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Abstract. This paper introduces a refinement of Misra’s Seuss logic,
called Web Cube, that provides a model for programming and reasoning
over web applications. It features black box composition of web services so
that services offered by large systems, such as that of a back-end database,
can be treated abstractly and consistently. It inherits the light weight fea-
ture of Seuss, which relies on an abstract view towards concurrency con-
trol, which leads to a less error-prone style of distributed programming,
backed by a clean logic.

1 Introduction

Nowadays, sophisticated web applications are built using technologies like PHP,
ASP, and servlets. Most are built by directly implementing them over these tech-
nologies, resulting in implementations where it is hard to separate implementa-
tion details from the core design problems. Debugging, let alone verification,
is in general very hard. This is not a good practice. In theory, it is better to
first design an application in an abstract-level modelling language. This is the
development sequence that we will assume in this paper. At the design level,
verifying critical properties is still feasible. Once verified, the design can be im-
plemented. Subsequently, a more practical method, e.g. testing, can be used to
validate the consistency between the implementation and the design. Web Cube
is a programming model, which means it provides useful concepts and structures
for constructing models of web applications and specify their critical properties.
It also comes with a logic to verify a model against its properties. Web Cube is
based on Misra’s formalism for distributed and concurrent systems called Seuss
[14]. As a modelling language Seuss is quite generic. Web Cube is more concrete
than Seuss. It provides concepts which are quite specific for the domain of web
applications, so that a Web Cube model can be implemented more directly.

This paper explains Web Cube’s concepts and the semantics of its black box
logic, which is its strongest feature. We do not at the moment offer a public
implementation of Web Cube. There is a prototype, implemented by translating
Web Cube source to Web Function library [10] written in the functional lan-
guage Haskell. It is worth mentioning that alternatively it is often possible to
implement a domain specific language by embedding it in a general purpose lan-
guage, e.g. as the embedding of financial contract combinators in Haskell [11].
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One could envisage a similar implementation of Web Cube in Haskell or in Java.
An important benefit of embedding is that it gives a first class access to the mod-
elling framework from the same programming language that one uses to write the
application itself. This may help encouraging programmers to construct designs.

In Web Cube, a web application is modelled by a set of passive Seuss programs
called cubes whose task is to coordinate a set of web services and interface them
to users. Figure 1 shows an example of a Web Cube model of a simplified web-
based voting application —more will be said at the end of Section 3. As in Seuss,
we can specify temporal properties like: a valid vote submitted to the webVote

application in Figure 1 will eventually be counted, or that the application never
silently cancels a valid vote. Web Cube treats services as black boxes. This
sacrifices completeness, but allows an application to be verified in isolation! —
that is, without using the services’ source code. Indeed, abstraction is now forced.
But on the other hand, verification is also more feasible. Black box reasoning
is however also fundamentally difficult, because parallel composition typically
destroys progress properties of a component. Web Cube uses the theory from
[18, 19] to get a reasonably powerful black box logic while remaining light weight.

Contribution. Web Cube proposes a formal programming model for web
applications with a Seuss logic support and the black box enhancement from
our previous work [18, 19]. With respect to Seuss we contribute an extension,
namely the notions of web application and service. With respect to [18, 19] the
novelty here is in showing its application in the domain of web programming.

Paper Overview. Section 2 briefly introduces Seuss. Section 3 explains Web
Cube’s concepts and computation model. The formal machinery is described in
Sections 4. Section 5 presents its black box logic. Section 6 discusses related
work.

application webVote {

service r = VoteServer ; -- its contract in in Fig.4

cube home {

method home() {

respond("<form method=post action=<@address.vote@>>

Enter your vote: <input type=text name=v>

<input type="submit" value="SUBMIT"> </form>

<p><a href=<@address.info@>>Click here to get vote info</a>")}

method vote(v) { r.vote(v) }

method info() {

var n = r.info() ;

respond("<p>Total votes = <@n@>") ;

if r.open then respond("<p>Open.") else respond("<p>Closed.") } }}

Fig. 1. A simple Web Cube application for electronic voting.



2 Seuss

In Seuss a box describes a reactive (non-terminating) program. It consists of a
set of variables, a set of atomic guarded actions, and a set of methods. The
variables define the state of the box. The execution of the box consists of an
infinite sequence of steps; at each step an action is non-deterministically, but
weakly fair, selected for execution. If the selected action’s guard evaluates to
true, the action is fully executed, else the effect is just a skip. The methods play
a different role. They form the only mechanism for the environment to alter the
state of the box. Methods may have parameters, actions can not.

For brevity we will not discuss the ’category’ (generic box) [14]. When declar-
ing a variable we omit its type specification. We only consider non-blocking
methods (called total in [14]). Parameters are passed by value, and a method
may return a value.

Figure 2 shows an example of a box called VoteServer —for now just consider
it to have nothing to do with the webVote application in Figure 1. The notation
[] denotes the empty list. The method vote allows the environment to submit a
vote to the box. The box continuously executes one of its two actions: move and
validate. The notation g -> S denotes a guarded (and atomic) action: g is the
guard, and S is the action to perform if the guard evaluates to true. The action
move swaps the entire content of the incoming vote-buffer (in) to an internal
buffer tmp —it can only do so if tmp is empty. The full code of validate is not
displayed; the action takes the votes from tmp and if they are valid votes, moves
them to votes; otherwise they are discarded. The environment can also call the
method info to inquire after the number of (valid) votes registered so far.

Seuss’ key feature is its abstract view towards multiprogramming. To pro-
gram the control flow it only offers, essentially, parallel composition and guarded
actions. It advocates that a programmer should only be concerned with speci-
fying, essentially, the set of concurrent atomic tasks that constitute a system.
He should not be concerned with how to schedule these tasks for optimal per-
formance —the compiler and the run time system should figure this out. This
abstract view leads to a simple logic and clean designs.

box VoteServer {

var in, votes, tmp = [] ;

open = True ;

method vote(v) { if open then in := insert(v,in) else skip }

info() { return length(votes) }

stop() { open := False }

action move :: null tmp -> tmp,in := in,[] ;

validate :: not(null tmp) -> ... }

Fig. 2. An example of a Seuss box.



Seuss is the evolution of UNITY [4]. With respect to UNITY, Seuss adds
methods (which are used to limit interference by the environment of a system)
and the ability to structure a system’s architecture as a hierarchy of boxes.
Seuss logic uses a slightly different set of operators. We will stick to the old
UNITY unless and 7→ (leads-to) to specify temporal properties, which are derived
operators in Seuss. We will defer their discussion until Section 4 where we alter
their standard definition to deal with ’components’.

3 Web Cube

A Web Cube application, or simply application, models a server side program
that interacts with a client via an HTTP connection. Figure 3-left shows the
architecture of a hypothetical Web Cube execution system. Applications (e.g.
A1, A2, B1, . . . ) may run different machines. We assume a Web Cube aware
HTTP server which can direct a client’s requests to the correct application,
collect the application’s reply, and forward it back to the client.
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Fig. 3. Web Cube architecture

An application A is built, like in Figure 3-right, by composing so-called cubes
(x1 and x2) and web services. A cube x is a ’passive’ Seuss box —we will say more
on this later— that models a part of A that can interact with a client. A client
E interacts by calling x’s methods. In practice this will be encoded as HTTP
requests; x replies by sending back HTML responses. A web service, or simply
service, is a black box program described by a contract and can be remotely
interacted to (in practice this may happen over a SOAP/HTTP connection) by
cubes. We further assume that a service is a state-persistent reactive system.
Note that by attaching a contract to A it also becomes a service. A user can
use his web browser to enact A’s client E and interact with one of its cubes; the



browser will display the cube’s responses. However, E does not have to be a web
browser: it can be another application using A as a service.

The role of a cube is purely for computing the responses to client’s requests.
It does not have reactive behavior of its own; so, we describe it by a passive Seuss
box, which is a box with an empty set of actions. A service on the other hand,
may spontaneously execute actions to update its own state. Each client’s request
may trigger a coordinated computation over the services. For safety reason, the
client can only interact with A’s cubes; it cannot interact directly with A’s
services. So, the cubes can also be seen as providing a layer for orchestrating
the services. An orchestration language, e.g. [15], can be used in conjunction
to Seuss for convenient coding of the orchestration, taking into account the
atomicity restriction demanded by Web Cube (Subsection 4.5).

Since a service such as a corporate database is actually a large and com-
plicated system, we will view it as a black box specified by a contract. Such a
contract includes a Seuss box that abstractly (thus incompletely) specifies how
the service behaves as a reactive system. As in design by contract [13], some
party, e.g. the service owner, is assumed to guarantee the consistency between
the service’s implementation and its contract.

An application can be deployed as a state-persistent program serving multiple
clients. Another scheme, as common in e.g. servlets, is to create a fresh and
exclusive instance which lasts for a single session. We are not going to make the
distinction in our formal model. With respect to single-session applications, a
session is treated to last infinitely long, so the application can be treated in the
same way as a persistent application.

Example. Figure 1 shows a simple Web Cube application, called webVote, which
provides an electronic voting service. It consists of a single cube called home and
a service symbolically called r which is linked to the component VoteServer

from Figure 2. Each application should have a cube called home that contains
a method home. The method is called automatically when an instance of the
application is created and so resembles the home-page of the application. For
the webVote application this will cause the user’s browser to show a simple form
where the voter can type in his vote, a submit button, and a link to get the
voting status.

HTML Responses. A cube’s method m responds to a client’s call by send-
ing back its return value, encoded in HTML. Like in Java servlets, m can also
generate responses by calling the respond method: it takes a HTML-code which
will be sent to the client. The entire response of m to a call consists of the
concatenation of strings produced by all the calls to respond in m, followed by
m’s HTML-encoded return value. A Web browser client may choose to display
both; Web Cube applications acting as clients can only use the return value.

Responses from respond are however ignored by our Seuss semantics, which
makes reasoning simpler. To do so safely we have to require that inlined expres-
sions (below) do not have side effects (which is not imposed in servlets).

As in servlets, inlined expressions are allowed, as in: respond "hello <@ e @>";
e will be evaluated and its result is inserted in the place where e appears. In-



lined expression of the form address.m will be substituted by m’s URI address,
causing m to be called when the user clicks on it.

4 Semantics

We have explained the building blocks of a Web Cube application and its execu-
tion model. We now give its semantics, operators for specifying properties, and
an extension to the Seuss logic for proving properties.

In the sequel a, b, c are actions, i and j are predicates intended to be invari-
ants, p, q, r are predicates, P,Q,R are action systems (explained later), x, y, z

are boxes.

4.1 Preliminaries

Selector. We use tuples to represent composite structures, and selectors to select
the various parts. For example, T = (a :: U, b :: V ) defines a type T consisting
of pairs whose elements are of type U and V . If t = (u, v) is a value of type T ,
then t.a = u and t.b = v.
Actions. An action is an atomic, terminating, and non-deterministic state tran-
sition. We model it by a function from the universe of states, denoted by State, to
P(State). Guarded actions are denoted by g --> S, meaning that S will be only
executed if g is true, otherwise the action behaves as a skip —the latter implies
that in our model a s 6= ø, for any action a and state s. If a and b are actions,
atb is an action that either behaves as a or as b. So, (atb) s = a s ∪ b s. If A is
a set of actions then tA denotes (ta : a ∈ A : a). If V is a set of variables, skip V

is an action that does not change the variables in V , but may change variables
outside V . The notation {p} a {q} denotes a Hoare triple over an action a with
p and q as pre- and post-condition.
Predicate Confinement. State predicates specify a set of program states. A
predicate p is confined by a set of variables V , written p conf V , if p can only be
falsified by actions that manipulate variables in V (it follows that p is confined
by its set of free variables). We write p, q conf V to abbreviate p conf V and
q conf V .

4.2 More preliminaries: box and property

The methods of a (Seuss) box x only define the interface with which the envi-
ronment interacts with x. If we strip the methods we obtain the description of
the box’s own program. This stripped box is called the action system and cor-
responds to a UNITY program ([4], Seuss predecessor). For conciseness we only
define properties and parallel composition at the action system level, since this
is sufficient for presenting our theorems later. Technically, these notions can be
lifted quite naturally to the box and application level. Formally, we will represent
box and action system as follows.

Box
d
= (main :: ActionSys,meths :: {Method}) (1)



ActionSys
d
= (acts :: {Action}, init :: Pred, var :: {V ar}) (2)

If P is an action system, P.init is a predicate specifying P ’s possible initial states,
P.var is the set of P ’s variables. Implicitly, P.init has to be confined by P.var.
We will overload action system’s selectors so that they also work on boxes, e.g.
x.var means x.main.var.

A useful property is that of invariant, because it confines the set of states
reachable by a reactive program. A predicate i is a strong invariant of an action
system P , denoted by P ` sinv i, if it holds initially, and is maintained by every
action in P :

P ` sinv i
d
= P.init ⇒ i ∧ (∀a : a ∈ P.acts : {i} a {i}) (3)

A predicate j is an invariant if there exists a strong invariant i implying j. For
specifying a broader range of safety properties, Seuss offers the unless opera-
tor. Let p and q be state predicates. When p unless q holds in P , this means,
intuitively, that each action in P will go from any state in p to some state in
p ∨ q. Note that the definition quantifies over all states. We will deviate from
this definition. We parameterize the property with an invariant (i), as in [20],
so that the quantification over states can be restricted to those which are actu-
ally reachable by P . Moreover, we require that p and q to be confined by P.var.
Although this seems more restrictive, it does not really limit the way in which
we usually use the operator. Technically, it makes the property more robust in
parallel compositions [16]. Together with the definition of unless we also give the
corresponding ensures operator, which specifies progress from p to q by executing
a single action:

Def. 1 : Basic Operators

1. P, i ` p unless q
d
= P ` sinv i ∧ p, q conf P.var

∧ (∀a : a ∈ P.acts : {i ∧ p ∧ ¬q} a {p ∨ q})

2. P, i ` p ensures q
d
= P, i ` p unless q

∧ (∃a : a ∈ P.acts : {i ∧ p ∧ ¬q} a {q})

The general progress operator 7→ is usually defined as the least transitive and
disjunctive closure of ensures. Unfortunately, progress defined in this way is dif-
ficult to preserve when subjected to parallel composition —essentially, because
we do not put any constraint on the environment. We will return to this issue
in Section 4.4.

We only introduce one sort of program composition, namely parallel compo-
sition. If P and Q are action systems, P []Q denotes an action system that models
the parallel execution of P and Q:

P []Q
d
= (P.acts ∪Q.acts, P.init ∧Q.init, P.var ∪Q.var) (4)

If x and y are two boxes, we also write x[]P to denote x.main[]P and x[]y to
denote x.main[]y.main.



4.3 The underlying Component Based Approach

Web Cube assumes services to be available as black box entities, also called com-
ponents [25]. A component only reveals partial information about itself in the
form of a contract. In particular, it does not reveal its full code. The component
owner guarantees the consistency of the contract. Obviously a contract that
reveals more information allows stronger properties to be inferred from it. How-
ever, such a contract is also more constraining, hence making the component
less reusable, and the verification of the the component’s implementation more
costly. Consequently, when writing a contract, a developer will have to consider
a reasonable balance.

Essentially the relation between a component x and its contract c is a re-
finement/abstraction relation. That is, x has to refine c (or conversely, c is an
abstraction of x), usually denoted by c v x. Such a relation preserves properties
of interest: a property φ inferred from the contract c is also a property of the
component x. In sequential programming refinement traditionally means reduc-
tion of non-determinism [2]. Lifted to distributed programming c v x means
that every observable execution trace of x is allowed by c. This relation does
not however preserve progress properties. There are a number of stronger (more
restrictive) alternatives, e.g. Udink’s [26] and Vos’ [27], that preserve progress;
but these are expensive to verify. For Web Cube, we choose a weak notion of
refinement, taken from our previous work [18]. It is even weaker than simple
reduction of non-determinism, and thus has the advantage that it is less restric-
tive, and hence easier to verify. Like most refinement relations, it still preserves
safety, but surprisingly it also preserves a class of progress properties as we will
see below. Although the class is much smaller than for example Vos’ [27], we
believe it is still quite useful.

We start by defining the refinement at the action level. Let a and b be two
actions. Traditionally, a v b means that b can simulate whatever a can do
([2]). However, this is a bit too restrictive in the context of an action system.
Imagine that a is part of an action system P , then we can ignore what b does on
variables outside P.var or what its effect is on the states that are not reachable
by P . Furthermore, we can also allow b to do nothing, since doing nothing will
not break any safety properties of a. We capture these issues in our refinement
relation in the following formalization. Let V be a set of variables (intended to
be P.var), and i be a predicate (intended to be an invariant, thus specifying P ’s
reachable states). Action b weakly refines action a with respect to V and i is
defined as follows:

V, i ` a v b
d
= (∀p, q : p, q conf V : {i ∧ p} a t skip V {q} ⇒ {i ∧ p} b {q})

(5)

Lifting this definition to the action system level gives us:

Def. 2 : Refinement/Abstraction

i ` P v Q
d
= P.var ⊆ Q.var ∧ (i ∧Q.init ⇒ P.init)

∧ (∀b : b ∈ Q.acts : P.var, i ` t P.acts v b)



So, under the invariance of i, i ` P v Q means that every action of Q either
does not touch the variables of P , or if it does it will not behave worse than
some action of P . Parallel composition is v-monotonic in both its arguments.

4.4 Basic results on black box composition

Like in [3, 26, 27] the above refinement relation preserves safety but in general not
progress. However, consider the following restricted class of progress properties.
Let B be an environment for P . We write:

P/[]B, i ` p 7→ q

to express that under the invariance of i, the composed system P []B can progress
from p to q. Moreover, this progress is driven by P . That is, the progress is
realized even if B does nothing:

Def. 3 : Extended Progress Operators

1. P/[]B, i ` p ensures q
d
= P []B, i ` p unless q

∧ (∃a : a ∈ P.acts : {i ∧ p ∧ ¬q} a {q})

2. P/[]B, i ` p 7→ q is defined such that (λp, q. P/[]B, i ` p 7→ q) is the smallest
transitive and disjunctive closure of (λp, q. P/[]B, i ` p ensures q).

The result from [18] below states that progress ’driven by x’ is preserved by
weak refinement over B:

Thm. 4 : Preservation of 7→

x/[]B, i ` p 7→ q ∧ j ` B v Q ∧ i ⇒ j

x[]Q, i ` p 7→ q

Note that the same does not hold for weak refinement over x.

Proof: The formal proof is by induction over 7→; we refer to [18]. Informally:
assume i as an invariant of x[]Q. Since i ⇒ j, j is also an invariant. Since Q refines
B under j, throughout the computation of x[]Q every action of Q behaves, with
respect to variables of x and Q, as some action of B or as a skip. Consequently
Q cannot destroy any progress in terms of x/[]B, since this progress is driven by
x and cannot be destroyed by any action of B. 2

The theorem below states that our notion of weak refinement also preserves
safety. We refer to [18] for the proof.

Thm. 5 : Preservation of unless

x, i ` p unless q ∧ j ` x v x′ ∧ i ⇒ j

x′, i ` p unless q



4.5 Web Cube atomicity restriction

Let y be the environment of a box x in a parallel composition. Seuss allows
methods and actions of y to call x’s methods. In particular, this allows y to
perform multiple method calls to one or more boxes in a single action. Since
actions are atomic, this effectively empowers y to force an arbitrary level of
atomicity on its accesses to x. This is a very powerful feature, but unfortunately
it will also allow y to behave more destructively with respect to x’s temporal
properties. For this reason in Web Cube we will limit the feature, and define a
notion of worst allowed environment as follows:

x.env
d
= ({tm | m ∈ x.meth}, x.init, x.var) (6)

where tm is an action modeling the disjunction of all possible single calls to m.
So, if m is a 1-arity method, then tm = (tv :: m(v)).

Now, we define a box y to be a proper (allowed) environment of x under an
invariant i if it refines the worst allowed environment of x. More precisely:

y is a proper environment of x (under i)
d
= i ` x.env v y.main t y.env (7)

Intuitively, every action and method of x’s proper environment y can only
contain a single call to a state-altering method of x. This can be checked stati-
cally. The action (method) can however still contain an arbitrary number of calls
to x’s functional methods (i.e. methods that do not alter the state) and calls to
other boxes’ methods. The proper environment condition enforces a more deter-
ministic environment, but in return it will behave less destructively with respect
to x.

4.6 Contracts

We will use the following structure to represent contracts:

Contract = (smodel :: Box, inv :: Pred, progress :: {ProgressSpec})

If c is a contract, c.impl denotes a Seuss box which is a component associated
with c. Let x = c.impl. The methods of c.smodel specify the visible interface of
x. The action system of c.smodel specifies an abstraction over x, in the sense of
Def. 2. The inv section specifies an invariant. In the progress section we specify
the component’s critical progress properties. Only progress ’driven by’ the com-
ponent, in the sense of Def. 3, can be specified, so that we can use Thm. 4 to
infer its preservation. In practice a component like a database is not written in
Seuss. However, as long as its owner can produce the above form of contract, and
guarantee it, we can proceed. The relation between c and c.impl is formalized
by:

Def. 6 : Box-Contract Relation

If c is a contract and x = c.impl, there should exist a predicate i such that:



1. i is a strong invariant of x[]x.env and it implies c.inv.
2. c and x have a ’compatible’ interface. For brevity, here it means that both

specify exactly the same set of methods: c.smodel.meth = x.meth.
3. c.smodel is a consistent abstraction of x, i.e. i ` c.smodel.main v x.main
4. for every specification p 7→ q in c.progress we have x/[]x.env, i ` p 7→ q.

The invariant i mentioned above is called the concrete invariant of x, and will be
denoted by x.concreteInv. This concrete invariant i is partially specified by c.inv,
since i ⇒ c.inv. Its full details cannot be inferred from the contract though. The
first condition above also implies that i.inv is an invariant of x[]x.env, though in
general it is not a strong invariant of x[]x.env.

The above definition of ’compatible interface’ implies c.impl.env = c.smodel.env.
So, any environment which is proper according to a contract c is automatically
also a proper environment of c.impl. Actually, it would be sufficient to require
c.impl.env v c.smodel.env such that we can weaken the definition of ’compatible
interface’ and make it more realistic. This, however, is outside the scope of this
paper.

Figure 4 shows an example of a contract, that could belong to the compo-
nent VoteServer in Figure 2. Free variables in the inv and progress sections are
assumed to be universally quantified. The contract’s action part reveals that
VoteServer may from time to time empty the incoming buffer in. It does not,
however, specify when exactly this will happen. The contract also says that the
server will only fill votes with valid votes though it leaves unspecified as to
where these votes should come from. Although a very weak one can infer a crit-
ical safety property from this abstraction: no invalid vote will be included in the
counting.

For convenience, we allow methods to be used when specifying state predi-
cates within a temporal specification in the following way. If p is a state predicate
and m(e) is a call to a method m, the predicate p;m(e) specifies the set of states
that result from executing m(e) on states satisfying p. So, the progress section
in Figure 4 states that after a valid vote is successfully submitted (which only
happens if open is true) through a call to the method vote, eventually the vote
will be counted by the server (captured by the predicate v in votes). With this
property the server guarantees there cannot be any loss of valid votes.

4.7 Semantics of Application

We can now give the semantics of a web application. An application consists of
cubes and services. The latter are components, so they are represented by their
contracts. Formally, we represent an application by this structure:

App
d
= (svc :: {Contract}, cube :: {Box}) (8)

If C is a set of boxes, let []C denote the parallel composition of all the boxes in
C. Let A be an application. The Seuss semantics of A is the concrete program
induced by A, which is just the parallel composition of all its services and cubes:

A.impl
d
= ([]c : c ∈ A.svc : c.impl) [] ([] A.cube) (9)



contract VoteServer {

smodel

var in, votes = [] ;

open = True ;

method vote(v) { if open then in := insert(v,in) else skip } ;

info() { return length(votes)) } ;

stop() { open := False } ;

action fetch :: in := [] ;

count :: {var v ;

if isValid(v) then votes := insert(v,votes) else skip }

inv v in votes ==> isValid(v)

progress isValid(v)/\open ; vote(v) |--> v in votes

}

Fig. 4. A contract for the component VoteServer (Figure 2).

Although this implementation is not visible, we can infer, from the cubes and
the contracts, an abstract model for the application:

A.model
d
= ([]c : c ∈ A.svc : c.smodel) [] ([] A.cube) (10)

A.client is A’s worst allowed client. It is the one that tries all possible calls to
the methods of A’s cubes:

A.client
d
= ([]x : x ∈ A.cube : c.smodel.env) (11)

Note that A.client is by definition an abstraction of any proper client of A.
Wrapping. Since semantically, A.impl[]client is a box, it can be treated as a
component by providing a contract. Semantically, it becomes a service. In the
implementation this may require some wrapping to make it SOAP-enabled. As
a service it can be used to build larger applications.

5 Inference

Seuss provides a logic [14] for proving safety and progress properties. Although
we have changed the definitions of Seuss temporal operators, it can be proven
in a quite standard way that they maintain basic Seuss laws, e.g. using our
general proof theory in [17]. We now add important results, namely theorems
for inferring properties of an application from the contracts of its services —with
just plain Seuss, this is not possible.

Let A be an application. Let A.inv denote the combined abstract invariant
of A, which is the conjunction of the invariants specified by the contracts in
A. Similarly, A.concreteInv denotes the combined concrete invariant of A. The
latter cannot be inferred from the contracts. However, we just need to infer that



properties inferred from A are consistent with it. Let client be a proper client
of A (under A.inv). We have:

Thm. 7 : Inferring Safety from Abstract Model

A.model[]client, A.inv ` p unless q

A.impl[]client, A.concreteInv ` p unless q

Proof: the Contract-Box relation (Def. 6) imposed on the services implies that
A.model is a consistent abstraction of A.impl:

A.concreteInv ` A.model v A.impl (12)

It follows, by Thm. 5, that any unless property proven on the abstract model is
also a property of the concrete system. 2

For inferring progress we have:

Thm. 8 : Progress by Contract

c ∈ A.contract ∧ p 7→ q ∈ c.progress

A.impl
/
[]client, A.concreteInv ` p 7→ q

Proof: by Def. 6, c.progress actually specifies this progress: c.impl/[]c.env ` p 7→
q. Imposing the constraint on the atomicity of method calls from Subsection 4.5,
makes the rest of the application and the client act as a proper environment for
c. Hence, by Thm. 4 the progress will be preserved in the entire system. 2

Below is the dual of the theorem above, stating that progress solely driven
by the client, assuming A’s abstract model as the environment, will be preserved
in the entire system:

Thm. 9 : Client Progress

client/[]A.model, A.inv ` p 7→ q

client/[]A.impl, A.concreteInv ` p 7→ q

Proof: follows from (12) and Thm. 4.

Example. Consider again the example we mentioned in the Introduction: we
want a guarantee that a valid vote submitted to the webVote application in
Figure 1 will eventually be counted. The property is promised by the VoteServer
service in webVote. Now we can use Thm. 8 to conclude that the property will
indeed be preserved in the system.

Consider also the property info() ≥ N unless false. It is an important safety
property, stating that the application will not silently cancel an already counted
vote. In order to verify its correctness, Thm. 7 says that we can do so against
the abstract model of the application. This means isolated verification: we do
not need the full code of the services!

We cannot infer everything from a contract, because it is just an abstraction.
For example, the component VoteServer in Figure 2 will not silently insert a
valid-but-fake vote. However, we cannot infer this from the contract in Figure 4.



6 Related Work

Formal methods have been used to specify and verify document related proper-
ties of web applications. Semantic Web [5] is currently popular as a framework
to define the semantics of documents, thus enabling reasoning over them, e.g.
simply by using theorem provers. On top of it sophisticated properties can be
specified e.g. as [12] that offers a query language, in the spirit of SQL, over doc-
uments. Automated verification has also been explored [22, 9, 1], though we will
have to limit ourselves to simple document properties, e.g. the reachability of
different parts of a web page from multiple concurrent frames. Web Cube logic
focuses on temporal properties over the state maintained by a web application,
rather than on document properties —these two aspects are complementary.

A Web Cube is primarily a programming model for constructing a web ap-
plication. Although it is based on services composition, it is not a dedicated
service orchestration language as e.g. BPEL, cl [8], or Orc [15]. Given a Web
Cube application A, requests from a client are translated to calls to A’s cubes’
methods. In turn a method may perform a series of calls to multiple services,
scripted as a plain Seuss statement. So, orchestration in Web Cube happens
at the method level, and is consequently limited by the atomicity constraint
over methods. Therefore, the full BPEL concurrency (of orchestration) cannot
be mapped to Web Cube’s orchestration. Though on the other hand we get a
nice back box temporal logic for Web Cube, whereas this would be a problem
for BPEL. Orc’s [15] type of orchestration matches better to Web Cube. A top
level Orc expression is atomic. So in principle it can be used to specify a cube’s
method. Formalisms like process algebra [6], Petri net [21], or event-based tem-
poral logic [24] have been used to reason over service orchestration. These are
more suitable for work-flow oriented style of orchestration (e.g. as in BPEL). In
Web Cube calls to services may cause side effect on the services’ persistent state.
So, Web Cube uses a classical temporal logic which is more suitable to reason
over temporal properties over persistent states.

Web Cube assumes a more classical development cycle, where Seuss is used to
abstractly describe a web application. Properties are reasoned at this Seuss level.
Actual implementation could be obtained by translating Seuss to an implemen-
tation language, e.g. Java. Language embedding [11] is also an interesting route
to obtain implementation. Others have used refinement to develop an application
[23]. Seuss is not a refinement calculus; refinement in Web Cube is used to bind
contracts. In reverse engineering people attempt to do the opposite direction: to
extract models from an existing implementation of a web application, e.g. as in
[7, 22, 9, 1]. The models are subsequently subjected to analysis, e.g. verification.
Reverse engineering can yield high automation, but defining the procedure to
extract the models is not trivial, especially if the programming model used at
the model level differs too much from that of the implementation level. This is
likely the case with Web Cube, since it tries to be high level, and hence hard to
extract from e.g. an arbitrary Java code.

Compared to all the work mentioned above Web Cube is also different be-
cause of its component based approach.
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