A new approach for concurrent program slicing

Pierre Rousseau

CEDRIC - CNAM Paris
292, rue St Martin, 75003 Paris
rousseau@cnam. fr
httpy/quasar.cnam.fr

Abstract. Regarding the progress made in model analysis, more commbelx
els, and consequently more complex programs can now bezaaaliiowever,
this remains a diicult task in particular for concurrent programs which inglac
lot of combinatory. Another way to reduce this complexitydsise program de-
composition. Program decomposition technics extract tigfax given program
while preserving the behavior of the original program wa.specified property.
Quasar analyzes concurrent Ada programs, using program slicirdeasmpo-
sition technic. The program slicer is built using the ASISI$p that provides
syntactic and semantic informations on an Ada source cdaes& informations
can be considered as the “semantic and syntactic graph”ingam Ada pro-
gram. This allows to save building the graphs used by ti@ufiti program slicing
technics and thus to design a simpler and more evolutiveigign

This paper presentsa¥vosrt, the program slicer used byu@sar, describes the
method used to slice concurrent Ada programs and illustnatth two signifi-
cant examples how concurrent programs analysis can talketde of program
slicing for reducing the analyzed program complexity.

1 Introduction

This paper presents a program slicer which doesn’t need itd siatic dependence
graphs before slicing a given concurrent program. It reedchamically these depen-
dences when it traverses the syntactic and semantic gragrajed by the program
compiler. This traversal relies on the standard ASIS toallable for Ada programs.
This slicer is part of the @sar project developed by our research team.

Quasar [EKPPRO03] is an automatic program analysis tool which aionfotmally
validate properties of concurrent Ada programs. It gemsrat formal model from a
source code and validates a specified property on the gederetdel.

The main dificulty of this method is the possible combinatory explosiauiced
by the process execution interleaving when constructiegdachable state space. To
face this problem, @sar uses various technics at each step of its analysis process :

1. program decomposition :at first, Qiasar uses program slicing in order to reduce
the program size while preserving its behavior w.r.t thelistti property. The re-
duced program will help to generate a smaller and simplég s{@ace.

2. model generation :this step can be seen as the heart of thesgk tool. It trans-
lates an Ada program into a corresponding colored Petri Net.model construc-
tion aims to stay as close as possible of the source code lisrmand to produce
models trying to limit as much as possible the combinatorthef Ada program
[EKPPRO3,EKPPO5].

3. model-checking :at this step, @asar uses the model-checkertina [Eva05] to
verify the property on the colored Petri Net generated as#w®nd step. This tool
combines dierent structural technics and model-checking optimiretio order
to deal better with huge state space.

The first step is the most important as it addresses the progtats source.This
paper presentsa¥nost the Ada program slicer which carries out the program slicing
step of asar analysis process.

The concepts and methodology foundings@r have been experimented with the
Ada language for several concomitant advantages. Adamesmlay the most com-
plete and powerful concurrency features. Ada concurrepayasitic is well and pre-
cisely defined. Ada is currently used for practical and caitapplications which need
validation. Concurrency analysis methods performed foa Adograms can be used
for other languages. For instance, usingnQr and simulating some Java programs in
Ada, we have shown some weakness of Java concurrency sesf&iKiPPRO6].

2 Program slicing

Program slicing was first introduced by M. Weiser in [Wei8AHamost of the slicing
definitions and technics are reviewed in [Tip95] and [XQZ]. This part of the paper
presents the essential definitions used in the whole papkleaitimates the kind of
program slicing carried out bys¥nosr.

The principle of program slicing is to observe a particulah&vior of a program
from a specified point of view. The point of view is specifiedaaslicing criterion
commonly defined by a couple, V), with n a statement of the original program avid
a set of variables.

The result of the program slicing operation is calledliae and can be a set of
statementsnon-executable slicingor a reduced compilable and executable program
(executable slicing This slice must preserve all the behavior of the origirralgpam
w.r.t. the slicing criterion (ie, at statement n, the valoEthe variables of the set V have
to be computed in the same way in the original program anderslice). Obtaining a
minimal slice is undecidable, however precise slices cawliiained using existing
technics.

The slice is obtained by collecting all the parts of a progthat may have anfiect
on the values of a set of variables V at a defined statementsigthackward slicing
or may be &ected by the values of the set (thifasward slicing.

The kind of program slicing introduced by Weiser is caldtic program slicing
It means that all possible values of program input are censiti thus that all possible

executions of the original program have to be considered.dther kind of program
slicing is dynamic program slicingvhich considers a particular set of input program
values and studies a particular set of executions of theranogorresponding to the
program execution for these program input values.

Yasnost carries out a static executable backward program slicitaticSbecause
Quasar validates properties holding for all possible executiohs grogram ; exe-
cutable for some technical reasons/{@r second step process uses computable Ada
programs) ; and backward slicing has been chosen becausehtios studied proper-
ties validated by @asar deal with reachable states of the original program, andttieis
slicing criterion definition is closer to the kind of propes analyzed by @sar than
with forward slicing.

1 procedure Robot is 1 procedure Robot is

2 2

3 Nails : Natural = 0; 3 Nails : Natural = 0;
4 Start : Natural = 0; 4 Start : Natural = 0;
5 Total : Natural = 0; 5 Total : Natural = O0;
6 Used : Natural = 0; 6

7 7

8 begin 8 begin

9 Get (Start); 9 Get (Start);

10 Total = Nails + Start; 10 Total = Total + Start;
11 Nails = Total; 11 Nails = Total;

12 while Nails > 0 loop 12 while Nails > 0 loop
13 Nails = Nails - 1; 13 Nails = Nails - 1;
14 Used = Used + 1; 14

15 end loop; 15 end loop;

16 if Used= 0 then 16

17 Put ("Nothing.done”); 17

18 end if; 18

19 Put (Nails); 19 Put (Nails);

20 end Robot; 20 end Robot;

Fig. 1. Slicing of program Robot witki19, {Nails}) as slicing criterion

Figure 1 shows an example of static executable backwardagmoglicing. The pro-
gram on the left is the original program, and the program errigiht is one of its slice
observed through the slicing criterigh9, Nails). It means that we want to know the
statements which have afffect on the value of the variabMai | s at line 19. The
elements related to the variatileed are irrelevant to the value of the variaiNei | s
at line 19, thus they do not belong to the slice.

In order to achieve program slicingadosT has to be able to define which state-
ments can have anfect on the variables values of the slicing criterion. Welsad
defined two kinds of dependences for sequential programglic

— The control dependenceepresents the link between a statement and another state-
ment of which it can control the execution. The most triviehmple is the f -
t hen-el se statement that controls the execution of the statementts diath
branches.

— The data dependenceepresents the link between a statement referencing (rgadi
the value of) a variable and the statements defining (madilyit. For instance,
in Figure 1, the statements of line 11 (referencing the Wéeidot al) is data
dependent on the statement of line 10 (definiiog al).
This dependence isansitive The modifying statements may reference variables
which are also modified in previous statements, and thu thiatements have to
be included into the slice because the values of the vadgdbé they modify tran-
sitively impact the firstly referenced variable. For ingtanas already explained,
the statement of line 11 is data dependent on the stateméms 6he 10. The line
10 references the variab8t ar t , defined at line 9. Thus the statement of line 11
is by transitivity data dependent on the statement defirtiegvairiable Start (line
9).

3 Concurrent program slicing

Quasar analyzes concurrent Ada programs, thusNést has to slice concurrent pro-
grams, and to deal with concurrency specific problems destin [Che93,NR00,Kri03],
such as dependences introduced by the synchronizatioméeti&sks or the non tran-
sitivity of the data dependence relation.

To illustrate this last issue considers the following extsgFigure 2).

Task A Task B @ Task A Taske (®
\ \l
Nails := Used_Nails; \ Nails := Used_Nails; . :
v ' Y N \J

Get (Used_Nails); =~~~ * Used_Nails := 2 * Used_Nails] Nails := Max_Nails; —— Nails := 2 * Nails:

\J ‘ < v /
Put (Nails); : Put (Nails);

v v v v

— Transitive data dependence

---»= Non transitive data dependence

--»= Task execution

Fig. 2. Examples of imprecise data dependences sequences

In Figure 2 (a), if the data dependence is considered astivanshe following se-
quence may be built :

{
Get (Used_Nails);
Used Nails := 2 » Used_Nails;
Nails := Used_Nail s;
Put (Nails);

IndeedPut (Nail s) dependsomai | s : = Used_Nai | s which depends on
Used Nails := 2 * Used_Nail s which depends oset (Used_Nail s).
However this sequence can't be executed by the program eritelgould mean that
Get (Used_Nails) could be executed befoldai | s : = Used_Nai | s what is
impossible.

In the second example (Figure 2 (b)), a variable is modifiedehin a task and read
and modified in a single statement in another task. In alliptesexecutions, the value
of the variableNai | s is never dependant of the statemiat | s : = Used Nail s
because the variablsai | s is always defined bjNai | s : = Max Nai | s. For in-
stance the data dependence relation may take into accasinstless sequence :

{

Nails := Used_Nails;
Nai l's := Max_Nail s;
Nails := 2 * Nails;
Put (Nails);

In both cases, considering the dependence relation astirarieads to take into
account sequences of statements that are impossible ey or useless (second case).
So the resulting slice will contain statements that do fi@tca the slicing criterion and
thus is imprecise.

Previous works [CX01,Kri03] are all based on an augmentatiche dependence
graph approach. These graphs are complex and contain albpodependences rela-
tion between all the program statementssNost, the Quasar slicer, relies on another
concurrent program slicing approach which is based on A8i1%\da tool which allows
to inspect the syntactic tree of an Ada program by using theasé¢ic links existing
between its elements. Instead of building a static deperedgraph, Xsnost records
dependences “on the fly” which naturally avoid to build useldependences.

4 YASNOST

At the moment, YASNOST supports the basic Ada languagegas®nt, conditioned
statements, ...), subprograms and the part of the langetaged to concurrency (tasks,

protected object, rendez-vous, ...). Pointers and dynsimictures are not yet supported
except the dynamic task allocation. Unstructured contoal Buch agxi t statements
are supported but exceptions and jumps are not. Howeversugported parts of the
language can be wholly included into the slice.

4.1 Tree manipulator : ASIS

ASIS (Ada Semantic Interfaces Specification [ISO95]) isr#trriface between an Ada
environment and tools requiring static information abbetsyntax and the semantic of
an Ada program.

ASIS provides two ways for obtaining information about are/surce code. First,
there is an iterator allowing traversing the syntactic tof@n Ada program with a
depth-first left-hand method. The second tool is a set ofiga¢hat allows the user to
navigate in the syntactic tree following semantical deetés between its nodes. The
tree associated with the ASIS queries can be view as a “symtawl semantic” graph.

Figure 3 shows an example of ASIS graph used to get informatimut a source
code. The plain lines represent the syntactic tree of thepkdgram of Figure 1 (origi-
nal program on the left). The dashed line represents an A$8ydinking an identifier
(Nai | s)toits declarationai | s : Natural := 0). Note thatthe ASIS syntac-
tic tree has been simplified for the sake of simplicity.

procedure Robqt
——» Syntactic tree

--+» Queries

unfinished part

Sequence of statements

Nails : Natural := 0

.
.
;
/ Natural
K
|
|
|

[Get(Start)] [Tmal := Nails + Start] [Nails::TotaI } [whilem } [if.“] [Put(NaiIs)]
!

Fig. 3. Part of an ASIS graph of program of Figure 1

The first way to use this interface is to implement alreadywkmp@rogram slicing
algorithms, as done in [SCO03]. A second way is to deduce tpemtence graph from
ASIS syntactic tree. Mnost uses the ASIS tools in a third way : build dependences “on
the fly” with the ASIS queries.

4.2 Algorithm

The algorithm used by A~ost aims to separate as much as possible the search of the
different kind of dependencesaskost uses a stack in which are pushed the elements
(nodes of the syntactic tree) of whichskost needs to check the dependences and thus
that have to be kept. The following algorithm is carried out :

1. Push statement of the slicing criterion into the stackthWisnosr, the user can
use annotations to specify some statements to keep in tee $hese statements
are also pushed into the stack at this step.

2. Push instantied tasks into the stack. At this step, eathdeclaration and alloca-
tion is kept. This step is done traversing the syntacticaratcollecting every task
declarations and every statements allocating dynamiaatgk.

3. Looking for dependences. This step is repeated as lorgeastdck is not empty
(a) Pop the first element of the stack and add it to the list@képt nodes.
(b) Push control dependent statements into the stack.
(c) Push data dependent statements into the stack
(d) Push all declarations related to the popped elementlimtstack. This step is

carried out in order to have an executable slice.
4. Create the executable slice with the list of kept nodes.

The parts related to control dependences and the data depeg] in particular
when data dependences have to be checked through parampetsisg, have to be
detailed.

4.3 Control dependences

In order to collect the control dependencesNdst uses the weak and strong depen-
dences defined by Cheng [Che93] as follow :

— Strong control dependence is the dependence explainedttiors®. ASIS pro-
vides a query giving the father node of any node of the syiut&rete. Every father
is pushed into the stack. By this way all elements enclosiegpbpped element are
pushed into the stack.

— Weak control dependence corresponds to statements theridiep the termination
of another statement (for instance a statement followirapp). If the popped ele-
ment is a body, Xsnost pushes into the stack all statements related to concurrency
and all statements that may not terminate or that may tetmarzother statement :

¢ loops the termination of which cannot be statically evaddat

¢ the calls to protected sub-program (in Ada protected objae Hoare monitor
constructs [Hoa74] with function, procedure and guardedes).

e rendez-vous statements.

e some unstructured control flow statement are also keptsastbp. For instance,
exi t statements included in a kept loop. Jump statements suchagetot
yet supported by XNosr.

4.4 Data dependences

In order to find data dependencesasNost follows the algorithm described Figure 4.
This algorithm uses two lists :

— Read : a list of variables for which Xsnxost searches statements modifying them.

— Witers : the list of elements modifying at least a variable fr&k@ad. ASIS
provides a set of queries allowing to retrieve all statemémiat contains an identi-
fier corresponding to a given declaration. Statements wigbbing to the same task
are sorted by their textual position (line and column nuraper

Read <« Read By (Current_Elenent) & Variables (SlicingCriterion);
Witers « Mdifying (Read)
for reverse Witer of Witers loop
if Same_Task (Witer, Current_El enent) then — transitivity holds
if Modify (Witer, Read) and
Precedence (Witer, Current_El enent) —check precedence
then
Push (Witer, Stack);
Renove (ModifiedVariables (Witer), Read);
Renove (ModifiedVariables (Witer), SlicingCriterion);
Add (Witer, Current _El enent, Transitivity.List);
end if;
else— precedence holds
if Transitive (Witer, Transitivity_List) then —check transitivity
Push (Witer, Stack);
Add (Current_El erent, Transitivity.List);
end if;
end if;
end loop;

Fig. 4. Part of algorithm to find data dependences

Yasnost also uses a transitivity graph for all the variables of theirgl criterion.
These graphs are built using sequences of transitive dpndences between the pro-
gram statements. These graphs are built on the fly. If a dggendience between two
statements would lead to only build paths in the transjtigitaph such the ones de-
scribed in section 3, the data dependence is not transitidaraus the statement from
theW i t er s setis not added to the slice.

In order to realize this, Xnost has to be able to know when a statement can be
executed before another. The precedence between stasantéoh belong to the same
task is checked as follow :

— if two statements are in the same body, the precedence isrde&zl by the textual
position (line and column number). If both statements bglorthe same loop, they
are considered as mutual predecessors.

— if they don't belong to the same body, it means that they amiffierent subpro-
grams, then, the precedence between the calls (and betwéeistatements) are
checked.

If the statemenW i t er has to be added to the slice, then the modified variable
is removed from thdread set and from the slicing criterion set. Thus for any other
elements of the set WritersaMost has to check again if it modifies an element which
still belongs to théRead set. This is done to avoid to include in the slice old and ssele
variable value modification.

Statements which belong tofférent tasks are considered as mutual predecessors.
In this case, the transitivity only is checked.

4.5 Inter-procedural slicing issues

When slicing an inter-procedural programsXost has to deal with parameter passing,
and to retrieve the parameters of which the final values céedpoy the sub-programs
(the parameters modifications or the return value of theolgram) depend.

As Yasnost produces executable slices, all calls to a procedure hale teritten
with all effective parameters corresponding to all formal parametsd by the decla-
ration of the called sub-program.

This could lead to build imprecise slice. For instance, @ersthe procedurBr oc
of Figure 5, which is sliced in order to know the value of theiable Ar g4 at line 28.
All the parameters of the proceduPe oc have to be added to the slice. But only two
of them are useful at the call at line 21 ; the others are alsbérslice because of the
call at line 26. Thus, at the procedure call at line 21, withiaormation linking the
modified parameters to the parameters used to modify thees 9 and 20 would be
added to the slice a&r g1 andAr g2 are referenced by this last call. This would be
imprecise since line 21 is in the slice because this statememeded to evaluate the
condition of the if statement at line 23 which uses only thiees ofAr g1 andAr g3.
The value ofAr g4 is newly defined at line 22 so the value/Afg4 computed at line
21 (the call) is not relevant to the final valueAifg4. And thenAr g1 which is used to
compute the value d4r g4 through the call should not be considered and the statement
defining it at line 19 should not belong to the slice.

In [HRB90], to slice sequential inter-procedural prograthe authors use summary
arcs in their dependence graph in order to know for everyvehith parameter have
an dfect on the results produced by the sub-program. But, asqabidtinke, due to
the non-transitivity of the data dependencie, these anc% ba used to slice concur-
rent programs using dependence graphs. It is shown Figufeab.the dependences
were considered transitive then the statentésgd Nai |l s : = Used Nails + 1
would have to be included into the slice becaNael s : = Unused_Nai | s is con-
sidered as transitively dependent of statemidmised_Nai |l s : = Total _Nails
- Used_Nai | s. Then the summary arc would link the variablai | s with the vari-
ableUsed_Nai | s andthus, the callttjpdat e_Nai | s (Used Nails, Nails)
would be considered as referencing heeed_Nai | s variable. This would build an im-
precise slice, since in concurrent programs, data depeerdsmot transitive and thus
the value of the parameter Used Nails has fieat on the final value of Nails.

However as Xsnost builds only transitive data dependency sequences, and thus
builds a transitivity graph where there is always at least path from a statement to
another one which belongs to a transitive data dependecesee of statements, it

1
2
3
4
5
6
7
8

9
10
11
12

25
26
27
28
29

procedure Example is 1 procedure Example is
procedure Proc 2 procedure Proc
(In1l : in Integer; 3 (In1 : in Integer;
In2 : in Integer; 4 In2 : in Integer;
Outl : out Integer; 5 Outl : out Integer;
Out2 : out Integer) 6 Out2 : out Integer)
is 7 is
begin 8 begin
Outl = In1; 9 Outl = Inl;
Out2 = In2; 10 Out2 = In2;
end Proc; 11 end Proc;
12
Argl : Integer = O; 13 Argl : Integer = O;
Arg2 : Integer = O; 14 Arg2 : Integer = 0;
Arg3 : Integer = 0, 15 Arg3 : Integer = 0;
Arg4 : Integer = 0, 16 Arg4 : Integer = 0;
17
begin 18 begin
Argl = 1; 19 Argl = 1;
Arg2 = 2; 20
Proc (Argl, Arg2, Arg3, Arg4); 21 Proc (Argl, Arg2, Arg3, Arg4);
Argd = 4; 22 Argd = 4;
if Arg3 > Argl then 23 if Arg3 > Argl then
Arg2 = 6; 24 Arg2 = 6;
Argl = 7; 25
Proc (Argl, Arg2, Arg3, Arg4); 26 Proc (Argl, Arg2, Arg3, Arg4);
end if; 27 end if;
Put (Arg4); 28 Put (Arg4);
end; 29 end;

Fig. 5. Example of inter-procedural slicing

can build these summary arcs also in a concurrent contexshdan Figure 6, only
the plain arrows are considered as transitive data deperdgtihe dashed ones are not
considered and thus are not added to the slice.

5 Examples

5.1 The robot example

The example presented Figure 7 is a simple robot which preils. This program uses
three tasks : the main program, the task managing the rightad the task managing
the left arm. It shows how program slicing reduces a prograem and thus helps to
debug it.

The main program starts by asking how many times the nailsshoxld be filled
when empty, then just surveys that the nail box always costat least one nail. If
not, it calls the right arm to fill the mailbox. When the max riaem of filling has been
reached, the program stops. The left arm places the naiatd if there is at least one
nail in the box) and then asks the right arm to hit the nail wlith hammer. The right
arm waits orders and either fills the nail box or hits a naihvéithammer when asked.

Even if this source code is simple, it may béidult to understand its behavior and
then to find bugs.

Task A Task B
procedure Update_Nails
(Used_Nails : in Integer;
Nails :out Integer)

Nails := Unused_NaiIs;Af-"‘_\ V
Unused_Nails := Total_Nails — Used_Nails}

Unused_Nails := 2 * Unused_Nails;

-~ -

end Update_Nails;

Y
. — Used_Nails := Used_Nails + 1;
= Update_Nails (Used_Nails, Nails);
Put (Nails);

e e
—» Transitive data dependence
- - -» Non transitive data dependence

----» Task execution
.

Fig. 6. Exemple of precise slice for inter-procedural concurreagpam

Suppose that one wants to check properties related to the géiNai | s at the line
90 (the last statement of the main procedure). So the slitbevbbtained by slicing the
original program with the slicing criterio®0, {Nails}), and will allow to focus on the
statements that may have dfieet on the variabl®lai | s. The sliced program is more
clear. Before the model-checking step one bug can alreadisbevered when looking
at the use of the variablMai | s : atline 71, when it fills the box, right arm removes 10
nails from the count instead of adding them to the count.mféeds model-checking
can be used to find more subtle mistakes, or to formally prowsesproperty about the

program variables taking advantage of the reduced sizeeddlite.

Table 1.Part of the report generated bysxost after slicing the program of the Figure

7

sliced statements :: 16 (55%)
sliced functions :: -

sliced procedures :: 6 (86%)
sliced entries 0 (0%
sliced variables :: 2 (33%)

Table 1 displays some results about the slicing operatigheofobot original pro-
gram. Although the result of slicing largely depends on tlag the program has been
written, this table shows that more than 50%o0f the programestents have been sliced.
Assuming that the sliced procedures could be much more @xtiphn a simple output,
the sliced statements ratio could be widely larger withaateéasing the computation
time which is instantaneous to slice this program.

5.2 The client-server example

The second example (Figure 8) shows a more subtle possiblefsicing operation.
Yasnosr slices concurrent programs in order to make easier the ratalking step of
Quasar. The size of the generated model and, in most cases, thefdtze state space,
are intuitively related to the size of the studied program.

But for concurrent programs, the size of the state space iis netated to the com-
binatory induced by the indeterminism of concurrency tlathe size of the program.
Our second example shows that even when the original proigraot significantly re-
duced, the slicing operation may be useful by removing aflabmbinatory from the
original program.

This example (Figuré64, 0)) is a simple client-server architecture where the server
dynamically allocates a task for every client accessingétwvices. Here presence of
deadlock is checked ; thus the slicing criteri@d, 0) is used (last statement, no vari-
ables).

As recorded Table 2, the reduction obtained by programmgjioperation is small,
but, when checking presence of deadlocksas@r use shows that the two lines re-
moved from the original program were generating a lot of ciovatory that led to the
state space explosion.

Table 2. Part of the report generated bysxost after slicing the program of the Figure
8

sliced statements :: 2 (18%)
sliced functions :: -
sliced procedures :: 0 (0%)
sliced entries 20 (0%
sliced variables :: 1 (17%)

Here the slicing operation didn’t remove a lot of stateméatthough the state-
ments computed by the proced@et _Val ue could be much more complicated as it
is supposed to compute the requested sentigzad by the server) but removed a lot of
complexity of the program as shown in Table 3 in a instantaadione which as to be
compared to the time needed to compute the nodes of the ptate Gvhich is naturally

long).

Table 3. State space generated byikha for the model of the program of Figure 8

|Client§Running task§Reachable statfReachable states with slicihg

1 4 247 221

2 6 9499 5939

3 8 735767 239723
4 10 - 12847017

6 Related Works

A slicer for Ada programs already exists, Adaslicer [SC@BI, it operates only on se-
quential programs. Few other tools have been designedi¢omgkoncurrent Java and
C ANSI programs [DCH99,Kri03,Zha99]. Only [KriO3] builds slices which take mt
account the non-transitivity of data dependence in a coanticontext and demon-
strates that the slices are more precise and more quicklpetad.

These approaches use augmentation of the dependence grajpinsild all the de-
pendences between all the program statements. Thus thielpavé better execution
times than Xsnost when computing a lot of slices for a given program, but will be
slower for a unique slice since they have to build the coreptitpendence graphs
while Yasnost records dependences only w.r.t. the statements whichdgineelong
to the slice. As Xsnosr is the first step of @asar which carries out a formal analysis
by model-checking, building all possible slices of a pragiia not necessary.

7 Conclusions and further works

This paper has shown how static analysis can greatly hefpaoanalysis to deal with
large and complex programs by removing useless statemegasding the property
to check and also by removing a lot of complexity from thesegpams. Other static
analysis approach could be used such as settling variahiks lin order to limit at the
very most the size of types used and thus help to reduce thekihe state space.

The slicing algorithm carried out bya¥nost is more adapted than previous ones to
be a first step of a complete formal analysis process, sudnperformed by @sar,
saving time and resources for the long and complex modetkihg step which follows
the slicing step. Programs written in other programmingleges could be sliced using
the technics presented in this paper, however the semanttisyantactic information on
the tree representation of the program as provided by ASiéh(as the query linking
the node of an identifier and the node of its declaration) & tobtained.

References

[Che93] Jingde Cheng. Slicing concurrent programs - a gthpbretical approach. IRro-
ceedings of the First International Workshop on Automated Algorithmic Debug-
ging, pages 223-240. Springer-Verlag, 1993.

[CX01] Zhengiang Chen and Baowen Xu. Slicing concurrena jgrogramsSIGPLAN Not.
36(4):41-47, 2001.

[DCH*99] Matthew B. Dwyer, James C. Corbett, John HéitcBtefan Sokolowski, and Hongjun
Zheng. Slicing multi-threaded java programs: A case std@ghnical Report 99-7,
KSU, 1999.

[EKPP*05] Sami Evangelista, Claude Kaiser, Jean Francois RRelae, Christophe Pajault,
and Pierre Rousseau. Dynamic tasks verification withsgk. In International
Conference on Reliable Software Technologies (Ada-Ejyepime 3555, page 91.
Springer-Verlag, June 2005.

[EKPPRO03] Sami Evangelista, Claude Kaiser, Jean Frafyaidat-Peyre, and Pierre Rousseau.
Quasar, a new tool for concurent ada program analysisinternational Confer-
ence on Reliable Software Technologies (Ada-Eurom#)ime 2655, pages 168—181.
Springer-Verlag, June 2003.

[EKPPRO6] Sami Evangelista, Claude Kaiser, Jean Framyaidat-Peyre, and Pierre Rousseau.
Comparing Java, C# and Ada monitors queuing policies : a siagly and its ada
refinement. INAda LettersACM Press, 2006.

[Eva05] Sami Evangelista. High level petri nets analysithwielena. In26th International
Conference on Applications and Theory of Petri Nets 2003TIEN 2005 volume
3536, page 455. Springer-Verlag, 2005.

[Hoa74] C. A.R. Hoare. Monitors: an operating system stminy conceptCommun. ACM
17(10):549-557, 1974.

[HRB90] Susan Horwitz, Thomas Reps, and David Binkley. fmtecedural slicing using de-
pendence graph#\CM Trans. Program. Lang. Sys12(1):26—-60, 1990.

[ISO95] ISQIEC-15291. Ada semantic interface specification. 1995.

[Kri03] Jens Krinke. Context-sensitive slicing of conamt programs. IfProceedings of the
9th European software engineering conference held joimtlly 10th ACM SIGSOFT
international symposium on Foundations of software erejing, pages 178-187.
ACM Press, 2003.

[NROO] Mangala Gowri Nanda and S. Ramesh. Slicing conctupmygrams. IrProceedings
of the International Symposium on Software Testing and yiglpages 180-190.
ACM Press, 2000.

[SCO03] Ricky E. Sward and A.T. Chamillard. Adaslicer: an pdagram slicer. IrProceed-
ings of the 2003 annual international conference on Askeges 10-16. ACM Press,
2003.

[Tip95] F. Tip. A survey of program slicing technique¥ournal of programming languages
3:121-189, 1995.

[Wei84] M. Weiser. Program slicindEEE Transactions on Software Engineerid@(4):352—
357, 1984.

[XQZ*05] Baowen Xu, Ju Qian, Xiaofang Zhang, Zhonggiang Wu, amdtien. A brief survey
of program slicing. SIGSOFT Softw. Eng. Note20(2):1-36, 2005.

[Zzha99] Jianjun Zhao. Slicing concurrent java programsIViPC '99: Proceedings of the
7th International Workshop on Program Comprehensjmege 126. IEEE Computer
Society, 1999.

1 with Ada.TextlO; use Ada. TextlO; 1
2 with Ada.lIntegerText.10; use Ada.IntegerText.|O; 2

3 3

4 procedure Robot is 4 procedure Robot is

5 5

6 UsedNails : Natural 6

7 Nails Natural 7 Nails : Natural =0;
8 8

9 task type Left.Arms; 9 task type Left.Arms;

10 Left Arm : Left.Arms; 10 Left. Arm : Left.Arms;
11 11

12 task type RightArms is 12 task type RightArms is
13 entry Hit_Nail; 13 entry Hit_Nail;

14 entry Fill_Nails_Box; 14 entry Fill _Nails_Box;
15 end RightArms; 15 end;

16 RightArm : RightArms; 16 RightArm : RightArms;
17 17

18 task body Left_Arms is 18 task body Left.Arms is
19 procedure Take.Nail is 19

20 begin 20

21 Putline ("Left.arm.took.a.nail”); 21

22 end Take.Nail ; 22

23 23

24 procedure SetNail is 24

25 begin 25

26 Putline ("Left.arm.set.the.nail”); 26

27 end SetNail;

28 begin 28 begin

29 loop 29 loop

30 if Nails > 0 then 30 if Nails > 0 then
31 TakeNail ; 31

32 Nails = Nails - 1; 32 Nails = Nails - 1;
33 SetNail;; 33

34 RightArm . Hit_Nail ; 34 RightArm. Hit-Nail ;
35 end if; 35 end if;

36 end loop; 36 end loop;

37 end Left.Arms; 37 end;

38 38

39 task body RightArms is 39 task body RightArms is
40 procedure TakeHammer is 40

a1 begin a1

42 PutLine ("Right.arm.took_the_hammer”); 42

43 end Take.Hammer; 43

44 a4

45 procedure Hit.Nail.3.Times is 45

46 begin 46

47 Putline ("Right_arm_hit_to_the_nail"); a7

48 end Hit_Nail_3.Times; 48

49 49

50 procedure Taking.Nails_From.Reserve is 50

51 begin 51

52 Putline ("Right.arm.took.nails.from.the.reserve”); 52

53 end Taking-Nails.From_.Reserve; 53

54 54

55 procedure PutNails_In_Box is 55

56 begin 56

57 Putline ("Right.arm.fill _the_nails_box"); 57

58 end Put.Nails_In_Box; 58

59 begin 59 begin

60 loop 60 loop

61 select 61 select

62 accept Hit_Nail do 62 accept Hit_Nail do
63 TakeHammer; 63

64 Hit-Nail_3_Times ; 64

65 UsedNails := UsedNails + 1; 65 null;

66 end Hit_Nail; 66 end;

67 or 67 or

68 accept Fill_Nails_Box do 68 accept Fill_Nails_Box do
69 TakingNails_.From.Reserve; 69

70 PutNails.In_Box; 70

71 Nails = Nails - 10; 71 Nails = Nails - 10;
72 end Fill .Nails.Box; 72 end;

73 end select 73 end select

74 end loop; 74 end loop;

75 end RightArms; 75 end;

76 76

77 Filling : Natural = 0; 77 Filling : Natural =0;
78 U.Check : Natural = 0; 78

79 79

80 begin 80 begin

81 Get (Filling); 81

82 while Filling > 0 loop 82 while Filling > 0 loop
83 if Nails < 1 then 83 if Nails < 1 then

84 RightArm . Fill _Nails_Box; 84 RightArm. Fill_Nails_Box;
85 Filling := Filling - 1; 85 Filling := Filling - 1;
86 else 86

87 U.Check = U.Check + 1; 87

88 end if; 88 end if;

89 end loop; 89 end loop;

90 Put (Nails); 9

91 end Robot; 91 end;

Fig. 7. Slicing of Robot program witki90, {Nails}) as slicing criterion

1 procedure Server is

2

3 Max_Client : Integer = 5;

4

5 protected type Datas is

6 procedure Get.Value (Value : out Integer);
7 private

8 DataValue : Integer = 0;

9 end Datas;

10

11 protected body Datas is

12 procedure Get.Value (Value : out Integer) is
13 begin

14 DataValue = DataValue + 1;
15 Value = DataValue;

16 end Get\Value;

17 end Datas;

18

19 Data : Datas;

20

21 task type Thread is

22 entry GetValue (Param :out Integer);
23 end Thread;

24 type AccessThread is access Thread;
25

26 task body Thread is

27 begin

28 accept GetValue (Param :out Integer) do
29 Data . GetValue (Param);

30 end Get\Value;

31 end Thread;

32

33 task type Task Server is

34 entry Get.Thread(ld : out AccessThread);
35 end Task Server;

36

37 task body Task Server is

38 begin

39 for 1 in 1..Max.Client loop

40 accept Get.Thread (Id : out AccessThread) do
41 Id = new Thread;

42 end Get.Thread;

43 end loop;

44 end Task Server;

45

46 TheTask Server : TaskServer;

47

48 task type Client;

49 type AccessClient is access Client;
50

51 task body Client is

52 Id AccessThread ;

53 Value : Integer;

54 begin

55 The.Task Server.GetThread (Id);
56 Id. GetValue (Value);

57 end Client;

58

59 A_Client : AccessClient;

60 begin

61 for 1 in 1..Max-Client loop

62 A_Client := new Client;

63 end loop;
64 end Server;

1 procedure Server is

2

3 Max-Client : Integer=5;

4

5 protected type Datas is

6 procedure Get.Value H
7 private

8

9 end;

10

11 protected body Datas is

12 procedure GetValue is
13 begin

14

15 null;

16 end;

17 end;

18

19 Data : Datas;

20

21 task type Thread is

22 entry GetValue ;
23 end;

24 type AccessThread is access Thread;

25

26 task body Thread is

27 begin

28 accept GetValue do
29 Data.GetValue :

30 end;

31 end;

32

33 task type Task Server is

34 entry GetThread (Id : out AccessThread);
35 end;

36

37 task body Task Server is

38 begin

39 for | in 1..Max.Client loop

40 accept Get-Thread (Id : out AccessThread) do
41 Id := new Thread;

42 end;

43 end loop;

44 end;

45

46 TheTaskServer : TaskServer ;
47

48 task type Client;

49 type AccessClient is accessClient;

50

51 task body Client is

52 Id AccessThread ;

53

54 begin

55 The.Task Server.GetThread (Id);

56 Id.GetValue ;

57 end;

58

59 A_Client : AccessClient;

60 begin

61 for 1 in 1..Max.Client loop

62 A_Client := new Client;

63 end loop;

64 end;

Fig. 8. Client-Server examplé4, 0) as slicing criterion

