
A LOTOS Framework for Middleware Specification

Nelson Souto Rosa and Paulo Roberto Freire Cunha

 Universidade Federal de Pernambuco, Centro de Informática

Recife, Pernambuco
{nsr,prfc}@cin.ufpe.br

Abstract. This paper presents a LOTOS framework for the specification of

middleware systems. The framework consists of a library of basic middleware

components and some guidelines on how to compose them. The components of

the framework facilitate the formal specification of different middleware sys-

tems.

1 Introduction

Middleware specifications are not trivial to be understood, as the middleware itself

is usually very complex [4]. Firstly, middleware systems have to hide the complexity

of underlying network mechanisms from the application. Secondly, the number of

services provided by the middleware is increasing, e.g., the CORBA specification

contains fourteen services. Finally, in addition to hide communication mechanisms,

the middleware also have to hide fails, mobility, changes in the network traffic condi-

tions and so on. On the point of view of application developers, they very often do not

know how the middleware really works. On the point of view of middleware develop-

ers, the complexity places many challenges that include how to integrate services in a

single product [6] or how to satisfy new requirements of emerging applications [Blair

98].

Formal description techniques have been used together middleware in the RM-

ODP, in which the trader service is formally specified in E-LOTOS. The Z notation

and High Level Petri Nests have been adopted for specifying CORBA services [2][3],

the Naming service [5], and the Security service [1]. Most recently, Rosa [8] adopted

software architecture principles for structuring LOTOS specifications of middleware

systems. Despite the adoption of formal techniques, they focus on specific aspects of

middleware systems, i.e., they address either a specific service or a specific middle-

ware model.

The main objective of this paper is to propose a framework that helps to formally

describe middleware behaviour in LOTOS by providing a set of basic abstractions.

These abstractions are generic in the sense that may be combined in different ways in

order to specify several middleware systems. Main in our approach is the fact that the

abstractions are defined and organised according to their role in relation to the mes-

sage request. Hence, instead of adopting the traditional approach of organising mid-

dleware systems in layers [9], the proposed abstractions are defined considering their

role in the message request. For example, the abstractions are grouped into classes

related to storage, communication, dispatching, and mapping of message requests. A

message request is any message that an application (e.g., client, server, sender, trans-

mitter) sends to another application.

2 LOTOS Specifications of Middleware Components

As mentioned before, the proposed framework consists of a set of abstractions that

addresses a number of common functionalities of middleware systems. The framework

also defines how these abstractions work together to formalise different middleware

models. For example, the abstractions may be combined to produce the specification

of a message-oriented middleware, whilst they also may be combined to define a pro-

cedural middleware (client-server applications) or a tuple space based middleware.

The whole framework is “message-centric” in the sense that basic elements of the

framework are grouped according to how they act on the message. In the proposed

approach the message is intercepted by both middleware elements on the transmitter

and receiver sides. It is worth observing that the message may be either a request in

which the transmitter ask for the execution of a task on the receiver side or a simple

information between loosely-coupled applications.

The abstractions of the framework are categorised into four classes: mappers (e.g.,

stub and skeletons), multiplexers (e.g., dispatcher), communication (e.g., communica-

tion channel), and storage (e.g., queue and topic). Whatever the class of the middle-

ware element, it intercepts the message, processes it and forwards the message to the

next element. The next element may be a local or remote one. Only communication

elements may forward the message to a remote element, i.e., an element only accessi-

ble through the network. A non-communication element may need to communicate

with a remote element to carry out its task, but it does not send the message itself to a

remote element. For example, a transaction service may need to obtain a remote lock

before pass the request to the next element of the middleware.

2.1 Basic Abstractions

Mapper elements typically represent remote objects, serve as input points of the mid-

dleware, their basic function is to (un)marshal application data (arguments and re-

sults) into a common packet-level (e.g., GIIOP request), and are usually found in

middleware systems that support request/reply applications in heterogeneous envi-

ronments. Additionally, non-conventional mappers may also compress data. The

specification of a typical mapper, named Stub, is defined as shown in Figure 2.

(1) process Stub [iStub, oStub] : noexit :=
(2) iStub ?m : Message;
(3) oStub !marshalling (m);
(4) iStub ?m : Message;
(5) oStub !unmarshalling (m);
(6) Stub [iStub, oStub]
(7) endproc

iStub oStub
Stub

Figure 2 – Mapper Element

In this specification, the Stub receives a message sent by the transmitter and inter-

cepted by the middleware (2), marshals it (3), passes it to the next element (4), and

then waits for the reply from the receiver. The reply is also intercepted by the middle-

ware and passed to the Stub (4) that takes responsibility of unmarshalling the reply

(5).

Communication elements get a message and communicate it to a remote element.

They act as an interface between the middleware and the operating system. The struc-

ture of a communication element, named Channel, is shown in Figure 3.

(1) process Channel [iCh, oCh, comm] : noexit :=
(2) Send [iCh, oCh, comm] ||| Receive [iCh, oCh, comm]
(3) where
(4) process Send [iCh, oCh, comm] : noexit :=
(5) iCh ?m : Message;
(6) comm !m;
(7) oCh;
(8) Send [iCh, oCh, comm]
(9) endproc …
(10) endproc

iCh

oCh

Channel

comm

Figure 3 – Communication Element

In a similar way to Stub, the input (iCh) and output (oCh) ports serves as intercep-

tion points of the element. However, communication elements have an additional port,

named comm, used to communicate the message to a remote element. Additionally,

the Channel is composed by Send and Receive processes that are responsible to

send and receive messages, respectively. In this case, the Channel receives the mes-

sage intercepted by the middleware (5) and then communicates it to a remote element

(6). Dispatchers get the request and forward it to the right object (service). The desti-

nation object is defined by inspecting the message, in which the destination has been

set during the binding. In practical terms, the dispatcher acts as a multiplexer inside

the middleware. The general structure of a Dispatcher is depicted in Figure 4. The

dispatcher receives a message (2) and inspects it, through the function multi-

plexer, to define the destination object (3).

(1) process Dispatcher [iDis, oDis] : noexit :=
(2) iDis ?m : Message;
(3) oDis !m ! multiplexer(m);
(4) Dispatcher [iDis, oDis]
(5) endproc

iDis oDis
Dispatcher

Figure 4 – Dispatcher Element

Finally, storage elements express the need of some middleware systems of store the

message prior it to be sent, e.g., for asynchronous communication or to keep a copy of

the message for recovery reasons. The general structure of a Storage element is

shown in Figure 5.

(1) process Storage [iSto, oSto] (q: Queue): noexit :=

(2) hide enq, fst, empt, deq in

(3) Manager [iSto, oSto, enq, fst, empt, deq]

(4) |[enq, fst, empt, deq]|

(5) Queue [enq, fst, empt, deq] (q)

(6) where

(7) …

(8) endproc

process Queue [enq, fst, empt, deq] (q : Queue) : noexit :=

enq ?n : Nat;

Queue [enq, fst, empt, deq] (enqueue (q, n))

[] fst !first (q);

Queue [enq, fst, empt, deq] (q)

[] deq;

Queue [enq, fst, empt, deq] (dequeue (q))

endproc

Figure 5 – Storage Element

In this particular element, the storage element (left side) is modelled as a Queue that

is administered by the Manager. It is worth observing that with minor changes to the

storage element, it may be defined as a buffer or a file.

2.2 Putting the Basic Abstractions Together

By using the basic abstractions defined in the previous section, middleware systems

may be specified by composing them according to the desired distribution model. The

general structure of any middleware specified according to the framework is defined

as follows:

specification TemplateMiddleware [invC,terC,invS,terS,comm] : noexit
 …
behaviour
 (Transmitter[invC,terC]|[invC,terC]|LocalMiddleware[invC,terC, comm])
 |[comm]|
 RemoteMiddleware [invS,terS,comm] |[invS,terS]| Receiver[invS,terS])
 …
endspec

where a Transmitter sends a message to the Receiver through the middle-

ware, which is made up of a local (LocalMidleware) and remote middleware

(RemoteMidleware) that communicates through the port comm (e.g., it may ab-

stract the whole network). Whatever the middleware model, its internal structure is

defined as follows (except for the number of components):

process Middleware [invC, terC, comm] : noexit :=
 hide iC1, oC1, iC2, oC2 in
 ((C1 [iC1,oC1] ||| C2 [iC2,oC2,comm])
 |[iC1, oC1, iC2, oC2]|
 Interceptor [invC,terC,iC1,oC1,iC2,oC2])

 where …
endproc

 The middleware is composed of a set of components (e.g., C1 and C2), depending

on its complexity. The composition is expressed in the process Interceptor. As

our approach is message-centric, each component “intercepts” the request in the port

iCN (iC refers to “input port of component CN” that represents the point where the

request enters in the component). Next, the request is processed inside the component

and then passed to the next component through the port oCN (oC refers to the “output

port of component N” that represents the point where the request exits the component)

according to the constraints imposed by the process Interceptor.

4 Conclusion and Future Work

This paper has presented a framework useful to formalise middleware behaviour

based on LOTOS. The framework consists of a set of common elements usually found

in the development of middleware systems. The framework is now being defined, but

it is possible to observe that a formalisation approach centred on the message request

instead of middleware layer facilitates the treatment of middleware complexity: simple

abstractions are highly reusable (see abstraction Channel in Section 3) and easier to

find specification errors and verify desired behaviour properties; and the way of com-

posing middleware abstractions considering the order they intercept the message re-

quest enormously facilitate the composition of middleware abstractions.

We are now extending the proposed set of abstractions including more sophisti-

cated communication and concurrent elements. Meanwhile, it is also planned to in-

clude the specification of middleware services in such way that composition con-

straints may also consider middleware service composition.

References

[1] Basin, David, Rittinger, Frank and Viganò, Luca (2002) “A Formal Analysis of the

CORBA Security Service”, In: Lecture Notes in Computer Science, No. 2272, pp.

330-349.

[2] Bastide, Rèmi, Palanque, Philippe, Sy, Ousmane and Navarre, David (2000) “Formal

Specification of CORBA Services: Experience and Lessons Learned”, In:

OOPSLA’00, p. 105-117.

[3] Bastide, Rèmi, Sy, Ousmane, Navarre, David and Palanque, Philippe (2000) “A For-

mal Specification of the CORBA Event Service”, In: FMOODS’00, p. 371-396.

[4] Campbell, Andrew T., Coulson, Geoff and Kounavis, Michael E. (1999) “Managing

Complexity: Middleware Explained”, IT Professional, IEEE Computer Society, Vol

1(5), pp. 22-28, October.

[5] Kreuz, Detlef (1998) “Formal Specification of CORBA Services using Object-Z”, In:

Second IEEE International Conference on Formal Engineering Methods, pp., De-

cember.

[6] Venkatasubramanian, Nalini (2002) “Safe Composability of Middleware Services”,

Communications of the ACM, Vol 45(6), pp. 49-52, June.

[7] Vinoski, Steve, (2002) “Where is Middleware?”, IEEE Internet Computing, Vol.

6(2), pp. 83-85.

[8] Rosa, Nelson and Cunha, Paulo (2004) “A Software Architecture-Based Approach

for Formalising Middleware Behaviour”, Electronic Notes in Theoretical Computer

Science, Vol. 108, pp. 39–51.

[9] Schmidt, Douglas and Buschmann, Frank (2003) “Patterns, Frameworks, and Mid-

dleware: Their Synergistic Relationships”, Proceedings of the 25th international con-

ference on Software Engineering, pp. 694-704.

