
A new approach for concurrent program slicing

Pierre Rousseau

CEDRIC - CNAM Paris
292, rue St Martin, 75003 Paris

rousseau@cnam.fr

http://quasar.cnam.fr

Abstract. Regarding the progress made in model analysis, more complexmod-
els, and consequently more complex programs can now be analyzed. However,
this remains a difficult task in particular for concurrent programs which induce a
lot of combinatory. Another way to reduce this complexity isto use program de-
composition. Program decomposition technics extract a part of a given program
while preserving the behavior of the original program w.r.t. a specified property.
Q analyzes concurrent Ada programs, using program slicing asdecompo-
sition technic. The program slicer is built using the ASIS tools, that provides
syntactic and semantic informations on an Ada source code. These informations
can be considered as the “semantic and syntactic graph” mapping an Ada pro-
gram. This allows to save building the graphs used by traditional program slicing
technics and thus to design a simpler and more evolutive algorithm.
This paper presents Y, the program slicer used by Q, describes the
method used to slice concurrent Ada programs and illustrates with two signifi-
cant examples how concurrent programs analysis can take advantage of program
slicing for reducing the analyzed program complexity.

1 Introduction

This paper presents a program slicer which doesn’t need to build static dependence
graphs before slicing a given concurrent program. It records dynamically these depen-
dences when it traverses the syntactic and semantic graph generated by the program
compiler. This traversal relies on the standard ASIS tool available for Ada programs.
This slicer is part of the Q project developed by our research team.

Q [EKPPR03] is an automatic program analysis tool which aims to formally
validate properties of concurrent Ada programs. It generates a formal model from a
source code and validates a specified property on the generated model.

The main difficulty of this method is the possible combinatory explosion induced
by the process execution interleaving when constructing the reachable state space. To
face this problem, Q uses various technics at each step of its analysis process :

1. program decomposition :at first, Q uses program slicing in order to reduce
the program size while preserving its behavior w.r.t the studied property. The re-
duced program will help to generate a smaller and simpler state space.

2. model generation :this step can be seen as the heart of the Q tool. It trans-
lates an Ada program into a corresponding colored Petri Net.The model construc-
tion aims to stay as close as possible of the source code formalism and to produce
models trying to limit as much as possible the combinatory ofthe Ada program
[EKPPR03,EKPP+05].

3. model-checking :at this step, Q uses the model-checker H [Eva05] to
verify the property on the colored Petri Net generated at thesecond step. This tool
combines different structural technics and model-checking optimizations in order
to deal better with huge state space.

The first step is the most important as it addresses the program at its source.This
paper presents Y the Ada program slicer which carries out the program slicing
step of Q analysis process.

The concepts and methodology founding Q have been experimented with the
Ada language for several concomitant advantages. Ada presents today the most com-
plete and powerful concurrency features. Ada concurrency semantic is well and pre-
cisely defined. Ada is currently used for practical and critical applications which need
validation. Concurrency analysis methods performed for Ada programs can be used
for other languages. For instance, using Q and simulating some Java programs in
Ada, we have shown some weakness of Java concurrency semantics [EKPPR06].

2 Program slicing

Program slicing was first introduced by M. Weiser in [Wei84] and most of the slicing
definitions and technics are reviewed in [Tip95] and [XQZ+05]. This part of the paper
presents the essential definitions used in the whole paper and legitimates the kind of
program slicing carried out by Y.

The principle of program slicing is to observe a particular behavior of a program
from a specified point of view. The point of view is specified asa slicing criterion
commonly defined by a couple〈n,V〉, with n a statement of the original program andV
a set of variables.

The result of the program slicing operation is called aslice and can be a set of
statements (non-executable slicing) or a reduced compilable and executable program
(executable slicing). This slice must preserve all the behavior of the original program
w.r.t. the slicing criterion (ie, at statement n, the valuesof the variables of the set V have
to be computed in the same way in the original program and in the slice). Obtaining a
minimal slice is undecidable, however precise slices can beobtained using existing
technics.

The slice is obtained by collecting all the parts of a programthat may have an effect
on the values of a set of variables V at a defined statement n (this is backward slicing)
or may be affected by the values of the set (this isforward slicing).

The kind of program slicing introduced by Weiser is calledstatic program slicing.
It means that all possible values of program input are considered, thus that all possible

executions of the original program have to be considered. The other kind of program
slicing is dynamic program slicingwhich considers a particular set of input program
values and studies a particular set of executions of the program corresponding to the
program execution for these program input values.

Y carries out a static executable backward program slicing. Static because
Q validates properties holding for all possible executions of a program ; exe-
cutable for some technical reasons (Q second step process uses computable Ada
programs) ; and backward slicing has been chosen because most of the studied proper-
ties validated by Q deal with reachable states of the original program, and thusthe
slicing criterion definition is closer to the kind of properties analyzed by Q than
with forward slicing.

1 procedure Robot i s
2
3 N a i l s : N a t u r a l := 0 ;
4 S t a r t : N a t u r a l := 0 ;
5 T o t a l : N a t u r a l := 0 ;
6 Used : N a t u r a l := 0 ;
7
8 begin
9 Get (S t a r t) ;

10 T o t a l := N a i l s + S t a r t ;
11 N a i l s := T o t a l ;
12 whi le N a i l s > 0 l oop
13 N a i l s := N a i l s − 1 ;
14 Used := Used + 1 ;
15 end loop ;
16 i f Used = 0 then
17 Put (” Noth ing done ”) ;
18 end i f ;
19 Put (N a i l s) ;
20 end Robot ;

1 procedure Robot i s
2
3 N a i l s : N a t u r a l := 0 ;
4 S t a r t : N a t u r a l := 0 ;
5 T o t a l : N a t u r a l := 0 ;
6
7
8 begin
9 Get (S t a r t) ;

10 T o t a l := T o t a l + S t a r t ;
11 N a i l s := T o t a l ;
12 whi le N a i l s > 0 l oop
13 N a i l s := N a i l s − 1 ;
14
15 end loop ;
16
17
18
19 Put (N a i l s) ;
20 end Robot ;

Fig. 1.Slicing of program Robot with〈19, {Nails}〉 as slicing criterion

Figure 1 shows an example of static executable backward program slicing. The pro-
gram on the left is the original program, and the program on the right is one of its slice
observed through the slicing criterion〈19,Nails〉. It means that we want to know the
statements which have an effect on the value of the variableNails at line 19. The
elements related to the variableUsed are irrelevant to the value of the variableNails
at line 19, thus they do not belong to the slice.

In order to achieve program slicing Y has to be able to define which state-
ments can have an effect on the variables values of the slicing criterion. Weiserhad
defined two kinds of dependences for sequential program slicing :

– The control dependencerepresents the link between a statement and another state-
ment of which it can control the execution. The most trivial example is theif-
then-else statement that controls the execution of the statements of its both
branches.

– The data dependencerepresents the link between a statement referencing (reading
the value of) a variable and the statements defining (modifying) it. For instance,
in Figure 1, the statements of line 11 (referencing the variable Total) is data
dependent on the statement of line 10 (definingTotal).
This dependence istransitive. The modifying statements may reference variables
which are also modified in previous statements, and thus these statements have to
be included into the slice because the values of the variables that they modify tran-
sitively impact the firstly referenced variable. For instance, as already explained,
the statement of line 11 is data dependent on the statement ofthe line 10. The line
10 references the variableStart, defined at line 9. Thus the statement of line 11
is by transitivity data dependent on the statement defining the variable Start (line
9).

3 Concurrent program slicing

Q analyzes concurrent Ada programs, thus Y has to slice concurrent pro-
grams, and to deal with concurrency specific problems described in [Che93,NR00,Kri03],
such as dependences introduced by the synchronization between tasks or the non tran-
sitivity of the data dependence relation.

To illustrate this last issue considers the following examples (Figure 2).

(a) (b)

Nails := Used_Nails;

Put (Nails);

Get (Used_Nails);

Task A

Used_Nails := 2 * Used_Nails;

Task B

Nails := Used_Nails;

Nails := Max_Nails;

Put (Nails);

Task A Task B

Nails := 2 * Nails;

Transitive data dependence

Non transitive data dependence

Task execution

Fig. 2.Examples of imprecise data dependences sequences

In Figure 2 (a), if the data dependence is considered as transitive, the following se-
quence may be built :

{

Get (Used Nails);
Used Nails := 2 * Used Nails;
Nails := Used Nails;
Put (Nails);

}.

IndeedPut (Nails) depends onNails := Used Nails which depends on
Used Nails := 2 * Used Nails which depends onGet (Used Nails).
However this sequence can’t be executed by the program or else it would mean that
Get (Used Nails) could be executed beforeNails := Used Nails what is
impossible.

In the second example (Figure 2 (b)), a variable is modified twice in a task and read
and modified in a single statement in another task. In all possible executions, the value
of the variableNails is never dependant of the statementNails := Used Nails
because the variableNails is always defined byNails := Max Nails. For in-
stance the data dependence relation may take into account this useless sequence :

{

Nails := Used Nails;
Nails := Max Nails;
Nails := 2 * Nails;
Put (Nails);

}

In both cases, considering the dependence relation as transitive leads to take into
account sequences of statements that are impossible (first case) or useless (second case).
So the resulting slice will contain statements that do not affect the slicing criterion and
thus is imprecise.

Previous works [CX01,Kri03] are all based on an augmentation of the dependence
graph approach. These graphs are complex and contain all possible dependences rela-
tion between all the program statements. Y, the Q slicer, relies on another
concurrent program slicing approach which is based on ASIS,an Ada tool which allows
to inspect the syntactic tree of an Ada program by using the semantic links existing
between its elements. Instead of building a static dependence graph, Y records
dependences “on the fly” which naturally avoid to build useless dependences.

4 Y

At the moment, YASNOST supports the basic Ada language (assignment, conditioned
statements, ...), subprograms and the part of the language related to concurrency (tasks,

protected object, rendez-vous, ...). Pointers and dynamicstructures are not yet supported
except the dynamic task allocation. Unstructured control flow such asexit statements
are supported but exceptions and jumps are not. However, nonsupported parts of the
language can be wholly included into the slice.

4.1 Tree manipulator : ASIS

ASIS (Ada Semantic Interfaces Specification [ISO95]) is an interface between an Ada
environment and tools requiring static information about the syntax and the semantic of
an Ada program.

ASIS provides two ways for obtaining information about an Ada source code. First,
there is an iterator allowing traversing the syntactic treeof an Ada program with a
depth-first left-hand method. The second tool is a set of queries that allows the user to
navigate in the syntactic tree following semantical dependences between its nodes. The
tree associated with the ASIS queries can be view as a “syntactic and semantic” graph.

Figure 3 shows an example of ASIS graph used to get information about a source
code. The plain lines represent the syntactic tree of the Adaprogram of Figure 1 (origi-
nal program on the left). The dashed line represents an ASIS query linking an identifier
(Nails) to its declaration (Nails : Natural := 0). Note that the ASIS syntac-
tic tree has been simplified for the sake of simplicity.

procedure Robot
Syntactic tree

Queries

unfinished part

Nails Total

Nails := TotalGet (Start) Total := Nails + Start while ... if ... Put (Nails)

0

Sequence of statementsNails : Natural := 0

Nails Natural

Fig. 3.Part of an ASIS graph of program of Figure 1

The first way to use this interface is to implement already known program slicing
algorithms, as done in [SC03]. A second way is to deduce the dependence graph from
ASIS syntactic tree. Y uses the ASIS tools in a third way : build dependences “on
the fly” with the ASIS queries.

4.2 Algorithm

The algorithm used by Y aims to separate as much as possible the search of the
different kind of dependences. Y uses a stack in which are pushed the elements
(nodes of the syntactic tree) of which Y needs to check the dependences and thus
that have to be kept. The following algorithm is carried out :

1. Push statement of the slicing criterion into the stack. With Y, the user can
use annotations to specify some statements to keep in the slice. These statements
are also pushed into the stack at this step.

2. Push instantied tasks into the stack. At this step, each task declaration and alloca-
tion is kept. This step is done traversing the syntactic treeand collecting every task
declarations and every statements allocating dynamicallya task.

3. Looking for dependences. This step is repeated as long as the stack is not empty
(a) Pop the first element of the stack and add it to the list of the kept nodes.
(b) Push control dependent statements into the stack.
(c) Push data dependent statements into the stack
(d) Push all declarations related to the popped element intothe stack. This step is

carried out in order to have an executable slice.
4. Create the executable slice with the list of kept nodes.

The parts related to control dependences and the data dependences, in particular
when data dependences have to be checked through parameterspassing, have to be
detailed.

4.3 Control dependences

In order to collect the control dependences Y uses the weak and strong depen-
dences defined by Cheng [Che93] as follow :

– Strong control dependence is the dependence explained in section 2. ASIS pro-
vides a query giving the father node of any node of the syntactic tree. Every father
is pushed into the stack. By this way all elements enclosing the popped element are
pushed into the stack.

– Weak control dependence corresponds to statements that depend on the termination
of another statement (for instance a statement following a loop). If the popped ele-
ment is a body, Y pushes into the stack all statements related to concurrency
and all statements that may not terminate or that may terminate another statement :
• loops the termination of which cannot be statically evaluated.
• the calls to protected sub-program (in Ada protected objects are Hoare monitor

constructs [Hoa74] with function, procedure and guarded entries).
• rendez-vous statements.
• some unstructured control flow statement are also kept at this step. For instance,
exit statements included in a kept loop. Jump statements such goto are not
yet supported by Y.

4.4 Data dependences

In order to find data dependences, Y follows the algorithm described Figure 4.
This algorithm uses two lists :

– Read : a list of variables for which Y searches statements modifying them.
– Writers : the list of elements modifying at least a variable fromRead. ASIS

provides a set of queries allowing to retrieve all statements that contains an identi-
fier corresponding to a given declaration. Statements whichbelong to the same task
are sorted by their textual position (line and column numbers).

Read ← Read By (Current Element) & Variables (Slicing Criterion);
Writers ← Modifying (Read)
for reverse Writer of Writers loop

if Same Task (Writer, Current Element) then – transitivity holds
if Modify (Writer, Read) and

Precedence (Writer, Current Element) – check precedence
then

Push (Writer, Stack);
Remove (Modified Variables (Writer), Read);
Remove (Modified Variables (Writer), Slicing Criterion);
Add (Writer, Current Element, Transitivity List);

end if;
else– precedence holds

if Transitive (Writer, Transitivity List) then – check transitivity
Push (Writer, Stack);
Add (Current Element, Transitivity List);

end if;
end if;

end loop;

Fig. 4.Part of algorithm to find data dependences

Y also uses a transitivity graph for all the variables of the slicing criterion.
These graphs are built using sequences of transitive data dependences between the pro-
gram statements. These graphs are built on the fly. If a data dependence between two
statements would lead to only build paths in the transitivity graph such the ones de-
scribed in section 3, the data dependence is not transitive and thus the statement from
theWriters set is not added to the slice.

In order to realize this, Y has to be able to know when a statement can be
executed before another. The precedence between statements which belong to the same
task is checked as follow :

– if two statements are in the same body, the precedence is determined by the textual
position (line and column number). If both statements belong to the same loop, they
are considered as mutual predecessors.

– if they don’t belong to the same body, it means that they are indifferent subpro-
grams, then, the precedence between the calls (and between both statements) are
checked.

If the statementWriter has to be added to the slice, then the modified variable
is removed from theRead set and from the slicing criterion set. Thus for any other
elements of the set Writers, Y has to check again if it modifies an element which
still belongs to theRead set. This is done to avoid to include in the slice old and useless
variable value modification.

Statements which belong to different tasks are considered as mutual predecessors.
In this case, the transitivity only is checked.

4.5 Inter-procedural slicing issues

When slicing an inter-procedural program, Y has to deal with parameter passing,
and to retrieve the parameters of which the final values computed by the sub-programs
(the parameters modifications or the return value of the sub-program) depend.

As Y produces executable slices, all calls to a procedure have tobe written
with all effective parameters corresponding to all formal parameters used by the decla-
ration of the called sub-program.

This could lead to build imprecise slice. For instance, consider the procedureProc
of Figure 5, which is sliced in order to know the value of the variableArg4 at line 28.
All the parameters of the procedureProc have to be added to the slice. But only two
of them are useful at the call at line 21 ; the others are also inthe slice because of the
call at line 26. Thus, at the procedure call at line 21, without information linking the
modified parameters to the parameters used to modify them, lines 19 and 20 would be
added to the slice asArg1 andArg2 are referenced by this last call. This would be
imprecise since line 21 is in the slice because this statement is needed to evaluate the
condition of the if statement at line 23 which uses only the values ofArg1 andArg3.
The value ofArg4 is newly defined at line 22 so the value ofArg4 computed at line
21 (the call) is not relevant to the final value ofArg4. And thenArg1 which is used to
compute the value ofArg4 through the call should not be considered and the statement
defining it at line 19 should not belong to the slice.

In [HRB90], to slice sequential inter-procedural programs, the authors use summary
arcs in their dependence graph in order to know for every callwhich parameter have
an effect on the results produced by the sub-program. But, as pointed Krinke, due to
the non-transitivity of the data dependencie, these arcs can’t be used to slice concur-
rent programs using dependence graphs. It is shown Figure 6.If all the dependences
were considered transitive then the statementUsed Nails := Used Nails + 1
would have to be included into the slice becauseNails := Unused Nails is con-
sidered as transitively dependent of statementUnused Nails := Total Nails
- Used Nails. Then the summary arc would link the variableNails with the vari-
ableUsed Nails and thus, the call toUpdate Nails (Used Nails, Nails)
would be considered as referencing theUsed Nails variable. This would build an im-
precise slice, since in concurrent programs, data dependence is not transitive and thus
the value of the parameter Used Nails has no effect on the final value of Nails.

However as Y builds only transitive data dependency sequences, and thus
builds a transitivity graph where there is always at least one path from a statement to
another one which belongs to a transitive data dependence sequence of statements, it

1 procedure Example i s
2 procedure Proc
3 (In1 : i n I n t e g e r ;
4 In2 : i n I n t e g e r ;
5 Out1 : out I n t e g e r ;
6 Out2 : out I n t e g e r)
7 i s
8 begin
9 Out1 := In1 ;

10 Out2 := In2 ;
11 end Proc ;
12
13 Arg1 : I n t e g e r := 0 ;
14 Arg2 : I n t e g e r := 0 ;
15 Arg3 : I n t e g e r := 0 ;
16 Arg4 : I n t e g e r := 0 ;
17
18 begin
19 Arg1 := 1 ;
20 Arg2 := 2 ;
21 Proc (Arg1 , Arg2 , Arg3 , Arg4) ;
22 Arg4 := 4 ;
23 i f Arg3 > Arg1 then
24 Arg2 := 6 ;
25 Arg1 := 7 ;
26 Proc (Arg1 , Arg2 , Arg3 , Arg4) ;
27 end i f ;
28 Put (Arg4) ;
29 end ;

1 procedure Example i s
2 procedure Proc
3 (In1 : i n I n t e g e r ;
4 In2 : i n I n t e g e r ;
5 Out1 : out I n t e g e r ;
6 Out2 : out I n t e g e r)
7 i s
8 begin
9 Out1 := In1 ;

10 Out2 := In2 ;
11 end Proc ;
12
13 Arg1 : I n t e g e r := 0 ;
14 Arg2 : I n t e g e r := 0 ;
15 Arg3 : I n t e g e r := 0 ;
16 Arg4 : I n t e g e r := 0 ;
17
18 begin
19 Arg1 := 1 ;
20
21 Proc (Arg1 , Arg2 , Arg3 , Arg4) ;
22 Arg4 := 4 ;
23 i f Arg3 > Arg1 then
24 Arg2 := 6 ;
25
26 Proc (Arg1 , Arg2 , Arg3 , Arg4) ;
27 end i f ;
28 Put (Arg4) ;
29 end ;

Fig. 5.Example of inter-procedural slicing

can build these summary arcs also in a concurrent context. Asshown Figure 6, only
the plain arrows are considered as transitive data dependences, the dashed ones are not
considered and thus are not added to the slice.

5 Examples

5.1 The robot example

The example presented Figure 7 is a simple robot which plantsnails. This program uses
three tasks : the main program, the task managing the right arm and the task managing
the left arm. It shows how program slicing reduces a program size and thus helps to
debug it.

The main program starts by asking how many times the nails boxshould be filled
when empty, then just surveys that the nail box always contains at least one nail. If
not, it calls the right arm to fill the mailbox. When the max number of filling has been
reached, the program stops. The left arm places the nail to plant (if there is at least one
nail in the box) and then asks the right arm to hit the nail withthe hammer. The right
arm waits orders and either fills the nail box or hits a nail with a hammer when asked.

Even if this source code is simple, it may be difficult to understand its behavior and
then to find bugs.

Transitive data dependence

Non transitive data dependence

Task execution

Task B

Unused_Nails := 2 * Unused_Nails;

procedure Update_Nails
 (Used_Nails : in Integer;

 Nails : out Integer)

end Update_Nails;

Nails := Unused_Nails;

Unused_Nails := Total_Nails − Used_Nails;

Used_Nails := Used_Nails + 1;

Task A

Put (Nails);

Update_Nails (Used_Nails, Nails);

Fig. 6.Exemple of precise slice for inter-procedural concurrent program

Suppose that one wants to check properties related to the value ofNails at the line
90 (the last statement of the main procedure). So the slice will be obtained by slicing the
original program with the slicing criterion〈90, {Nails}〉, and will allow to focus on the
statements that may have an effect on the variableNails. The sliced program is more
clear. Before the model-checking step one bug can already bediscovered when looking
at the use of the variableNails : at line 71, when it fills the box, right arm removes 10
nails from the count instead of adding them to the count. Afterwards model-checking
can be used to find more subtle mistakes, or to formally prove some property about the
program variables taking advantage of the reduced size of the slice.

Table 1.Part of the report generated by Y after slicing the program of the Figure
7

sliced statements :: 16 (55%)
sliced functions :: -
sliced procedures :: 6 (86%)
sliced entries :: 0 (0%)
sliced variables :: 2 (33%)

Table 1 displays some results about the slicing operation ofthe robot original pro-
gram. Although the result of slicing largely depends on the way the program has been
written, this table shows that more than 50%of the program statements have been sliced.
Assuming that the sliced procedures could be much more complex than a simple output,
the sliced statements ratio could be widely larger without increasing the computation
time which is instantaneous to slice this program.

5.2 The client-server example

The second example (Figure 8) shows a more subtle possible use of slicing operation.
Y slices concurrent programs in order to make easier the model-checking step of
Q. The size of the generated model and, in most cases, the size of the state space,
are intuitively related to the size of the studied program.

But for concurrent programs, the size of the state space is more related to the com-
binatory induced by the indeterminism of concurrency than to the size of the program.
Our second example shows that even when the original programis not significantly re-
duced, the slicing operation may be useful by removing a lot of combinatory from the
original program.

This example (Figure〈64, ∅〉) is a simple client-server architecture where the server
dynamically allocates a task for every client accessing itsservices. Here presence of
deadlock is checked ; thus the slicing criterion〈64, ∅〉 is used (last statement, no vari-
ables).

As recorded Table 2, the reduction obtained by program slicing operation is small,
but, when checking presence of deadlocks, Q use shows that the two lines re-
moved from the original program were generating a lot of combinatory that led to the
state space explosion.

Table 2.Part of the report generated by Y after slicing the program of the Figure
8

sliced statements :: 2 (18%)
sliced functions :: -
sliced procedures :: 0 (0%)
sliced entries :: 0 (0%)
sliced variables :: 1 (17%)

Here the slicing operation didn’t remove a lot of statements(although the state-
ments computed by the procedureGet Value could be much more complicated as it
is supposed to compute the requested service offered by the server) but removed a lot of
complexity of the program as shown in Table 3 in a instantaneous time which as to be
compared to the time needed to compute the nodes of the state space (which is naturally
long).

Table 3.State space generated by H for the model of the program of Figure 8

ClientsRunning tasksReachable statesReachable states with slicing

1 4 247 221
2 6 9 499 5 939
3 8 735 767 239 723
4 10 - 12 847 017

6 Related Works

A slicer for Ada programs already exists, Adaslicer [SC03],but it operates only on se-
quential programs. Few other tools have been designed for slicing concurrent Java and
C ANSI programs [DCH+99,Kri03,Zha99]. Only [Kri03] builds slices which take into
account the non-transitivity of data dependence in a concurrent context and demon-
strates that the slices are more precise and more quickly computed.

These approaches use augmentation of the dependence graphsand build all the de-
pendences between all the program statements. Thus they will have better execution
times than Y when computing a lot of slices for a given program, but will be
slower for a unique slice since they have to build the complete dependence graphs
while Y records dependences only w.r.t. the statements which already belong
to the slice. As Y is the first step of Q which carries out a formal analysis
by model-checking, building all possible slices of a program is not necessary.

7 Conclusions and further works

This paper has shown how static analysis can greatly help formal analysis to deal with
large and complex programs by removing useless statements regarding the property
to check and also by removing a lot of complexity from these programs. Other static
analysis approach could be used such as settling variable limits in order to limit at the
very most the size of types used and thus help to reduce the size of the state space.

The slicing algorithm carried out by Y is more adapted than previous ones to
be a first step of a complete formal analysis process, such theone performed by Q,
saving time and resources for the long and complex model-checking step which follows
the slicing step. Programs written in other programming languages could be sliced using
the technics presented in this paper, however the semantic and syntactic information on
the tree representation of the program as provided by ASIS (such as the query linking
the node of an identifier and the node of its declaration) has to be obtained.

References

[Che93] Jingde Cheng. Slicing concurrent programs - a graph-theoretical approach. InPro-
ceedings of the First International Workshop on Automated and Algorithmic Debug-
ging, pages 223–240. Springer-Verlag, 1993.

[CX01] Zhenqiang Chen and Baowen Xu. Slicing concurrent java programs.SIGPLAN Not.,
36(4):41–47, 2001.

[DCH+99] Matthew B. Dwyer, James C. Corbett, John Hatcliff, Stefan Sokolowski, and Hongjun
Zheng. Slicing multi-threaded java programs: A case study.Technical Report 99-7,
KSU, 1999.

[EKPP+05] Sami Evangelista, Claude Kaiser, Jean François Pradat-Peyre, Christophe Pajault,
and Pierre Rousseau. Dynamic tasks verification with Q. In International
Conference on Reliable Software Technologies (Ada-Europe), volume 3555, page 91.
Springer-Verlag, June 2005.

[EKPPR03] Sami Evangelista, Claude Kaiser, Jean FrançoisPradat-Peyre, and Pierre Rousseau.
Quasar, a new tool for concurent ada program analysis. InInternational Confer-
ence on Reliable Software Technologies (Ada-Europe), volume 2655, pages 168–181.
Springer-Verlag, June 2003.

[EKPPR06] Sami Evangelista, Claude Kaiser, Jean FrançoisPradat-Peyre, and Pierre Rousseau.
Comparing Java, C# and Ada monitors queuing policies : a casestudy and its ada
refinement. InAda Letters. ACM Press, 2006.

[Eva05] Sami Evangelista. High level petri nets analysis with helena. In26th International
Conference on Applications and Theory of Petri Nets 2005, ICATPN 2005, volume
3536, page 455. Springer-Verlag, 2005.

[Hoa74] C. A. R. Hoare. Monitors: an operating system structuring concept.Commun. ACM,
17(10):549–557, 1974.

[HRB90] Susan Horwitz, Thomas Reps, and David Binkley. Interprocedural slicing using de-
pendence graphs.ACM Trans. Program. Lang. Syst., 12(1):26–60, 1990.

[ISO95] ISO/IEC-15291. Ada semantic interface specification. 1995.
[Kri03] Jens Krinke. Context-sensitive slicing of concurrent programs. InProceedings of the

9th European software engineering conference held jointlywith 10th ACM SIGSOFT
international symposium on Foundations of software engineering, pages 178–187.
ACM Press, 2003.

[NR00] Mangala Gowri Nanda and S. Ramesh. Slicing concurrent programs. InProceedings
of the International Symposium on Software Testing and Analysis, pages 180–190.
ACM Press, 2000.

[SC03] Ricky E. Sward and A.T. Chamillard. Adaslicer: an adaprogram slicer. InProceed-
ings of the 2003 annual international conference on Ada, pages 10–16. ACM Press,
2003.

[Tip95] F. Tip. A survey of program slicing techniques.Journal of programming languages,
3:121–189, 1995.

[Wei84] M. Weiser. Program slicing.IEEE Transactions on Software Engineering, 10(4):352–
357, 1984.

[XQZ+05] Baowen Xu, Ju Qian, Xiaofang Zhang, Zhongqiang Wu, and Lin Chen. A brief survey
of program slicing.SIGSOFT Softw. Eng. Notes, 30(2):1–36, 2005.

[Zha99] Jianjun Zhao. Slicing concurrent java programs. InIWPC ’99: Proceedings of the
7th International Workshop on Program Comprehension, page 126. IEEE Computer
Society, 1999.

1 with Ada . Tex t IO ; use Ada . Tex t IO ;
2 with Ada . I n t e g e r T e x t I O ; use Ada . I n t e g e r T e x t I O ;
3
4 procedure Robot i s
5
6 U s ed N a i l s : N a t u r a l := 0 ;
7 N a i l s : N a t u r a l := 0 ;
8
9 task type Lef t Arms ;

10 Left Arm : Lef t Arms ;
11
12 task type Righ t Arms i s
13 ent ry H i t N a i l ;
14 ent ry F i l l N a i l s B o x ;
15 end Righ t Arms ;
16 Right Arm : R igh t Arms ;
17
18 task body Lef t Arms i s
19 procedure Take Nai l i s
20 beg in
21 P u t L i n e (” Le f t arm took a n a i l ”) ;
22 end Take Nai l ;
23
24 procedure S e t N a i l i s
25 beg in
26 P u t L i n e (” Le f t arm s e t t h e n a i l ”) ;
27 end S e t N a i l ;
28 beg in
29 l oop
30 i f N a i l s > 0 then
31 Take Nai l ;
32 N a i l s := N a i l s − 1 ;
33 S e t N a i l ;
34 Right Arm . H i t N a i l ;
35 end i f ;
36 end loop;
37 end Lef t Arms ;
38
39 task body Righ t Arms i s
40 procedure Take Hammer i s
41 beg in
42 P u t L i n e (” R igh t arm took t h e hammer ”) ;
43 end Take Hammer ;
44
45 procedure H i t N a i l 3 T i mes i s
46 beg in
47 P u t L i n e (” R igh t arm h i t t o t h e n a i l ”) ;
48 end H i t N a i l 3 T i mes ;
49
50 procedure Tak i n g N a i l s F r o m R es e r v e i s
51 beg in
52 P u t L i n e (” R igh t arm took n a i l s from t h e r e s e r v e ”) ;
53 end Tak i n g N a i l s F r o m R es e r v e ;
54
55 procedure P u t N a i l s I n B o x i s
56 beg in
57 P u t L i n e (” R igh t arm f i l l t h e n a i l s box ”) ;
58 end P u t N a i l s I n B o x ;
59 beg in
60 l oop
61 s e l e c t
62 accept H i t N a i l do
63 TakeHammer ;
64 H i t N a i l 3 T i mes ;
65 U s ed N a i l s := U s ed N a i l s + 1 ;
66 end H i t N a i l ;
67 or
68 accept F i l l N a i l s B o x do
69 Tak i n g N a i l s F r o m R es e r v e ;
70 P u t N a i l s I n B o x ;
71 N a i l s := N a i l s − 10 ;
72 end F i l l N a i l s B o x ;
73 end s e l e c t;
74 end loop;
75 end Righ t Arms ;
76
77 F i l l i n g : N a t u r a l := 0 ;
78 U Check : N a t u r a l := 0 ;
79
80 beg in
81 Get (F i l l i n g) ;
82 whi le F i l l i n g > 0 l oop
83 i f N a i l s < 1 then
84 Right Arm . F i l l N a i l s B o x ;
85 F i l l i n g := F i l l i n g − 1 ;
86 e l s e
87 U Check := U Check + 1 ;
88 end i f ;
89 end loop;
90 Put (N a i l s) ;
91 end Robot ;

1
2
3
4 procedure Robot i s
5
6
7 N a i l s : N a t u r a l :=0 ;
8
9 task type Lef t Arms ;

10 Left Arm : Lef t Arms ;
11
12 task type Righ t Arms i s
13 ent ry H i t N a i l ;
14 ent ry F i l l N a i l s B o x ;
15 end ;
16 Right Arm : R igh t Arms ;
17
18 task body Lef t Arms i s
19
20
21
22
23
24
25
26
27
28 beg in
29 l oop
30 i f N a i l s > 0 then
31
32 N a i l s := N a i l s − 1 ;
33
34 Right Arm . H i t N a i l ;
35 end i f ;
36 end loop;
37 end ;
38
39 task body Righ t Arms i s
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59 beg in
60 l oop
61 s e l e c t
62 accept H i t N a i l do
63
64
65 n u l l ;
66 end ;
67 or
68 accept F i l l N a i l s B o x do
69
70
71 N a i l s := N a i l s − 10 ;
72 end ;
73 end s e l e c t;
74 end loop;
75 end ;
76
77 F i l l i n g : N a t u r a l :=0 ;
78
79
80 beg in
81
82 whi le F i l l i n g > 0 l oop
83 i f N a i l s < 1 then
84 Right Arm . F i l l N a i l s B o x ;
85 F i l l i n g := F i l l i n g − 1 ;
86
87
88 end i f ;
89 end loop;
90
91 end;

Fig. 7.Slicing of Robot program with〈90, {Nails}〉 as slicing criterion

1 procedure S er v e r i s
2
3 Max Cl ien t : I n t e g e r := 5 ;
4
5 p ro t ec t ed type Datas i s
6 procedure Get Value (Value : out I n t e g e r) ;
7 p r i v a t e
8 Data Value : I n t e g e r := 0 ;
9 end Datas ;

10
11 p ro t ec t ed body Datas i s
12 procedure Get Value (Value : out I n t e g e r) i s
13 beg in
14 Data Value := Data Value + 1 ;
15 Value := Data Value ;
16 end Get Value ;
17 end Datas ;
18
19 Data : Datas ;
20
21 task type Thread i s
22 ent ry Get Value (Param : out I n t e g e r) ;
23 end Thread ;
24 t ype Access Thread i s a cces s Thread ;
25
26 task body Thread i s
27 beg in
28 accept Get Value (Param : out I n t e g e r) do
29 Data . GetValue (Param) ;
30 end Get Value ;
31 end Thread ;
32
33 task type Tas k S er v e r i s
34 ent ry Get Thread (Id : out Access Thread) ;
35 end Tas k S er v e r ;
36
37 task body Tas k S er v e r i s
38 beg in
39 fo r I i n 1 . . Max C l ien t l oop
40 accept Get Thread (Id : out Access Thread) do
41 Id := new Thread ;
42 end Get Thread ;
43 end loop;
44 end Tas k S er v e r ;
45
46 Th e Tas k S er v e r : Tas kS er v e r ;
47
48 task type C l i e n t ;
49 t ype A cces s C l i en t i s a cces s C l i e n t ;
50
51 task body C l i e n t i s
52 Id : Access Thread ;
53 Value : I n t e g e r ;
54 beg in
55 Th e Tas k S er v e r . GetThread (Id) ;
56 Id . Get Value (Value) ;
57 end C l i e n t ;
58
59 A C l i en t : A cces s C l i en t ;
60 beg in
61 fo r I i n 1 . . Max C l ien t l oop
62 A C l i en t := new C l i e n t ;
63 end loop;
64 end S er v e r ;

1 procedure S er v e r i s
2
3 Max Cl ien t : I n t e g e r :=5 ;
4
5 p ro t ec t ed type Datas i s
6 procedure Get Value ;
7 p r i v a t e
8
9 end ;

10
11 p ro t ec t ed body Datas i s
12 procedure Get Value i s
13 beg in
14
15 n u l l ;
16 end ;
17 end ;
18
19 Data : Datas ;
20
21 task type Thread i s
22 ent ry Get Value ;
23 end ;
24 t ype Access Thread i s a cces s Thread ;
25
26 task body Thread i s
27 beg in
28 accept Get Value do
29 Data . GetValue ;
30 end ;
31 end ;
32
33 task type Tas k S er v e r i s
34 ent ry Get Thread (Id : out Access Thread) ;
35 end ;
36
37 task body Tas k S er v e r i s
38 beg in
39 fo r I i n 1 . . Max C l ien t l oop
40 accept Get Thread (Id : out Access Thread) do
41 Id := new Thread ;
42 end ;
43 end loop;
44 end ;
45
46 Th e Tas k S er v e r : Tas kS er v e r ;
47
48 task type C l i e n t ;
49 t ype A cces s C l i en t i s a cces s C l i e n t ;
50
51 task body C l i e n t i s
52 Id : Access Thread ;
53
54 beg in
55 Th e Tas k S er v e r . GetThread (Id) ;
56 Id . Get Value ;
57 end ;
58
59 A C l i en t : A cces s C l i en t ;
60 beg in
61 fo r I i n 1 . . Max C l ien t l oop
62 A C l i en t := new C l i e n t ;
63 end loop;
64 end ;

Fig. 8.Client-Server example〈64, ∅〉 as slicing criterion

