) discrete
time scales which are of the form T = ty + N7 where 7 € R denotes their time step. One can
consider as well irreqular discrete time scales that are of the form T = {tg+7m+---+7,, n € N}
where (7;);en is a given family of strictly positive real numbers. Note finally that the above
time scales were always deterministic, but that they could also be probabilistic if the parameters
involved in their definitions are random variables with given probabilistic laws.

2.2 Quantity spaces

A quantity space refers to any mode of modelling either physical quantities (like energy, tempera-
ture, speed, position, etc.) or informational quantities (that is to say data in the usual computer
science meaning). There are therefore two types of quantity spaces, i.e. continuous and discrete
ones. On one hand, a continuous quantity space can be any complete topological space such
as R™ or C™. On the other hand, a discrete quantity space is either any finite set or a discrete
infinite set such as N, Z™ or A* (where A stands for any finite alphabet). Note finally that a
quantity space Q must also always distinguish a special element — called the missing quantity —
that represents the absence of quantity (which is typically 0 is @ is a subset of C).

3 Complex Systems

3.1 Abstract systems

In order to move towards the formal modelling of complex industrial systems, let us introduce a
first notion of system, identified here to an input/output behavior.

Definition 1. An abstract system S is defined as a 5-uple S = (I, 0, T;, T,, F) where

— I and O are two quantity spaces respectively called the input and output spaces of S,
— T; and T, are two time scales, respectively called the input and output time scales of S,

— F is a function from 1% into Q% which is called the transfer function of S.

Observe that the discrete or continuous structure of the input and output spaces and of the input
and output time scales defines naturally different kinds of abstract systems in the meaning of
Definition 1. To illustrate and understand better this last definition, let us now study several
examples of such systems that are distinguished according to this new criterium.

Example 1. — Discrete systems — An abstract system will said to be discrete when its input and
output time scales are discrete. Discrete abstract systems can for instance easily be described
by means of finite automaton modelling approaches which capture quite well the event reacting

dimension of a real system. These types of formalisms all basically rely on the use of rational
transducers — or equivalently Mealy machines — (cf. [3,37]) for expressing the transfer function
of a discrete system. Figure 1 shows a simple example of this kind of formalism for modelling
the effect of the switch button of a lamp on its lighting performance. The input space of the
abstract system that models the lamp is here I = {p, 7} (where p and 7 respectively model the
fact that the switch button is released or pressed — note that p stands therefore for the empty
quantity of I) when its output space is @ = {0,e} C RT (an output real value represents the
amount of energy produced by the lamp). The corresponding input and output time scales can
finally here be any discrete regular time scales that are relevant with respect to the modelling
purposes (they are both re-normalized to N in our example for the sake of simplicity). Note in
particular that the discrete structure of the output time scale is not a problem as soon as we are
only interested by a computer model for simulation purposes (one just has to take a sufficiently
small output time step). We will revisit this example in the sequel, especially to see how to get
more realistic models with respect to the lamp real physical behavior (see Examples 2 and 3).

Fig. 1. Modelling the transfer function of a lamp by a rational transducer.

Petri nets (cf. [42,45]), (min—max, +) systems (cf. [4]), Kahn networks (cf. [27]), etc. are other
examples — among numerous others — of basic automaton-oriented formalisms that can be used
(with slight modifications) for describing discrete abstract systems in our meaning.

There is also a purely logical approach for representing discrete abstract systems. The core
modelling language in this direction is probably Lustre (cf. [22, 13]). This programming language
is indeed structurally devoted to express transformations of typed infinite sequences. The Lustre
program that models the (simple) behavior of our lamp is for instance given below.

node Lamp(X:bool) returns (Y:real);
var E,Z:real;

let

E =e -> pre E;

Z =0 -> pre Z;

Y = if X then E else Z;
tel

Fig. 2. Modelling the transfer function of a lamp by a Lustre program.

In this example, X stands for the infinite sequence of boolean entries a lamp receives (false and
true modelling respectively the fact that the switch button of the lamp is released or pressed)
when Y represents the infinite sequence of the energy levels that can take the lamp (either 0
or €). The F and the Z variables are then just used here for defining the constant infinite real
sequences E = (e,e,e,...) and Z = (0,0,0,...). The last line of the program expresses finally

4

that the n-th entry of Y is equal to the n-th entry of E (resp. Z), i.e. to e (resp. 0), when the
n-th entry of X is true (resp. false), i.e. when the button switch is pressed (resp. released), which
models correctly the expected behavior of the lamp (initially switched off) we considered.

Other reactive languages such as Signal (see [32]) or Lucid (see [12]) are using too the same
global flow manipulating approach. Note that one can of course also take any usual formal speci-
fication language such as B (cf. [1,57]), TLA+ (cf. [31]) or Z (cf. [52]), any modelling tool coming
from the model checking approach (cf. [6,49]) or even any classical programming language, to
describe the step-by-step behavior of an abstract system by a “logical” formalism.

Example 2. Continuous systems — An abstract system will said to be continuous when its input
and output time scales are continuous. Since continuous systems occur naturally in physical
contexts, all the various continuous models coming from control theory, physics, signal proces-
sing, etc. can therefore be used to represent continuous systems (see [14,50] for more details).
These models rely more or less all on the use of (partial) differential equations which can be seen
as the core modelling tool in such a situation. Going back again to the lamp system considered
in Example 1, one can easily see that the lamp behavior can now for instance be modelled by
a continuous signal y(t) — giving the value of the lamp energy at each moment of time ¢ — that
respects an ordinary differential equation of the following form:

y(t)=exa(t)—kxyt), y0)=0, (1)

where x(t) stands for a continuous {0, 1}-signal that represents the behavior of the button switch
— z(t) being equal to 0 (resp. 1) at time ¢ iff the button switch is off (resp. on) at this moment
of time — and where k > 0 is a real parameter which models the speed of reactivity of the lamp
light to the opening/closing of the button switch. Figure 3 shows then the result (on the right
side) of such a modelling (obtained here with e = 2 and k = 1) for a given {0, 1}-input signal
(on the left side). Note that this model shows clearly the continuous initial or final evolutions of
the energy of the lamp when the button is switched on or off (which are of course not immediate
in reality as it was expressed in the discrete models considered in Example 1).

Fig. 3. Modelling the physical behavior of a lamp by a differential equation.

Mathlab and Simulink are the typical software tools that can be used for designing continuous
systems (see [36]). Observe also that specific frameworks exist for dealing with several important
families of continuous systems such as dynamical systems (cf. respectively [28] and [18] for the
physical and the control theory point of views), Hamiltonian systems (cf. [40]), etc.

Example 8. Hybrid systems — An abstract system will said to be hybrid when one of its input
or output time scales is discrete when the other one is continuous. It is interesting to know that

two types of approaches exist for studying hybrid systems, depending respectively whether one
stresses on the discrete (see for instance [2,24]) or the continuous point of view (see for instance
[58]) with respect to such systems. However hybrid systems will of course always be represented
by hybrid formalisms that mix discrete and continuous frameworks. Hybrid automata (see [24])
are for instance classical models for representing abstract hybrid systems — in our meaning —
with a discrete input time scale and a continuous output time scale (but not for the converse
situation, which shows that our hybrid systems must not be mized up with these last systems).
Figure 4 shows an hybrid automaton that models the physical behavior of the lamp which was
already considered in the two previous examples. Three modes of the lamp are modelled here:
the “Init” mode (the switch button was never touched), the “On” mode (the lamp was switched
on at least once) and the “Off” mode (the lamp was switched off at least once). The states
corresponding to these three different modes contain then the three generic evolution modes —
modelled by ordinary differential equations (see Figure 4) — of the continuous signal y(¢) that
represents the output lamp energy at each moment of time ¢, taking here again the notations
of Example 2. On the other hand, the inputs are here just sequences of m and p (that model
respectively the fact that the switch button of the lamp is either pressed or released).

P P P
\ 7: (\r‘r \) (r\ B
PG \ ¥ ¥
/ X \\\ ,,,./’/ \\\\ P </,/ — \\
/0 Init om0\ i 7 Off
e R o \
| y®O=0 " y®=e-ky® /" | yo=-kyo |
o t20 \ t>0 S— t>0 /
- . “

— ~—

L

Fig. 4. Modelling the physical behavior of a lamp by an hybrid automaton.

Other families of hybrid formalisms — in our meaning — can be typically found in signal processing
(see [43]) for modelling demodulation or sampling (transformation of a continuous signal into a
discrete one) and modulation (transformation of discrete signal into a continuous one). These
last formalisms are radically different from the previous one since they are all based on complex
analysis (i.e. z or Laplace transforms) or on distribution theory (see again [43]).

Ezample 4. Non functional properties are functional ... — Let us now focus on how to express
some engineering oriented system aspects. The key point we would like to stress is the fact that
the classical non functional properties of a real system — that is to say response times, costs,
delays of realization, availability, safety, quality of service, etc. — can easily be modelled by trans-
fer functions in our framework. A non functional property N of a system can indeed typically
always be measured either by some suited numerical indicator fy(t) or by an adapted boolean
predicate Py (t) (see for instance [60]), depending on internal parameters of the considered sys-
tem, that can be measured at each moment ¢ of the input time. Such non functional properties
can then be expressed in our framework by extending the output space of the underlying system
in order to send out the corresponding indicator or predicate values.

Note finally that the “real” systems that can be found in practice form only a “small” sub-
family of the abstract systems covered by Definition 1 (which was only given here in such a
generality for the sake of simplicity). One may found in [29,30] a formal definition of a “good”
global more restricted family of abstract systems that tries to capture the full realness of systems,
using a Turing machine type formalism mixed with non standard analysis (cf. [16]) for taking
into account the continuous and discrete dimensions of systems in the same framework.

3.2 Abstract integration

Up to now, we only focused on “simple” models for dealing with systems. Quite all these models
are however not really very well adapted for describing hierarchical systems, i.e. systems — in
our meaning — that are recursively defined as a coherent interfacing — i.e. an integration — of a
collection of sub-systems of different nature. Very surprisingly, while there is a large modelling
diversity for usual systems (as we saw in the previous subsection), it indeed appears that there are
only a few models that support homogeneous hierarchical design (the key difficulty being to be
able to take into account both quantities and temporal hierarchies) when the formal models that
support heterogeneous hierarchical design are even less (to our knowledge, the only framework
which handles this last situation is SysML — see [53] — which remains a rather informal modelling
approach). We will therefore devote this new subsection to introduce the key concepts on which
system integration rely. To this purpose, let us first define the notion of abstract multi-system
that extends slightly the notion of system introduced in the previous section.

Definition 2. An abstract (n,m)-system S is defined as a 5-uple S = (Z,0,7;,7,,F) where

— T = (Ig)g=1..n and O = (Oy)1=1...;m are two families of quantity spaces, whose direct products
are respectively called the input and output spaces of S,

- T, = (’]I‘f)kzlmn and T, = (TL)—1...m are two families of time scales, whose direct products
are respectively called the input and output time scales of S,

. . ok T L .
— F is a function from H I,* into H Q,° which is called the transfer function of S.
k=1 I=1

This last definition just expresses that a (n, m)-system — or equivalently a multi-system —
has several different typed and temporized input and output mechanisms (see Figure 5 for an
example of “hybrid” multi-system with a mix of discrete and continuous input and output time
scales). Note also that systems in the meaning of Definition 1 are now (1, 1)-multi-systems.

S
EEEEEE, = N BN
. y \ -
e/ N
B A 1
E b F
¥, S
P, N .
T HE— -
/'/
/
— [
(5,3)-system
Input time scales Output time scales
& quantity spaces & quantity spaces

Fig. 5. Schematic description of a (n, m)-system.

Multi-systems can easily be composed, using typed and temporized interaction channels, in a
way that reflects the realness of system integration. An interaction channel stands for a medium
between an output O and an input I of two multi-systems that can only transmit quantities of
a given quantity space, at a time rate associated with some fixed time scale and with a constant
temporal delay (for bringing a quantity from O to I). This leads us to the following definition.

Definition 3. An interaction channel is a triple C = (Q, T, T) where Q is a quantity space, T is
a time scale (of initial moment ty) and T € T — tg is a transmission delay.

7

Multi-system composition makes only sense in the context of interacting system networks,
another important notion that is defined below (see Figure 6 for a graphical vision).

Definition 4. An interacting system network N is a triple N' = (S, x,C) where
— S8 =(Si)i=1..N is a family of multi-systems,

— x : C9 — CT is a bijective mapping between a subset of the output indices of S into a
subset of the input indices of S 3,

_ oy . ‘ : : : 0
— C={(01°T5,7°), ce C”} is a family of interaction channels indexed by C®,

such that the k-th output and l-th input quantity spaces and times scales of S; and S; are always
equal — respectively to OI° and TS, — for every ¢ = (i, k) € C° and (j,1) = x(c) € C1.

The input and output indices of S that belong (resp. do not belong) to CT or to C© (with the
above notations) are called constrained (resp. free) input or output indices within S. Note also
that an interacting system network will said to be initialized if it is equipped with a initialization
map ¢ that associates with each constrained input index ¢ = (i, k) € C! of the underlying family
S a quantity ¢ = ¢(c) €]I}AC where H}; is the k-th input quantity space of the i-th system of S.

] =, >
| Ch— S2
vl | H—
a St g ~ N
(- N
\ Iz (ST
i} — S4 B B
s3 B g —tass ol |
[B .

" Interaction channels

Fig. 6. Example of an interacting system network.

Since we will be obliged for technical reasons to restrict composition to specific types of multi-
systems defined topologically, let us equip any flow space F, i.e. any set of the form F = IT where
I and T stand respectively for a quantity space and a time scale, with a sequential topology.
We will indeed say that a sequence (z;);>0 of flows of F = I, i.e. of elements of the form
z; = (z})ter € F, has a limit x = (2')1er in F iff for every t € T, z! is always equal to ' for i big
enough. A multi-system is then said to be continuous if its transfer function F satisfies

f(li{n x;) = lilm F(x;) , (2)

for any sequence (z;);>0 of input multi-flows that has a limit in the previous meaning (naturally
extended to products of flows). We can now introduce the notion of system composition, which
is a bit tedious to define properly, but that is easily graphically depicted (see again Figure 6).

Proposition 1. Let N = (S, x,C) be an interacting system network constructed over a family
S of continuous multi-systems which is equipped with an initialization map 1. One defines then
a new continuous multi-system S = (I1,0,T;,T,, F') — called the composition of S through the
interactions x x C with initialization ¢ — by setting:

3 (i,k) is an input (resp. output) index within S iff S; has an k-th input (resp. output) space.

— I and T; are respectively the families of all input quantity spaces and time scales that are
associated with free input indices within S (whose set will be denoted by F1),

— O and T, are respectively the families of all output quantity spaces and time scales that are
associated with free output indices within S (whose set will be denoted by F©),

— the function F associates with any possible input multi-flow x = (x¢).cpr an output multi-
flow y = (ye)eepo which is defined for each ¢ = (i,k) € FO by setting

Yo = FF(X -1301) (1) - - s X1 (N (0N0))

(N; denoting here the number of inputs of S;), where X = (Xy~1(¢).c)cectupr 18 the smallest 5
solution of the equational system with flow variables ® defined by setting

X(0,0),c = Tc for c € FI,

X;_l(c) . =uc) force CT and t € [to, to + 7°[N T}, ,

X)i*l(c),c = —FZ’k(XX_l(i,l),(i,l)v R ,XX—l(i,Ni)’(ini)))t_Tc force Cl and t >T1°€ T;c ,
where we put ¢ = (j,1) and x~1(c) = (i,k) in all these last relations.

Proof. The proof follows by using a classical argument of complete partial order theory (cf. [21]).
Note that our result can be also seen as an extension of a classical result of Kahn (see [27]). O

This proposition translates now immediately in the following definition which gives a formal
and precise meaning to the notion of system integration.

Definition 5. A (continuous) multi-system will said to be an integrated abstract multi-system
if it results of the composition of a series of other multi-systems.

Integration leads naturally to the fundamental design mechanism for systems which consists
in analyzing recursively any system as an interfacing of a series of sub-systems. This design
process is quite simple to understand (in software context, it just reduces to the usual top-down
design methodology), but rather difficult to realize in practice for complex heterogeneous systems
(the key problem being to be sure to interface sub-systems both consistently and without any
specification hole). The practical difficulty of integration reflects well in the fact that there is
probably no existing formal framework for dealing with integrated systems at the generality level
we tried to took here. As a consequence, one can also not really find any unique global design
formal tool for real systems. To be totally complete, one should however stress that there are at
least two interesting frameworks — presented in the two forthcoming examples — for helping the
working engineers in his integration tasks, but which have both serious modelling limitations as
soon as one arrives at a system level, and moreover quite deep semantical lacks.

Example 5. Continuous oriented formalisms — The most widely industrially used system design
tool is probably the Mathlab & Simulink environment (see [36]). In this approach, systems are
represented by “black boxes” whose transfer functions, inputs and outputs have to be explicitly
given by the user (see Figure 7 for the graphical representation of a car window system modelled

4 We extend here 7! to F by setting x"'(c) = (0,0) when c is a free input index within S.

5 In the meaning of the product of the (complete) partial orders that are defined on each flow space F = T by
setting f < g for two flows f and g of I iff the two following conditions are fulfilled: 1. f and g coincide up to
some moment ¢t € T; 2. f* is equal to the missing quantity of I for each moment v > ¢ in T.

® Where X, -1(, . lies in the flow space I3 T for every ¢ = (i,k) € FT UC’.

9

in this framework). The main problem of Mathlab & Simulink is however related to the fact that
there is no unambiguous and/or crystal clear semantics behind the manipulated diagrams. The
self loops in the graphical formalism provided by these tools does for instance not have a very
well defined interpretation in this framework, which may typically create causality problems at
the modelling level (i.e. lead to abstractly modelled systems whose past behavior depends on
their future one ... 7). The discrete formalism used by Mathlab & Simulink — i.e. Stateflow
which is just the commercial name of the implementation of the Statecharts framework (see the
next example) — is also semantically rather weak (one can find probably more than 20 different
formal semantics in the literature that were proposed for Statecharts). Altogether this shows that
Mathlab and Simulink, even if they are wonderful and efficient working tools for the engineer,
still suffer from really fundamental flaws from a formal point of view (which limits in particular
the possibility of automatically verifying and validating designs made in this formalism).

Fig. 7. A Matlab/Simulink ™ integrated system model ©.

Example 6. Discrete formalisms — The last model that we would like to discuss in this section
is Statecharts (see [23,35]). It is indeed probably the very first model — introduced in 1987 — that
allowed hierarchical design, one of the key idea of this formalism. In Statecharts, it is indeed
possible to deal with distributed hierarchical Mealy machines (see again Example 1) which allow
to model multi-flow production by integrating event oriented hierarchical mechanisms.

/'/ 4 . \\
0 AN
. 0 N
e « U | T |
s S 7y
. | oFF | OFF |
i A, / ¢ t=0 [t=5]
i ml i Tr»l [t=0] l T [t=5] .
OFF [. .
w0 [ON | [ON | | COUNT |
Global Reset o /
. p) { D)
Normal Lamp Mode \ [t<5]) | [=S]]e=thl
\ / \ J
R —— —)
\\\ Flashing Lamp Mode Counter) /

Fig. 8. The lamp revisited with Statechart.

The example of Figure 8 illustrates these key aspects of Statecharts. We modelled here a lamp
with two working modes: a normal one, where the usual lamp button switch — associated with

7 Note that we totally avoided this problem in the formalism we introduced above, due to the fact that our
interaction channels have always a response delay !

10

w1 — allows to switch on or off the lamp, and a flashing one, that one reachs or quits by pressing
on a special button — represented by mo. The lamp is also controlled by a global reset button
— modelled by mg — which allow to stop or activate all the functions of the lamp when pressing
on it. Note that from the point of view of this last button, the right state of the above figure is
therefore just the “ON” state which is hierarchically decomposed into two states, corresponding
to the two possible working modes for our lamp (in which one should continue to descend in
order to arrive to the finer level of design in our example), plus a concurrent state representing
a modulo 6 counter working totally independently from the other internal mechanisms, which
gives permanently its value to the flashing mode management state 8.

The problem of Statecharts is however its poor semantics with respect to distribution expres-
sivity: the precise nature of the interactions between the two automata separated by the dashed
line (which models concurrency) in Figure 8 is typically not totally clear. The Esterel language
(see [7] or [5] where one can find a good overview of all so-called synchronous languages) was
typically designed in order both to preserve the most interesting aspects of Statecharts’ approach
and to overcome its core flaws. For the sake of completeness, note finally that there are also other
formal discrete formalisms that allow hierarchical design (see [9] and again [35]).

3.3 System abstraction and simulation

Abstraction and simulation are two classical notions that can also be re-adapted to systems (we
take below all the flow notations of the previous section extended here to multi-flows).

Definition 6. A multi-system Sy with input multi-flow space Y, output multi-flow space F§ and

transfer function Fi is said to be an abstraction (resp. a simulation) of a multi-system Sy with

input multi-flow space T, output multi-flow space TS and transfer function Fo iff there exists

two injective functions o' and o such that the following diagram is commutative:

F1

. . F
F} - F§ F} 2

F3

oi o° (resp. i o°) (3)

F ~ F$ F} ~ ¢

Fa Fi

Hence & is an abstraction of Sy if these two systems have homomorphic functional behaviors,
the first one being however less detailed than the second one. On the same way, S; is a simulation
of &y if one can mimic all the functional behaviors of the second system by the first one.

Ezample 7. Assembling and high level programs — Let us fix a finite alphabet A and a discrete
time scale T. One can then identify any halting Turing machine M — i.e. any Turing machine
that eventually stop on all its entries — with entries in A with a discrete system Sjy; with A*
as input and output quantity space, T as input and output time scale and a transfer function
Fur defined as follows: 1. Fjy transforms any flow of the form F, = (z,1,1,...), into the flow
Fye=(1,1,...,Mz,1,1,...), where Mz stands for the value computed by M on z, produced
at the moment given by the number of elementary steps of M required to obtain it; 2. Fyy
transforms any input flow different from a flow of the form F) into the empty output flow.
Looking on programs in this way, one can then easily check that each high level program P is an
abstraction of some assembling program A (the one produced by the corresponding compiler)
and that such an assembling program A is then a simulation of the program P.

8 Which is not a very safe approach, as one may imagine, for obvious synchronization reasons ...

11

Example 8. Interfaces — The interface theory which was recently developed by de Alfaro and
Henziger (see for instance [17]) can easily be transferred into the system framework as presented
here (with of course again a number of slight reinterpretations). System interfaces provide then
new generic interesting examples of system abstractions in our meaning . In this context, note
that systems appear then as simulations of their interfaces.

Note finally that there are of course other less constrained abstraction notions, typically the
ones coming from static analysis (see [15]), which are also of interest in the system context.

3.4 Concrete systems

We are now in position to model formally the usual way a concrete system is designed.

Definition 7. A concrete system CS is a pair (FS,OS) of abstract integrated systems, the first
one (resp. the second one) being an abstraction (resp. a simulation) of the other one, which are
respectively called the functional behavior ® and the organic structure '° of CS.

This definition reflects the fact that the design of a real system .S follows usually two main
steps. The first one is a modelling step which defines the so-called functional architecture of S,
i.e. in other words the recursive integration structure of a high level modelling of S constructed
by following the point of view of the external systems (hardware, software, users, etc.) that are
interacting with S. When the functional architecture of S is fixed, one can then define its organic
architecture, i.e. the real internal structure of S, by respecting the requirements provided by the
functional architecture (which appears as an abstraction of the organic architecture).

In classical software engineering, the two architectural notions involved in Definition 7 can be
seen at different places. The pairs formed by a usual program and its machine or assembling code
or, at a higher level, by a software specification and its programmed implementation are typical
examples of concrete systems in our meaning. However the underlying conceptual separation
does only take really all its importance when one is dealing with systems whose both functional
and organic decompositions are complicated, which occurs typically when a system results from
an highly heterogeneous integration process. Note that this last property can in fact be seen as
an informal characterization of complex systems. Observe also finally that two totally different
kinds of complex systems in this meaning, that is to say embedded systems and information
systems, naturally arise in the software sphere (see below and Section 4.1).

Ezxample 9. Embedded system design — When one deals with embedded system design, one must
have an holistic approach that integrates in the same common framework the software, the hard-
ware, the physical and the control theory points of views and constraints involved within such
systems (see [25]). One therefore naturally divides the design in two separated, but completely in-
terconnected, main parts: the functional design that corresponds here to the global environment
and solution modelling where one will concentrate on the high level algorithmic and mathema-
tical problems, the organic design related then with the low level system implementation where
one must be sure to respect the physical and electronic constraints, the key difficulty being of
course to have a good correspondence between these two levels of representation.

Ezxample 10. Information system design — An information system can be seen as a global (enter-
prise) environment where software systems, hardware devices and human organizations interact

9 The functional behavior models the input Joutput behavior of S as it can observed by an external observer.
10 The organic structure models the intrinsic structure of the considered system.

12

in a coherent way (usually to fulfill a number of business missions). The complexity of these sys-
tems lead therefore classically to separate the corresponding design into two architectural levels:
on one hand, the functional architecture which is devoted to the description of the user services,
the business processes, the user and business data, the system environment, etc. that have to
be managed by the information system; on the other hand, the associated organic architecture
which is the concrete organization of the software applications, servers, databases, middleware,
communication networks, etc. whose interactions will result in a working information system.

4 Complex Software Systems

4.1 Hierarchies of complex software systems

Integration and abstraction mechanisms allow us to construct naturally a hierarchy of complexity
— taken here in an informal way — on software systems which is organized around two axes, i.e.
integration and abstraction complexity (see Figure 9). The idea consists in classifying families
of software systems according both to their degree of integration, i.e. to their degree of internal
systemic largeness and heterogeneity, or more formally to the size of the tree associated with
their organic architecture, and to the degree of abstraction which is required to deal with them,
i.e. equivalently to the size of the tree associated with their functional architecture.

H — T
«Simple » Software i Complex Software /7 Systemsof Y\
H systems

>

Information

Interaction with simple hardware . systems
and/or « simple » users - TS — _
Integrated “)

software Ve

Y A Usual -

/ (
- Usual | \ distributed software
(o Embedded]~ . .
software | / —
\ /

software

e
/~ Assembling S—
code !
(Machine
code

Interaction with numerous hardware systems
and/or human « systems »

Integration Complexity

Fig. 9. The complex software hierarchy.

Such a classification lead us to identify two main classes of complex software systems (the
term complex referring here only at first analysis to the organic integration complexity):

1. the software systems where the integration and abstraction complexity comes from the mix of
computer science frameworks with physics, signal processing and control theory environments
and models, that is typically to say the so-called embedded systems,

2. the software systems where the integration and abstraction complexity comes from the mix of
the computer science world with mainly “human” systems and organizations (plus possibly
hardware components), which can be themselves separated into three main subclasses that
are presented hereafter by increasing degree of integration and of abstraction (i.e. from the
less to the most complex underlying organic and functional architectures):

— integrated softwares: this corresponds to enterprise softwares that are specifically devoted
either to some category of business activities — such as BI (global information consolida-
tion inside a large company), CRM (customer relationship management), ERP (financial

13

and production service management), SCM (supply chain management) or KM (docu-
mentation management) softwares — or to some type of technical integration purposes —
such as B2Bi (external partner software integration), EAT (internal software integration),
ETL (batch data consolidation) or EII (on the request data consolidation) softwares. We
refer to [26] for an overview of these software technology (see also [54, 34]).

— information systems: an information system can be defined as a coherent integration
of several integrated softwares — in the above meaning — that supports all the possible
business missions of an organization, taken at a global level. An information system can
therefore be seen as the integrated system that consists both of a human organization
and of all the computer systems that are supporting the specific business processes of the
considered organization (see [11,41] or Example 11 for more details).

— systems of systems: this refers to an even higher level of integration, i.e. to the situation
where a number of independently designed information systems have to cooperate in order
to fulfill a common mission. Systems of systems are characterized by the loose couplings
existing structurally between their organic components (that we will not discuss here
since this would lead us too far with respect to the integration model we took within this
survey paper). Network Centric Warfare (NCW) systems, airport platforms management
systems, etc. can be typically seen as systems of systems in this meaning.

Example 11. Information system — As already pointed out, an information system can be seen
as the integration of a human organization and a software system. The left side of Figure 10
shows for instance a very high level architecture of an information system focusing on this point
of view: the sub-systems of the enterprise organization (i.e. the main business departments) are
here at the border of this map when the technical sub-systems (i.e. the main integrated involved
softwares) are in the center. One can also see on this map a number of arrows that are refering to
the main business processes, that is to say to the main normalized interactions (or equivalently
interfaces) existing between the corresponding human and software systems.

The entire set wil be
enveloped in a BPELAWS
sequence .. _ _ . _ _ . _ . _ . _ . _._._._. _
f [The Gateway Atemaive
| starts a BPEL4 . Correct Probi
case ‘4.“"' = Jtemen >
i the o
switch —
Resi
Reproduc Dupiical 1 y
Fo{ Probkm [e o >
[~ The Gateway Dfa.
Alternative starts a BPELAWS
otherwise 1D Probem and
within the AReproduce [" Reggiution |—p
i switch o

Fig. 10. An information system architecture (Sysoft (©) and a business process model (BPMN © - [56]).

A business profess refers typically to an enterprise process such as billing, maintening, sourcing,
producing, etc. Business process modelling (BPM) is therefore naturally one of the core metho-
dology which is presently developed to represent better the functional behavior of an information
system (see [10,41] or Figure 10 which gives an example of a software testing procedure mo-
deling). Note however that BPM is not a formal approach in the line of the numerous models
we presented in Section 3. It indeed rather belongs to the family of informal UML-like models,
which limits seriously its theoretical potential (but leaves the door open for new research).

14

4.2 'What are the new problems emerging from this framework ?

New types of problems are naturally arising with the most complex software systems. A rather
important research effort is for instance presently done for understanding and designing better
embedded systems, which are however probably the “most simple” complex systems due to the
“nice” underlying mathematical environment in which they are living, even if they are already
quite complex to handle (see [25]). We will therefore not focus here on these systems on which
a lot was and continue to be made by numerous theoretical computer scientists, but rather on
the “human”-oriented complex systems which were, quite surprisingly, not widely studied from
a formal point of view, although they are at the center of important economic challenges and of
a large technological and business literature (see for instance [11,41, 48], etc.).

One of the key problems of these kind of software systems is clearly to be able to take more
formally into account the “man in the loop”, which appears to be their common denominator.
There are therefore naturally several important research streams that could emerge in trying
to develop operational modelling formalisms for business processes and more generally for or-
ganizational paradigms. We mean of course here formalisms with well defined semantics that
would allow to express precisely and unambiguously characteristic properties of a business pro-
cess (such as cost, speed of execution, probability of success, etc.) in order to be able to formally
verify these properties. Such a modelling research effort could probably also help practically
organizations to master better their structures and processes.

At a more global level, there is still in the same way an important high level formal modelling
effort that must be done in order to give solid bases to a theory of complex software systems. If
there is a real business consensus on the nature of an information system, no scientific consensus
exists presently — at our knowledge — with respect to a formal — that is to say a mathematical —
definition of an information system. For systems of systems, the situation is even worse since at
this moment of time, there is even no clearly shared business definition of these more complex
systems. The key point in this direction would therefore probably to be able to give sound formal
definitions of information systems and systems of systems, taking of course integrated systems as
primitive objects in such a modelling approach. Such a framework would probably result in the
development of new methods for complex software quantitative analysis, an important subject
which is still under-developed in the classical context of information systems (see [19,44]) and
basically non existing for systems of systems.

One should finally not forget all the specific problems that are of course continuously emerg-
ing in the jungle of complex software systems. As a matter of conclusion to this paper, one can
find such two problems — among many others — roughly and quickly presented below.

Example 12. Information system degeneracy — A classical operational problem that arises in a
real information system corresponds typically to the situation where the system begins to emit
too many information flows and crashes when it is not able anymore to support the resulting
treatment charge. Usually such a crash is not immediate and appears as the consequence of a
long intermediate period where nothing is made to prevent it. It is therefore of main interest to
be able to predict it and to analyze its origins in order to react properly when it is still time. If
one models at high level an information system as a network of multi buffered applications, one
sees that the problem can be rephrased as a problem of queuing networks that can probably be
attacked both from a static analysis and a distributed algorithmic point of view.

Example 13. Interoperability of systems of systems — When interoperability is a well known
problem which is quite well mastered for usual information systems (see [20, 34]), it is probably
still an open subject at the level of systems of systems. The key difficulty at this level comes

15

from the fact that one must interface in a coherent way a number of information systems that
were not initially intended to work together. For technical reasons, the usual interoperability
approaches can therefore not totally be applied in these contexts since it is typically not easy or
even possible to interface these systems through an EAI layer. New methods — mixing semantical
and syntactical approaches — are therefore required to solve in a generic way this key problem.

Acknowledgements

The author would sincerely like to thank Herman Kuilder, Matthieu Martel, Marc Pouzet

and Jacques Printz for the numerous discussions we had together during the maturation period
that preceded the writing of this paper, leading to several key evolutions of his point of view.

References
1. ABRIAL J.R., The B-book — Assigning programs to meanings, Cambridge University Press, 1996.
2. ALUR R., CourRcOUBETIS C., HALBwACHS N., HENZINGER T.A., Ho P.H., NicoLLIN X., OLIVERO A.,

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

SIFAKIS J., YOVINE S., The algorithmic analysis of hybrid systems, Theor. Comp. Sci., 1995; 138 (1): 3-34.
AUTEBERT J.M., BOASSON L., Transductions rationnelles — Applications auz langages algébriques, Collection
ERI, Masson, 1988.

. BaccerLir F., CoHEN G., OLSDER G.J., QUADRAT J.P., Synchronization and linearity — An algebra for

discrete event systems, Wiley, 1992.

BENVENISTE A., Caspl P., EDWARDS S.A., HALBWACHS N., LE GUERNIC P., DE SIMONE R., The Syn-
chronous Languages Twelve years later, Proc. of the IEEE, Special issue on Embedded Systems, 2003; 91 (1):
64-83.

BERARD B., BIDOIT M., LAROUSSINIE F., PETIT A., SCHNOEBELEN P., Vérification de logiciels — Techniques
et outils du model-checking, Vuibert Informatique, 1999.

BERRY G., GONTHIER G., The Synchronous Programming Language ESTEREL: Design, Semantics, Imple-
mentation Science of Computer Programming, 19, 83-152, 1992.

Bock C., SysML and UML2 Support for Activity Modeling, Systems Engineering, 9, (2), 160-186, 2006.
BORGER E., STARK R., Abstract state machines — A method for high-level system design and analysis,
Springer, 2003.

BUSINESS PROCESS MANAGEMENT INITIATIVE — OBJECT MANAGEMENT GROUP, Business Process Modeling
Notation, OMG, http://wuw.bpmn.org, 2006.

CASEAU Y., Urbanisation et BPM : le point de vue d’un DSI, Dunod, 2006.

Caspr P., HAMON G., POUZET M., Lucid Synchrone, un langage de programmation des systémes réactifs, in
“Systéemes Temps-réel : Techniques de Description et de Vérification - Théorie et Outils”, 217-260, Hermes
International Publishing, 2006.

Caspr P., PouzeTt M., Synchronous Kahn networks, Proc. of the first ACM SIGPLAN Int. Conf. on Func-
tional Programming, 226-238, 1996.

CHA D.P., ROSENBERG J.J., DymM C.L., Fundamentals of Modeling and Analyzing Engineering Systems,
Cambridge University Press, 2000.

Cousor P., Cousor R., Abstract interpretation: a unified lattice model for static analysis of programs by
construction or approzimation of fixpoints, in “Conf. Record of the Sixth Annual ACM SIGPLAN-SIGACT
Symp. on Principles of Programming Languages”, Los Angeles, ACM Press, 238-252, 1977.

CUTLAND N., Nonstandard analysis and its applications, London Mathematical Society Student Texts, 10,
Cambridge University Press, 1988.

DE ALFARO L., HENZIGER T.A., Interface-based design, in “Engineering Theories of Software-intensive Sys-
tems”, M. Broy, J. Gruenbauer, D. Harel, and C.A.R. Hoare, Eds., NATO Science Series: Mathematics,
Physics, and Chemistry, Vol. 195, 83—-104, Springer, 2005.

FLiESs M., Fonctionnelles causales non linéaires et indéterminées non commutatives, Bull. Soc. Math. France,
1981; 109: 3-40.

GARMUS D., HERRON D., Function Point Analysis: Measurement Practices for Successful Software Projects,
Addison-Wesley Information Technology Series, Addison-Wesley, 2000.

GOLD-BERNSTEIN B., RuH W., Enterprise Integration: The Essential Guide to Integration Solutions,
Addison-Wesley Information Technology Series, Addsison-Wesley, 2004.

16

21.

22.

23.

24.

25.

26.
27.

28.
29.

30.

42.

43.
44.

45.
46.

47.
48.

49.
50.
51.
52.
53.
54.

55.
56.
57.
58.
59.

60.

GUNTER C.A., ScorT D., Semantic domains, in “Handbook of Theoretical Computer Science”, Vol. B,
633-674, Elsevier, 1990.

HarBwacHSs N., CaAspi P., RAymMOND P., PiLAUD D., The synchronous data-flow programming language
LUSTRE, Proceedings of the IEEE, 79, (9), 1305-1320, 1991.

HAREL D., Statecharts: A visual formalism for complex systems, Science of Computer Programming, 8, (3),
231-274, 1987.

HENZINGER T.A., The theory of hybrid automata, in Proceedings of the 11th Annual IEEE Symposium on
Logic in Computer Science, LICS’96, IEEE Society Press, 1996, pp. 278-292.

HENZINGER T.A., SIFAKIS J., The embedded systems design challenge, Proc. of the 14th Int. Symp. on Formal
Methods (FM), LNCS, Springer, 2006 (to appear).

IT TooL BOX, http://www.ittoolbox.com.

KAHN G., The semantics of a simple language for paralell programming, Proc. of the IFIP Congress 74,
471-475, 1974.

KATOK A., HASSELBLATT B., Introduction to the modern theory of dynamical systems, Cambridge, 1996.
KrOB D., BLIUDZE S., Towards a Functional Formalism for Modelling Complex Industrial Systems, in “Eu-
ropean Conference on Complex Systems (ECCS05), P. Bourgine, F. Kps, M. Schoenauer, Eds., (article 193),
20 pages, 2005.

KroB D., BLIUDZE S., Towards a Functional Formalism for Modelling Complex Industrial Systems, in “Com-
plex Systems: Selected Papers”, ComPlexUs (to appear).

. LAMPORT L., Specifying systems — The TLA+ Language and Tools for Hardware and Software Engineers,

Addison-Wesley, 2003.

. LE GUERNIC P., GAUTIER T., Data-Flow to von Neumann: the Signal approach, in “Advanced Topics in

Data-Flow Computing”, Gaudiot J.-L. and Bic L., Eds., Prentice-Hall, 413-438, 1991.

. MAIER M.W., System and Software Architecture Reconciliation, Systems Engineering, 9, (2), 146-59, 2006.
. MANOUVRIER B., FAI — Intégration des applications d’entreprise, Hermes, 2001.

. MARWEDEL P., Embedded systems design, Kluwer, 2003.

. MATHWORKS, Mathlab and Simulink; http://www.mathworks. com.

. MEALY G.H., A Method for Synthesizing Sequential Circuits, Bell System Tech. J., 34, 1045-1079, 1955.

. MEINADIER J.P., Ingénierie et intégration de systémes, Hermes, 1998.

. MEINADIER J.P., Le métier d’intégration de systéemes, Hermes-Lavoisier, 2002.

. MEYER K.R., HALL G.R., Introduction to Hamiltonian Dynamical Systems and the N-Body Problem, Applied

Mathematical Sciences, 90, Springer Verlag, 1992.

. MorrLEY C., HuGUES J., LEBLANC B., HUGUES O., Processus métiers et systémes d’information, Dunod,

2005.

PeTRI C.A., Fundamentals of a Theory of Asynchronous Information Flow, Proc. of IFIP Congress 1962,
386—390, North Holland, 1963.

Proaxis J., Digital Communications, 3rd Edition, McGraw Hill, 1995.

PrINTZ J., DEH C., MESDON B., TREVES B., Cofits et durée des projets informatiques — Pratique des modéles
d’estimation, Hermes Lavoisier, 2001.

REisic W., Petri nets, Springer Verlag, 1985.

RuMBAUGH J., JACOBSON 1., BooCH G., The Unified Modeling Language Reference Manual, Addison Wesley,
1999.

SAGE A.P., ARMSTRONG J.E. JR., Introduction to Systems Engineering, John Wiley, 2000.

SATZINGER J.W., JACKSON R.B., BURD S., SIMOND M., VILLENEUVE M., Analyse et conception de systémes
d’information, Les éditions Reynald Goulet, 2003.

SCHNEIDER K., Verification of reactive systems — Formal methods and algorithms, Springer, 2004.
SEVERANCE F.L., System modeling and simulation — An introduction, John Wiley, 2001.

SOMMERVILLE 1., Software Engineering, Addison Wesley, 6th Edition, 2001.

SPIVEY J.M., The Z notation — A reference manual, Prentice Hall, 1992.

SYsML, Systems Modeling Language — Open Source Specification Project —http://www.sysml.org.

ToMmAs J.L., ERP et progiciels de gestion intégrés — Sélection, déploiement et utilisation opérationnelle — Les
bases du SCM et du CRM, Dunod, 2002.

TurNER W.C., Mize J.H., Case K.E., NAzEMETZ J.W., Introduction to industrial and systems engineering,
Prentice Hall, 1993.

WHITE S.A., Introduction to BPMN, IBM, http://wuw.bpmn.org, 2006.

WORDSWORTH J.B., Software engineering with B, Addison-Wesley, 1996.

ZAYTOON J., ED., Systéemes dynamiques hybrides, Hermes, 2001.

ZEIGLER B.P., PRAEHOFER H., GON KiMm T., Theory of modeling and simulation — Integrating discrete event
and continuous complex dynamic systems, Academic Press, 2000.

ZSCHALER S., Formal Specification of Non-functional Properties of Component-Based Software, in “Work-
shop on Models for Non-functional Aspects of Component-Based Software” (NfC’04), Bruel J.M., Georg G.,
Hussmann H., Ober 1., Pohl C. Whittle J. and Zschaler S., Eds., Technische Universitdt Dresden, 2004.

17

