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Abstract. In this paper, we solve the consistency checking problems of
concurrent and real-time system designs modelled by time Petri nets for
the scenario-based specifications expressed by message sequence charts
(MSCs). The algorithm we present can be used to check if a time Petri
net satisfies a specification expressed by a given MSC which requires that
if a scenario described by the MSC occurs during the run of the time Petri
net, the timing constraints enforced to the MSC must be satisfied.

1 Introduction

Scenarios are widely used as a requirements technique since they describe con-
crete interactions and are therefore easy for customers and domain experts to
use. Scenario-based specifications such as message sequence charts offer an intu-
itive and visual way of describing design requirements. Message sequence charts
(MSCs) [1] is a graphical and textual language for the description and specifi-
cation of the interactions between system components. The main area of appli-
cation for MSCs is as overview specification of the communication behavior of
real-time systems, in particular telecommunication switching systems.

Time Petri nets [3] have been proposed as one powerful formalism for mod-
elling concurrent and real-time systems because they can model both concur-
rency and real-time constraints in natural way. There are plenty of applications
of time Petri Nets in modelling system specifications and designs.

Since Unified Modelling Language (UML) [2] became a standard in OMG
in 1997, MSC-like diagrams (UML sequence diagrams) and time Petri nets-
like models (UML activity diagrams) have become a main class of artifacts in
software development processes. It follows that we often need to use MSCs and
time Petri nets together in specification and design of software projects [4-6].
Usually, MSCs and time Petri nets are used in the different software development
steps. Even used in the same step, e.g. requirements analysis, MSCs are used
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usually to describe the scenario-based requirements provided directly by the
customers, while time Petri nets are used to model the workflow synthesized by
the domain and technical experts. So it is necessary and important to keep the
consistency between these two kinds of models for software quality assurance.

In this paper, we introduce a more expressive mechanism in MSCs to describe
timing constraints, and give the solution to the problem of checking concurrent
and real-time system designs modelled by time Petri nets for the scenario-based
specifications expressed by MSCs, which require that if a scenario described by
a given MSC occurs during the run of a time Petri net, the timing constraints
enforced to the MSC must be satisfied.

The paper is organized as follows. In next section, we introduce MSCs and
the related timing constraints, and use them to represent the scenario-based
specifications. In Section 3, we review the definition and some basic properties
of time Petri nets. Section 4 gives the solution to checking time Petri nets for the
scenario-based specifications expressed by MSCs. The related works and some
conclusions are given in the last section.

Monitor Controller Barrier

-Train arriving
e1 e2

-Lower barrier
e3 e4

¾ Barrier down
e6 e5

-Train passed
e7 e8

-Raise barrier
e9 e10

¾ Barrier up
e12 e11

-Train arriving
e13 e14

e1 − e13 ≤ −100, e6 − e7 < 0, e12 − e13 < 0

(e13 − e1)− 2(e13 − e12) ≤ 0

Fig. 1. A bMSC describing the railroad crossing system

2 Message Sequence Charts with Timing Constraints

MSCs represent typical execution scenarios, providing examples of either nor-
mal or exceptional executions of the proposed system. The MSC standard as
defined by ITU-T in Recommendation Z.120 [1] introduces two basic concepts:
basic MSCs (bMSCs) and High-Level MSCs (hMSCs). A bMSC consists of a set
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of processes that run in parallel and exchange messages in a one-to-one, asyn-
chronous fashion. A hMSC graphically combines references to bMSCs to describe
parallel, sequence, iterating, and non-deterministic execution of the bMSCs. In
this paper, we just use bMSCs to represent the scenario-based specifications,
which are incomplete and usually specify the requirements provided directly by
the customers. For example, a MSC is depicted in Figure 1, which describes a
scenario about the well-known example of the railroad crossing system in [4,10].
This system operates a barrier at a railroad crossing, in which there are a rail-
road crossing monitor and a barrier controller for controlling the barrier. When
the monitor detects that a train is arriving, it sends a message to the controller
to lower the barrier. After the train leaves the crossing, the monitor sends a
message to controller to raise the barrier.

The semantics of a MSC essentially consists of the sequences (of traces) of
messages that are sent and received among the concurrent processes in the MSC.
The order of communication events (i.e. message sending or receiving) in a trace
is deduced from the visual partial order determined by the flow of control within
each process in the MSC along with a causal dependency between the events of
sending and receiving a message [1,6,7,9]. In accordance with [9], without losing
generality, we assume that each MSC corresponds to a visual order for a pair of
events e1 and e2 such that e1 precedes e2 in the following cases:

– Causality: A sending event e1 and its corresponding receiving event e2.
– Controllability: The event e1 appears above the event e2 on the same

process line, and e2 is a sending event. This order reflects the fact that a
sending event can wait for other events to occur. On the other hand, we
sometimes have less control on the order in which receiving events occur.

– Fifo order: The receiving event e1 appears above the receiving event e2

on the same process line, and the corresponding sending events e′1 and e′2
appear on a mutual process line where e′1 is above e′2.

For facilitating the specifications of real-time systems, the timers [1], interval
delays [7,8], and timing marks [2] have been introduced to describe timing con-
straints in MSCs. All of these mechanisms are suitable to describe simple timing
constraints which are only about the separation in time between two events.
In this paper, we introduce more general and expressive timing constraints in
MSCs. In a MSC, we use event names to represent the occurrence time of events.
So, timing constraints can be described by boolean expressions on event names.
Here we let any timing constraint be of the form

c0(e0 − e′0) + c1(e1 − e′1) + . . . + cn(en − e′n) ∼ c ,

where e0, e
′
0, e1, e

′
1 . . . , en, e′n are event names, c, c0, c1, . . . , cn are real numbers,

and ∼∈ {≤, <}. For example, in the MSC depicted in Figure 1, the boolean
expression e1−e13 ≤ −100 represents the separation in time between the sending
events e1 and e13 is not smaller than 100 time units. Furthermore, if we require
that the separation in time between the sending event e13 and the sending event
e1 is not greater than two times the one between the sending event e13 and the
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receiving event e12, we can describe the requirement by the timing constraint
(e13 − e1)− 2(e13 − e12) ≤ 0.

Compared to the timers, interval delays, and timing marks, the timing con-
straints we consider here can be used to describe more complex timing require-
ments in practical use. For the scenario of the railroad system depicted in Figure
1, we suppose that when a train has passed, a new train could come after at least
100 time units. Figure 1 depicts a specification for this system represented by a
MSC in which we require that from the time one train is arriving to the time the
next train is arriving, the barrier stay up for at least half of this period, which
is represented by (e13 − e1)− 2(e13 − e12) ≤ 0. Clearly, this timing constraint is
about the relation between two separations in time between events (one is the
separation in time between e13 and e12, and the other is the separation in time
between e13 and e1), and the timers, interval delays, and timing marks can not
be used to describe such a timing requirement since they are suitable to describe
the simple timing constraints only about the separation in time between two
events.

For checking the scenario-based specification expressed by MSCs, we formal-
ize MSCs as follows.

Definition 1. A MSC is a tuple D = (P, E,M, L, V,C) where

– P is a finite set of processes. E is a finite set of events corresponding to
sending a message and receiving a message.

– M is a finite set of messages. Each message in M is of the form (e, g, e′) where
e, e′ ∈ E corresponds to sending and receiving the message respectively,
and g is the message name which is a character string. For any message
(e, g, e′) ∈ M , we use g! and g? to represent the sending and the receiving
for the message respectively if we just concern the message name, and let
φ(e) = g! and φ(e′) = g?.

– L : E → P is a labelling function which maps each event e ∈ E to a process
L(e) ∈ P which is the sender (receiver) while e corresponds to sending
(receiving) a message.

– V is a finite set whose elements are a pair (e, e′) where e, e′ ∈ E and e
precedes e′, which is corresponding to a visual order.

– C is a set of timing constraints on event names enforced on D. ut
We use event sequences to represent the traces of MSCs which are cor-

responding to the untimed behavior of MSCs. Any event sequence is of the
form e0ˆe1ˆ . . . ˆem, which represents that ei+1 takes place after ei for any
i (0 ≤ i ≤ m− 1).

Definition 2. Let D = (P,E, M, L, V, C) be a MSC. An event sequence of the
form e0ˆe1ˆ . . . ˆem is a trace of D if and only if the following conditions hold:

– all events in E occur in the sequence, and each event occurs only once, i.e.
{e0, e1, . . . , em} = E and ei 6= ej for any i, j (0 ≤ i < j ≤ m); and

– e1, e2, . . . , em satisfy the visual order defined by V , i.e. for any ei and ej , if
(ei, ej) ∈ V , then 0 ≤ i < j ≤ m. ut
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Corresponding to the sending or receiving for messages, we can transform
the traces of a MSC into the message trails of the MSC.

Definition 3. Let D = (P, E, M,L, V,C) be a MSC. For any trace of D of the
form e0ˆe1ˆ . . . ˆem, replacing each ei with φ(ei) (0 ≤ i ≤ m), we get a sequence
φ(e0)ˆφ(e1)ˆ . . . ˆφ(em) of the sending or receiving for messages in M , which is
a message trail of D. ut
Notice that for a MSC D, all events in a trace of D are distinct, but there may be
the same events in a message trail of D which are corresponding to the message
sending or receiving. For example, the events e1 and e13 are distinct in the MSC
depicted in Figure 1, but φ(e1) = φ(e13) =Train arriving!.

We use timed event sequences to represent the behavior of MSCs. Any timed
event sequence is of the form (e0, δ0)ˆ(e1, δ1)ˆ . . . ˆ(em, δm) where ei is an event
and δi is a nonnegative real numbers for any i (0 ≤ i ≤ m), which describes that
e0 takes place δ0 time units after the system starts, then e1 takes place δ1 time
units after e0 takes place, so on and so forth, at last em takes place δm time
units after em−1 takes place.

Definition 4. A timed event sequence ω = (e0, δ0)ˆ(e1, δ1)ˆ . . . ˆ(em, δm) is a
behavior of a MSC D = (P, E, M,L, V, C) if and only if e0ˆe1ˆ . . . ˆem is a trace
of D and δ0, δ1, . . . , δm satisfy the timing constraints described by C, i.e. for any
boolean expression

∑n
i=0 ci(fi−f ′i) ∼ c in C, c0λ0 + c1λ1 + . . .+ cnλn ∼ c where

for each i (0 ≤ i ≤ n), if fi = ej and f ′i = ek, then

λi =
{

δk+1 + δk+2 + . . . + δj if j > k
−(δj+1 + δj+2 + . . . + δk) if j < k

. ut

3 Time Petri Nets

Time Petri nets [3] are classical Petri Nets where to each transition t a time
interval [a, b] is associated. The times a and b are relative to the moment at
which t was last enabled. Assuming that t was enabled at time c, then t may fire
only during the interval [c+a, c+ b] and must fire at the time c+ b at the latest,
unless it is disabled before by the firing of another transition. Firing a transition
takes no time. The time Petri nets considered in this paper are 1-safe.

Definition 5. Let N be the set of natural numbers. A time Petri net is a six-
tuple, N = (P, T, F,Eft, Lft, µ0), where

– P = {p1, p2, . . . , pm} is a finite set of places; T = {t1, t2, . . . , tn} is a finite
set of transitions (P ∩ T = ∅); F ⊂ (P × T ) ∪ (T × P ) is the flow relation;
µ ⊂ P is the initial marking of the net.

– Eft, Lft : T → N are functions for the earliest and latest firing times of
transitions, satisfying that for any t ∈ T , Eft(t) ≤ Lft(t) < ∞.

A marking µ of N is any subset of P . For any transition t, •t = {p ∈ P |(p, t) ∈ F}
and t• = {p ∈ P |(t, p) ∈ F} denote the preset and postset of t, respectively. A
transition t is enabled in a marking µ if •t ⊆ µ; otherwise, it is disabled. Let
enabled(µ) be the set of transitions enabled in µ. ut
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Definition 6. Let T be the set of nonnegative real numbers. A state of a time
Petri net N = (P, T, F, Eft, Lft, µ0) is a pair s = (µ, c), where µ is a marking
of N , and c : enabled(µ) → T is called the clock function. The initial state of N
is s0 = (µ0, c0) where c0(t) = 0 for any t ∈ enabled(µ0). ut
For the firing of a transition to be possible at a certain time, four conditions
must be satisfied.

Definition 7. A transition t may fire from state s = (µ, c) after delay δ ∈ T if
and only if (1) t ∈ enabled(µ), (2) (µ − •t) ∩ t• = ∅, (3) Eft(t) ≤ c(t) + δ, and
(4) ∀t′ ∈ enabled(µ) : c(t′) + δ ≤ Lft(t′). ut
The first condition is the normal firing condition for Petri nets. The second con-
dition requires contact-freeness. The third condition specifies that the transition
may only fire if its clock has reached the Eft value of the transition. The last
condition quantifies over all other enabled transitions, and makes sure that the
delay δ doesn’t cause any of the Lft bounds to be invalidated. The new state is
then calculated as follows.

Definition 8. When transition t fires after delay δ from state s = (µ, c), the
new state s′ = (µ′, c′) is given as follows: µ′ = (µ − •t) ∪ t•, and for any t′ ∈
enabled(µ′), if t′ 6= t and t′ ∈ enabled(µ), then c′(t′) = c(t′) + δ else c′(t′) = 0.
This is denoted by s′ = fire(s, (t, δ)). ut
The new marking is calculated normally. For clocks we have two cases: if a
transition remains enabled in the new marking its clock value is incremented
with δ, while for newly enabled transition the clock value is 0. The behavior of
a time Petri net is described in term of runs.

Definition 9. For any time Petri net, a run

ρ = s0
(t0,δ0)−→ s1

(t1,δ1)−→ . . .
(tn−1,δn−1)−→ sn

(tn,δn)−→ . . .

is a finite or infinite sequence of states, transitions, and delays such that s0 is the
initial state, and for every i ≥ 1, si is obtained from si−1 by firing a transition
ti−1 after delay δi−1 which satisfies that si = fire(si−1, (ti−1, δi−1)). ut

As a tool used for modelling systems, time Petri nets are such that their
transitions represent the potential events in the systems. Since in this paper we
consider the problem of checking time Petri nets for the scenario-based speci-
fications expressed by MSCs, for any time Petri net we consider in this paper,
each transition t is labelled with an event denoted by ϕ(t), which may be cor-
responding to a message sending or receiving in a MSC. That is, for a MSC
D = (P, E, M, L, V, C), for a transition t of a time Petri net, there may be a
message (e, g, e′) ∈ M such that ϕ(t) = g! = φ(e) or ϕ(t) = g? = φ(e′).

For example, for the railroad crossing system described in the above section,
its design can be described by a time Petri net depicted in Figure 2. In the
system, when the monitor detects that a train is arriving, it sends the message
Train arriving at once to the controller. The controller sends a message back for
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Fig. 2. Time Petri net model for the railway crossing system
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acknowledgement in one time units, and the monitor gives a reply in one time
units. Once the controller receives the confirmed message Approaching, it sends
the message Low barrier to the barrier in one time unit. The barrier is put down
in [8, 10] time units after receiving the message Low barrier, and the message
Barrier down is sent to the controller. Then in one time unit the controller sends
the message Power off to the Barrier, and the message Barrier secured to the
monitor. It takes [15, 20] time units for the train to pass the crossing after the
monitor receives the message Barrier secured. Once the train passes the crossing,
the monitor sends a message to the controller, and after receiving the message
the controller takes one time unit to send the message Raise barrier to the barrier.
The barrier becomes up in [8, 10] time units after receiving the message from the
controller, and the message Barrier up is sent to the controller. Once receiving
the massage Barrier up, the controller takes one time unit to send a message to
the barrier for turning off the power. The barrier holds up in the coming [55, 60]
time units, and then another train is arriving.

4 Checking Time Petri Nets for the Scenario-Based
Specifications Expressed by MSCs

In this section, we give the solution to checking of time Petri nets for the scenario-
based specifications represented by MSCs.

4.1 Definition of the Satisfaction Problem

Given a MSC D = (P, E, M, L, V, C), we can get a scenario-based specification
for timing consistency, denoted by ST (D). For a time Petri net N , ST (D) requires
that whenever a scenario described by D occurs in a run of N , the corresponding
run segment must satisfy all the timing constraints in C. For example, Figure
1 depicts a timing consistency specification for the time Petri net in Figure 2,
which requires that after a train has passed, a new train can come after at least
100 time units, and that from the time one train is arriving to the time the next
train is arriving, the barrier stay up for at least half of this period.

The satisfaction problem of a time Petri net N for a scenario-based specifi-
cation ST (D) is defined formally as follows. Let D = (P,E, M, L, V, C) and

ρ = s0
(t0,δ0)−→ s1

(t1,δ1)−→ . . .
(tn−1,δn−1)−→ sn

(tn,δn)−→ sn+1

be a run of N . For any subsequence ρ1 of ρ which is of the form

ρ1 = si
(ti,δi)−→ si+1

(ti+1,δi+1)−→ . . .
(tj−1,δj−1)−→ sj

(tj ,δj)−→ sj+1 (0 ≤ i < j < n + 1) ,

since each transition tk is labelled with an event ϕ(tk) (i ≤ k ≤ j), we get
a sequence τ of events: τ = ϕ(ti)ˆϕ(ti+1)ˆ . . . ˆϕ(tj). By removing any ϕ(tk)
(i ≤ k ≤ j) from τ which is not corresponding to the sending or receiving for a
message in M , we get an event sequence τ1 = e0ˆe2ˆ . . . ˆem (m ≤ j − i). If τ1
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is a message trail of D, ϕ(ti) = e0, and ϕ(tj) = em, then we say that ρ1 is an
image of D in ρ. If ρ1 is an image of D, then there is a trace f0ˆf1ˆ . . . ˆfm of
D which is corresponding to τ1, and we can give a function

θ : {f0, f1, . . . , fm} → {ti, ti+1, . . . , tj}

which map each fk (0 ≤ k ≤ m) in an incremental order to tl (i ≤ l ≤ j)
such that φ(fk) = ϕ(tl), that is, θ(f0) = ti, θ(fm) = tj , and if θ(fa) = tp
and θ(fb) = tq (a < b), then p < q. We define that the image ρ1 of D satisfies
ST (D) if δi, δi+1, . . . , δj satisfy all the timing constraints in C, i.e. for any timing
constraint

∑n
k=0 ck(gk − g′k) ∼ c in C, c0λ0 + c1λ1 + . . . + cnλn ∼ c where for

each k (0 ≤ k ≤ n), if θ(gk) = ta and θ(g′k) = tb (i ≤ a, b ≤ j), then

λk =
{

δb+1 + δb+2 + . . . + δa if a > b
−(δa+1 + δa+2 + . . . + δb) if a < b

.

We define that the run ρ of N satisfies ST (D) if any image of D in ρ satisfies
ST (D), and that N satisfies ST (D) if any run of N satisfies ST (D).

4.2 Integer Time Verification Approach

According to the above definition, for solving the satisfaction problem of a time
Petri net N for a scenario-based specification ST (D), we need to check all the
runs of N . We know that for a time Petri net, its runs could be infinite and
the number of its runs could be infinite. So we attempt to solve the problem
based on a finite set of finite runs. In the following we present an integer time
verification approach to solving the problem. A similar approach has been used
by us to check time Petri nets for linear duration properties [17].

For a time Petri net N , a run ρ of N of the form

ρ = s0
(t0,δ0)−→ s1

(t1,δ1)−→ . . .
(tn−1,δn−1)−→ sn

is an integral run if all δis occurred in its combined steps are integers. It follows
that any state s = (µ, c) occurring in an integral run satisfies c(t) is an integer
for any t ∈ enabled(µ), which is called integral state.

Theorem 1. A time Petri net N satisfies a scenario-based specification ST (D)
if and only if any integral run of N satisfies ST (D). ut
The proof of this theorem is presented in the appendix. According to the above
theorem, when we check a time Petri net N for a scenario-based specification
ST (D), we only need to consider the integral runs of N .

Since according to Definition 5 the upper bounds of the time intervals asso-
ciated to transitions are finite, the number of the integral states in a time Petri
net is finite. Therefore, for a time Petri net N = (P, T, F,Eft, Lft, µ0), we can
construct a reachability graph G = (V,E) as follows, where V is a set of nodes
and E is a set of edges:
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1. The initial state (µ0, c0) of N is in the set V , which is called initial node;
2. Let s = (µ, c) be in the set V , and κ is the minimal value of the set
{Lft(t) | t ∈ enabled(µ)}. Then for any transition t ∈ enabled(µ), for any
integer δ ≥ 0 such that Eft(t) ≤ c(t) + δ ≤ κ, s′ = fire(s, (t, δ)) is in V ,

and s
(t,δ)−→ s′ is in the set E.

For a time Petri net N , a path in its reachability graph G = (V, E) is a sequence

of states, transitions, and delays s0
(t0,δ0)−→ s1

(t1,δ1)−→ . . .
(tn−1,δn−1)−→ sn such that s0

is the initial node, si ∈ V for every i (0 ≤ i ≤ n), and si
(ti,δi)−→ si+1 ∈ E for

every i (0 ≤ i < n). It follows that any integral run of N is a path in G, and
any path in G is an integral run of N . So we can solve the problem of checking
a time Petri net N for a scenario-based specification ST (D) by checking if every
path in the reachability graph G of N satisfies ST (D).

4.3 Algorithm for Timing Consistency Checking

Since for a time Petri net whose reachability graph is G, a path in G could be
infinite and the number of paths in G could be infinite, we need to solve the
problem based on a finite set of finite paths in G as follows.

First, for a time Petri net N , we define loops in its reachability graph G. Let %

be a path in G of the form % = s0
(t0,δ0)−→ s1

(t1,δ1)−→ . . .
(tn−1,δn−1)−→ sn

(tn,δn)−→ sn+1 . If
all si (0 ≤ i ≤ n) are distinct and there are sk (0 ≤ k < n) such that sk = sn+1,
then we say that the subsequence

%1 = sk
(tk,δk)−→ sk+1

(tk+1,δk+1)−→ . . .
(tn−1,δn−1)−→ sn

(tn,δn)−→ sk

is a loop in G, and δk + δk+1 + . . . + δn is the elapsed time on %1, denoted by
ζ(%1). For a given MSC D = (P,E, M, L, V, C), if there is ti (k ≤ i ≤ n) such
that ϕ(ti) = φ(e) (e ∈ E), then we say that the loop %1 is related to D.

Then, for a node s in the reachability graph G of a time Petri net, for a MSC
D, we define recursively the set Θ(s,D) of the loops which are not related to D
as follows:

– any loop % in G from s to itself which is not related to D is in Θ(s,D);

– for any loop in Θ(s, D) of the form s0
(t0,δ0)−→ s1

(t1,δ1)−→ . . .
(tn−1,δn−1)−→ sn, any

loop % in G from si (0 ≤ i < n) to itself which is not related to D is in
Θ(s,D).

Let N be a time Petri net with its reachability graph G. Now for a given
scenario-based specification ST (D) where D = (P, E, M, L, V, C), we introduce
the violable points in an image of D in a path in G. Let % be a path in G, and
%1 is an image of D in % of the form

%1 = s0
(t0,δ0)−→ s1

(t1,δ1)−→ . . .
(tm−1,δm−1)−→ sm

(tm,δm)−→ sm+1 .

10



We have defined that %1 satisfies ST (D) if δ0, δ1, . . . , δm satisfy all the timing
constraints in C, i.e. for any timing constraint

∑n
k=0 ck(gk − g′k) ∼ c in C,

c0λ0 + c1λ1 + . . . + cnλn ∼ c where for each k (0 ≤ k ≤ n), if θ(gk) = ta and
θ(g′k) = tb (0 ≤ a, b ≤ m), then

λk =
{

δb+1 + δb+2 + . . . + δa if a > b
−(δa+1 + δa+2 + . . . + δb) if a < b

.

We say that si (0 ≤ i ≤ m) is a violable point in %1 if the following condition
holds:

– ϕ(ti) 6= φ(e) (e ∈ E),
– there is a loop %′ ∈ Θ(si, D) whose elapsed time is greater than zero (ζ(%′) >

0), and
– δi occurs in λk (0 ≤ k ≤ n) and ckλk > 0 (in this case, ckλk becomes larger

while δi becomes larger).

Last, for a time Petri net N with its reachability graph G, we define the
finite set ∆(N,ST ) of the finite paths in G which we need to check for a given
scenario-based specification ST (D) where D = (P, E,M, L, V,C). ∆(N,ST ) is
the set of the paths in G which are of the form

s0
(t0,δ0)−→ s1

(t1,δ1)−→ . . .
(tk−1,δk−1)−→ sk

(tk,δk)−→ . . .
(tn−1,δn−1)−→ sn

(tn,δn)−→ sn+1

where all si (0 ≤ i ≤ k) are distinct, sk
(tk,δk)−→ . . .

(tn−1,δn−1)−→ sn
(tn,δn)−→ sn+1

is an image of D, and for any si and sj (k < i < j < n), if there is not any
tl (i ≤ l ≤ j) such that ϕ(tl) = φ(e) (e ∈ E) then si 6= sj .

Theorem 2. A time Petri net N satisfies a scenario-based specification ST (D)
if and only if any path % in ∆(N,ST (D)) satisfies ST (D) and no violable point
occurs in the image of D in %. ut
The proof of this theorem is presented in the appendix. For a timing Petri net
N , for a scenario-based specification ST (D), a path % in the reachability graph
of N is a prefix for ∆(N,ST (D)) if it may be extended into a path which is in
∆(N,ST (D)), i.e. there could be a sequence %1 of states, transitions, and delays

such that %
(t,δ)−→ %1 is in ∆(N,ST (D)). Based on Theorem 2, we can develop an

algorithm to check if a time Petri net N satisfies a scenario-based specification
ST (D) (cf. Figure 3). The algorithm traverses the reachability graph G of N in
a depth first manner starting from the initial node. The path in G that we have
so far traversed is stored in the list variable currentpath. The boolean variable
is no scenario indicates if there is a scenario described by D occurring in N
(∆(N,ST (D)) 6= ∅). The set variable loopset is used to store all loops in G. The
algorithm consists of two steps which are implemented by depth first search. In
the first search, we traverse G for getting all the loops in G, which are used for
checking if no violable point occurs in the image of D in any path in ∆(N,ST (D).
Then we start a new depth first search to find out all the paths in ∆(N,ST (D))

11



is no scenario :=true;

currentpath := 〈(µ0, c0)〉; loopset := ∅;
repeat

node := the last node of currentpath;
if node has no new successive node
then delete the last node of currentpath
else
begin
node := a new successive node of node;
if node has occurred in currentpath (we find out a loop %)
then put % into loopset
else append node to currentpath;

end
until currentpath = 〈〉;
currentpath := 〈(µ0, c0)〉;
repeat

node := the last node of currentpath;
if node has no new successive node
then delete the last node of currentpath
else
begin
node := a new successive node of node;
if node is such that the path % corresponding to currentpath

is in ∆(N,ST (D))
then
begin
check if % satisfies ST (D);
if no, return false;
is no scenario :=false;
check if no violable point occurs in the image of D in %;
if no, return false;

end
if node is such that currentpath is corresponding to

a prefix for ∆(N,ST (D))
then append node to currentpath;

end
until currentpath = 〈〉;

if is no scenario then return ”No scenario of D occurs”
else return true.

Fig. 3. Algorithm for timing consistency checking

and to check them for ST (D). For each new node we discover, we first check
if it is such that the path corresponding to currentpath is in ∆(N,ST (D)).
If yes, then we first check the path for ST (D) and assign is no scenario with
false. Then we check if no violable point occurs in the image of D in the path.
If the new node is such that currentpath is not corresponding to a prefix for
∆(N,ST (D)), then the algorithm backtracks, otherwise the algorithm adds the
new node to currentpath. The algorithm terminates because there is only a finite
number of the paths in ∆(N,ST (D)). Since the algorithm is based on depth first
search method, its complexity is proportional to the number of the prefixes for
∆(N,ST (D)) and to the size of the longest prefix for ∆(N,ST (D)).

The algorithm presented above has been implemented in a tool prototype.
On a PentiumM/1.50GHz/512MB PC, the tool runs comfortably for several case
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studies including the railroad crossing system. The solution we give is based on
investigating only the integer time state spaces of time Petri nets. But even for
the integer time state spaces of time Petri nets, their sizes are often much large
in the problems of practical interest so that more optimization and abstraction
techniques are needed.

5 Related Work and Conclusion

To our knowledge, there has been few literature on consistency checking of time
Petri nets for scenario-based specifications expressed by MSCs. A work closed
to our own is described in [14] to verify whether the timed state machines in a
UML model interact according to time-annotated UML collaboration diagrams,
in which timed state machines are compiled into timed automata [16] and a col-
laboration diagram with time intervals is translated into an observer automaton,
and the model checker UPPAAL [15] for timed automata is called for the veri-
fication, which is based on checking the automata inclusion. Compared to that
work, the timing constraints considered in our work are more general and ex-
pressive than the timer, time intervals, and timing marks adopted in the existing
works, which can be used to describe the relation among multiple separations in
time between events. We know that for a clock constraint in a timed automaton,
its corresponding timing constraint is about just the separation in time between
two events. For describing timing constraints about the relation among multiple
separations in time between events, we need to compare multiple clocks in a
timed automaton, which will result in that the corresponding model checking
problems are undecidable [16]. Thus, the scenario-based specifications expressed
by MSCs considered in this paper cannot be verified by transferring to timed
automata.

There have been a number of work on checking time Petri nets for the tem-
poral logic based properties [11-13]. Compared to those works, on one hand, the
problems considered in those works are to check if the behavior of time Petri
nets satisfy the given temporal order of events specified by the temporal logics,
while the problem we concern is to check if the behavior of time Petri nets sat-
isfy not only the the given temporal order of events, but also the given timing
constraints. On the other hand, the scenario-based specifications considered in
this paper are a class of the original artifacts in software development processes,
and often come directly from the requirements provided by the customers and
domain experts. We know that it is not easy to use formal verification techniques
directly in industry because the modelling languages in the verification tools are
too formal and theoretical to master easily. For industry, it is much more accept-
able to adopt MSCs as a specification language instead of the temporal logics in
formal verification tools.

In this paper, since the specifications we concern usually come from the
scenario-based requirements provided directly by the customers, which is in-
complete, we just use bMSCs to describe the scenario-based specifications. For
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describing the more complete scenario-based specifications, we need to consider
hMSC, which is one of our next works.
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A Proofs of Theorems

Theorem 1. A time Petri net N satisfies a scenario-based specification ST (D)
if and only if any integral run of N satisfies ST (D).
Proof. Let D = (P, E, M, L, V, C) , and ρ be a run of N of the form

s0
(t0,δ0)−→ s1

(t1,δ1)−→ . . .
(tk−1,δk−1)−→ sk

(tk,δk)−→ . . .
(tm−1,δm−1)−→ sm

(tm,δm)−→ sm+1

where sk
(tk,δk)−→ . . .

(tm−1,δm−1)−→ sm
(tm,δm)−→ sm+1 is an image of D. For a timing

constraint ξ ∈ C of the from
∑n

i=0 ci(gi − g′i) ∼ c, let

β(ρ, ξ) = c0λ0 + c1λ1 + . . . + cnλn

where for each i (0 ≤ i ≤ n), if θ(gi) = ta and θ(g′i) = tb (k ≤ a, b ≤ m), then

λi =
{

δb+1 + δb+2 + . . . + δa if a > b
−(δa+1 + δa+2 + . . . + δb) if a < b

.

The theorem follows immediately from the following claim: there is a run ρ′ of
N of the form

s′0
(t0,δ′0)−→ s′1

(t1,δ′1)−→ . . .
(tk−1,δ′k−1)−→ s′k

(tk,δ′k)−→ . . .
(tm−1,δ′m−1)−→ s′m

(tm,δ′m)−→ s′m+1

such that it is an integral run of N and that β(ρ, ξ) ≤ β(ρ′, ξ). This claim can
be proved as follows.

Let αi = δ0 + δ1 + . . .+ δi (0 ≤ i ≤ m). It is clear that if each αi (0 ≤ i ≤ m)
is an integer, then ρ is an integral run. Let frac(ρ) be the set containing all
fractions of αi (0 ≤ i ≤ m), 0, and 1, i.e.

frac(ρ) =
{

γi

∣∣∣∣
0 ≤ γi ≤ 1, 0 ≤ i ≤ m,
and αi − γi is an integer

}
∪ {0, 1} .

Let rank(ρ) be the number of the elements in frac(ρ). Notice that if rank(ρ) = 2,
then ρ is an integral run. In the following, we show that if rank(ρ) > 2, we can
construct a run ρ1 of the form

s′′0
(t0,δ′′0 )−→ s′′1

(t1,δ′′1 )−→ . . .
(tk−1,δ′′k−1)−→ s′′k

(tk,δ′′k )−→ . . .
(tm−1,δ′′m−1)−→ s′′m

(tm,δ′′m)−→ s′′m+1

such that rank(ρ1) = rank(ρ)− 1 and β(ρ1, ξ) ≥ β(ρ, ξ). By applying this step
repeatedly, we can get a run ρ′ which is an integral run of satisfying rank(ρ′) = 2
and β(ρ′, ξ) ≥ β(ρ, ξ) so that the claim is proved. Let

frac(ρ) = {γ0, γ1, . . . , γl} (γ0 = 0, γl = 1, γi < γi+1 (0 ≤ i ≤ l − 1)) ,

and index(γ1) = {i | 0 ≤ i ≤ m and δi − γ1 is an integer}. Let α′i and α′′i defined
as

α′i =
{

αi − γ1 if i ∈ index(γ1)
αi if i 6∈ index(γ1)

, α′′i =
{

αi − γ1 + γ2 if i ∈ index(γ1)
αi if i 6∈ index(γ1)

.
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Let δI
0 = α′0 and δΠ

0 = α′′0 . For each i (1 ≤ i ≤ m), let δI
i = α′i − α′i−1 and

δΠ
i = α′′i − α′′i−1. Let

ρ′1 = sI
0

(t0,δI
0)−→ sI

1

(t1,δI
1)−→ . . .

(tk−1,δI
k−1)−→ sI

k

(tk,δI
k)−→ . . .

(tm−1,δI
m−1)−→ sI

m

(tm,δI
m)−→ sI

m+1

ρ′′1 = sΠ
0

(t0,δΠ
0 )−→ sΠ

1

(t1,δΠ
1 )−→ . . .

(tk−1,δΠ
k−1)−→ sΠ

k

(tk,δΠ
k )−→ . . .

(tm−1,δΠ
m−1)−→ sΠ

m

(tm,δΠ
m)−→ sΠ

m+1

It follows that rank(ρ′1) = rank(ρ)− 1 and rank(ρ′′1) = rank(ρ)− 1, and either
β(ρ′1, ξ) ≥ β(ρ, ξ) or β(ρ′′1 , ξ) ≥ β(ρ, ξ). Suppose N = (P, T, F,Eft, Lft, µ0).
Since Eft(t) and Lft(t) are a natural number for any t ∈ T , ρ′1 and ρ′′1 are a run
of N . Let ρ1 = ρ′1 when β(ρ′1, ξ) ≥ β(ρ, ξ), and ρ1 = ρ′′1 when β(ρ′′1 , ξ) ≥ β(ρ, ξ).
By applying the above step repeatedly, the claim can be proved. ut
Theorem 2. A time Petri net N satisfies a scenario-based specification ST (D)
if and only if any path % in ∆(N,ST (D)) satisfies ST (D) and no violable point
occurs in the image of D in %.
Proof. It is clear that the half of the claim holds: if N satisfies ST (D), then any
path % in ∆(N,ST (D)) satisfies ST (D) and no violable point occurs in the image
of D in %. The reason is that for a path % in ∆(N,ST (D)), if there is a violable
point s in the image of D in ρ, then we can construct a path %′ from ρ whose
image of D does not satisfy ST (D) by repeating a loop %1 ∈ Θ(s,D) (ζ(%1) > 0)
many times such that ζ(%1) becomes large enough to violate the related timing
constraint enforced to D. The other half of claim can be proved as follows. Let
D = (P,E, M, L, V, C). Suppose that there is a path % of the form

s0
(t0,δ0)−→ s1

(t1,δ1)−→ . . .
(tk−1,δk−1)−→ sk

(tk,δk)−→ . . .
(tn−1,δn−1)−→ sn

(tn,δn)−→ sn+1

where sk
(tk,δk)−→ . . .

(tn−1,δn−1)−→ sn
(tn,δn)−→ sn+1 is an image of D which does not

satisfy ST (D). Since

– for any si and sj (0 ≤ i < j < k) such that si = sj , by removing the

subsequence si
ti,δi−→ si+1

ti+1,δi+1−→ . . .
tj−2,δj−2−→ sj−1

tj−1,δj−1−→ from % we can get
a run of N , and

– for any si and sj (k < i < j < n) such that si = sj and that there is not any
tl(i ≤ l ≤ j) such that ψ(tl) = φ(e) (e ∈ E), by removing the subsequence

si
ti,δi−→ si+1

ti+1,δi+1−→ . . .
tj−2−→ sj−1

tj−1,δj−1−→ from % we can get a run of N ,

we can construct a run %′ from % which is in ∆(N,ST (D)). Since there is no
violable point in the image of D in %′, the sequences removing from % in the
process of constructing %′ do not related to any timing constraint in C. It follows
that the image of D in %′ does not satisfy ST (D), which results in a contradiction.
Thus, the claim holds. ut
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