Towards Modal Logic Formalization of
Role-Based Access Control with Object Classes

Junghwa Chae

Ecole Polytechnique de Montréal
Montréal, Québec, Canada
chae@cse.concordia.ca

Abstract. This paper addresses a variation of the role-based access con-
trol (RBAC) model with a classification mechanism for objects and a no-
tion of class hierarchies. In the proposed model, the authorization tasks
are performed based on the classes instead of the individual objects.
This results in more flexibility in terms of security administrative tasks
such as downgrading or upgrading individual objects and permission as-
signments. A formalization for this model is presented using K45 modal
logic. The prefixed tableaux method is used to reason about the access
control. The required rules for the reasoning process are also presented.
The proposed model is applied, via an example to protect the secrecy of
the information in a typical organization.

Keywords: Role-based access control, object classes, object class hier-
archy, modal logic, tableaux method.

1 Introduction

Role-based access control (RBAC) provides the abstraction mechanism for cat-
egorizing users in roles based on the organizational responsibilities of users [2, 6,
8,13]. The role is the association between a set of users and a set of permissions.
The role simplifies security management tasks to grant and revoke authoriza-
tions to an entire group of subjects at the same time. The defined roles can also
have hierarchical structures for more convenient authority managements.

In our analysis of security, we provide the RBAC model with a classification
mechanism for objects accessed in information systems. Our thesis is that ob-
jects are classified into groups called object classes, and classes can constitute
a systematic structure, known as a hierarchy. Once objects are categorized into
groups, authorization tasks can be executed based on the classes instead of the
individual objects. Semantically or functionally related object classes associate
with each other via inheritance relationships, and objects can be involved in these
hierarchical relationships through the classes in which they are categorized. Ob-
ject class hierarchy is a method to achieve further simplification in the reduction
of security management tasks and administrative costs. It also provides a way
to control the propagation of authorizations and to define boundaries for the
validity of authorization rules. This modification of the RBAC model provides
greater control and flexibility for the security administrative tasks.

Formal methods and reasoning techniques are useful tools for the representa-
tion and decision of access control. In this paper, we present a logical approach
based on a modal logic formalism [1,5,9]. There already exists a well under-
stood theory of how modalities interact with propositional logic connectives.
This framework provides a language for expressing properties and relationships
of security policies without considering the specific mechanisms for implement-
ing such policies. The semantics of the policy definitions for security is provided
using Kripke structures [5]. In developing a formalism for the proposed model,
our main contribution is the incorporation of the notion of object classes into
the work done by Abadi [1] and Massacci [9].

There has been much research done on logical frameworks for the reason-
ing of access control models. Woo and Lam [15] proposed a language to model
authorization and control rules. A major issue in their approach was the trade-
off between expressiveness and efficiency. For the logical formalism approach,
Jajodia et al. [7] proposed a logic-based language for specifying authorization
rules. Massacci [9] introduced a logic for reasoning about RBAC, by extending
Abadi et al.’s access control calculus [1]. They used modal logic to model con-
cepts such as users, roles, and delegation. Rabitti et al. [11] presented a model of
authorization for next-generation database systems using the notion of implicit
authorization. They developed an authorization model by including the proper-
ties of a class, class hierarchy, and composite objects. Bertino et al. [3] proposed
a formal framework for reasoning about access control models. They introduced
the concepts that subjects, objects, and privileges can be composed together in
hierarchical structures and authorization can be derived along the hierarchies.
Most existing work on RBAC concentrated on key points such as role hierar-
chies, user and privilege attributions. There has been little work that studied the
role-object relationships and the hierarchy for object classes in RBAC. The idea
of object classification for role-based policies was first introduced by Sandhu and
Samarati [14]. An RBAC model that includes the concept of object classes was
presented by Chae et al. [4] where the formalization was provided by description
logics. In this paper, we use this model together with the calculus developed and
extended by Abadi et al. [1] and Massacci [9] for the formalization. The existing
formalization, which is based on the modal logics, is modified to include the
notions of classification of objects and class hierarchy.

The rest of this paper is organized as follows: We begin with describing the
proposed RBAC model with object classification in Section 2. The language
developed by Abadi and extended by Massacci is reviewed in Section 3. The
syntax required to support the notion of object classes and their hierarchy is
given in the same section. The semantics for the existing and proposed operators
will be discussed in Section 4. Rules for the reasoning process are presented
in Section 5. The application of the proposed model and its formalization is
illustrated within an example in Section 6. We summarize our results in Section 7
and conclude with suggestions for future work.

2 Role-Based Access Control

RBAC provides the abstraction of subjects based on the inherent properties of
accesses. The abstraction of subjects organizes users with roles reflecting their
real job functions or their responsibilities. This approach simplifies security man-
agement by breaking user authorizations into two parts: one which assigns users
to roles and one which associates access rights to objects for those roles (see
Fig. 1).

UA
Roles PA > Permissions
(R) (]
% <
\su SR/ \ 5
% S L
v ‘
Constraints ; ;
. UA: user assignment
A = PA: permission assignment

RH: role hierarchy
SU: mapping from sessions to users
SR: mapping from sessions to roles

Fig. 1. RBAC model

Analogously, one might expect to achieve further simplification in the secu-
rity management if some abstraction is provided for objects. Objects could be
classified according to their type or to their application area. Grouping objects
into classes closely resembles the mapping of users to roles. Fig. 2 shows the
proposed model, which consists of five entities including a set of objects and a
set of classes. We also added a set of object assignments (OA) that relates each
object to a set of classes. Access authorizations of roles should then be defined
based on the object classes. A role can be given the authorization to access all
objects in a class, instead of giving explicit authorization for each individual
object. Objects that are in the same class can be accessible for users with roles
that have access right to that class. Ultimately, users exercise permissions on
objects via roles to which they are assigned and classes to which the roles have
access. We consider roles and object classes as mediators that let users exercise
permission. The modified model decomposes each permission into an operation
and an object. Therefore, the Permissions entity as depicted in Fig. 1 is removed
and two new components Objects and Classes are added in Fig. 2.

This modification of the RBAC model provides greater control and flexibility
for security administrative tasks. In particular, this approach simplifies and eases
the authorization management ; e.g., in order to add a new object to the system,
the corresponding object assignment assertion should only be included, whereas

Objects
(0}

Fig. 2. Proposed modified RBAC model

in the RBAC model, permission assignment should be explicitly given for each
single role that has the privilege of accessing the new object. Compared to roles,
object classes have a greater potential for simplifying security administration
since the number of objects in many systems is generally much larger than the
number of subjects.

2.1 Role Inheritance

In RBAC, roles are hierarchically organized into a role-subrole relationship that
is called role inheritance. The hierarchy is interpreted using a graph where each
node represents a role and a directed edge between two roles defines the impli-
cation of the authorization. Authorizations are implied along the edges of the
role hierarchy. When role R; inherits from role Rs, denoted by R; isa Ra, every
user U explicitly assigned to R; is also implicitly associated with Ro; likewise,
every permission explicitly associated with role Rs is implicitly associated with
role R;.

The role hierarchy is a partial order relation, which is reflexive, transitive,
and antisymmetric. Inheritance is reflexive because a role inherits its own per-
missions; transitivity is a natural requirement in this context, and antisymmetry
rules out cycles in the role hierarchy; i.e., roles that inherit from one another are
disallowed.

2.2 Class Inheritance

In the proposed model, a set of objects are grouped together for security pur-
poses. Each group is, in general, a set of individual objects, and is referred to
as a class. Objects are associated with certain properties that can be used to
construct groups for the authorization process. Examples of object properties
are security levels, ownerships, classes (as in the object-oriented terminology),
memberships, etc. Once the objects are categorized into finite sets of groups,

authorization tasks can be executed based on the classes instead of individual
objects.

Object classes are also organized into a hierarchical structure, called class
inheritance (note that the word class here is not used in the sense of object-
oriented programming but represents any named group of objects). The hierar-
chy can be based on different criteria such as security levels, generalization and
specialization associations, as in object-oriented systems, and so on.

In the role inheritance, the concept of implied authorization is applied. The
idea is to propagate the validity of the authorization rule at some level in a
hierarchy to its descendants [11]. Similarly, the same idea can be applied to
object classes through a hierarchy. Class hierarchies coupled with role hierar-
chies are implemented in the reasoning process. The definition of object classes
and its hierarchical structure provides more reasoning power compared to the
conventional RBAC approach.

We propose the following authorization policies:

— Access to a class implies access to the objects explicitly assigned to that
class;

— The class hierarchy is defined as follows: the relation C; =<, C means that all
roles given an access privilege p on class C; have the same access privilege
on class Cy. Therefore, a user U who has a certain access to class C is
allowed to exercise the same access on class Cs. In general, the direction of
the above inequality relation depends on the type of the operation; e.g., there
may exist another operation denoted by p’ for which the class inheritance
relation between C; and C> would change to Cy <,» Cy; for example, read
and write operations in mandatory policies where classes are formed based
on the security level (access classes). In this situation we can replicate each
classes by the number of operations that have different hierarchical relations;

e.g., C? and C?".

3 Language for Access Control

In this paper, we adopted the calculus developed by Abadi [1] et al. to model
access control in distributed systems. We equipped the calculus with proper
notations to describe the proposed concept of object classes and their hierarchy
in the context of modal logic.

The main syntactical components of this logic [1, 9, 10] are principals, requests
and a set of modal and propositional connectives and operators. Users and roles
are examples of atomic principals. Atomic users are denoted by A and B and
roles by R. Composite principals denoted by P and @ are built by the use of
different connectives such as the conjunction of principals (A & B), users in a
certain role (A as B) and principal on behalf of another principal (A for B). A
complete list of principals in typical distributed information systems is given by
Abadi [1].

The common practice in RBAC is to represent the combination of an opera-
tion over an object as an atomic request or a statement; e.g., read_filel. In this

approach, neither the operation nor the object by itself is considered as part of
the model; whereas the combination or the request is considered as a proposi-
tion that can be true or false depending on the state of the system. Composite
requests are then built using propositional logic connectives A, -, and =-. Since
our main objective is to categorize individual objects into object classes and to
use the class hierarchy for a reasoning process, following this common practice
would be inappropriate. In the operation-object approach, two statements such
as read_filel and write_filel are considered as two independent propositions ¢
and . However, our goal is to be able to separate these propositions into an
operation part plus an object part. This distinction makes it possible to use the
hierarchy associated with objects for reasoning about access control.

Atomic objects and classes are denoted by O and C, respectively. Object
classification is made using the statement O belong C, which closely resembles
Massacci’s user assignments to roles, A has R [9]. belong and has are both modal
operators. The operation over objects, read O or write O, is considered as an
atomic request which is a proposition in the model and can take different truth
values depending on the state of the system. These propositions are constructed
as a combination of an operator (write or read) and an object or a class (O or
(). User assignment statements as well as object classification statements are
also simple propositions. Composite propositions are formed by combining the
simple ones using propositional logic connectives.

In order to access objects in the system or to perform operations, users and
roles (users in roles) make the corresponding requests. The main purpose of the
access control policies is to determine whether these requests should be granted
or not. The requests are made using the modal operator req [9]; e.g., A req ¢
where ¢ is a proposition such as read O. The statement A req ¢ is considered as
a request or proposition by itself.

Privileges are given to users and roles using the control statement [1]. The
proposition R control ¢ gives the permission on ¢ to role R; i.e.,

(R control ¢) A (R req ¢) = ¢. (1)

Role hierarchies are defined using the isa modal operator; e.g., the statement
Ry isa Ry means that role Ry has at least all of the privileges that are assigned
to Ry. Operator C is used to define class hierarchies. The similar statement
C1 C O means that all users or roles that are given certain privileges on class
C; have at least the same privileges on class Cy (permissions given on class C
are valid for class C3). The role or object class hierarchy statements are also
considered as requests or propositions.

Our objective is to benefit from role and class hierarchies to reason about
access control; e.g., to be able to perform the following operations,

Ry control ¢ A Rj req ¢ A Rjisa Ry = ¢,
R control (read C1) A R req (read O) A O belongs Ca A Cy C Co = read O.

4 Semantics

The semantics are defined using Kripke structures [5]. The syntax of the language
described in the previous section consists of a set of agents (atomic principals),
objects and classes, a set of primitive propositions @, atomic requests mainly of
the form read O, and modal as well as propositional connectives and operators
to construct primitive propositions from objects and classes or build composite
agents and propositions. A Kripke structure denoted by M for a set of agents
over @ is a pair (W,Z) where W is a set of possible worlds (states) for a typi-
cal information system and Z is the interpretation function. What makes each
world distinct from the other is its specific truth values for the set of primitive
propositions. Each agent (principal) A is interpreted as a set of pairs such that
each pair consists of elements of W, i.e., AZ C W x W. Pair (w;,w;) € AT
indicates that state w; is one of the compatible states with state w; for agent A.
The interpretation of a proposition (request) is a set of states where the propo-
sition (request) is true (granted), i.e., ¢ C W. Classes are interpreted as set
of worlds in which they are accessible. Objects are uninterpreted entities within
the structure.

4.1 Principals and Hierarchies

The interpretations of a user or a role is given by a set of pairs that define the
compatible worlds (states) for the corresponding role or user; e.g.,

AT = {(wiij)) (wiawk)) (wiawm)) (wjvwn)) (wj’wm)) (wj7wp) ye. '}7 (2)

where wj, wy, wy, are among the compatible states with state w; for user A4; i.e.,
the state of the system will change from w; into one of the compatible states
according to the requests made by user A in state w;.

For the role hierarchy given by R; isa R, since R; can also act as R, all
compatible worlds of Ry should also be among the compatible worlds of Ry; i.e.,

R} C RY. (3)

As mentioned in Section 3, role hierarchy statements are considered as requests
or propositions in the system, hence R; isa Re will be interpreted as a set of
worlds where Relation (3) is valid:

(R isa Ry)" = {w|Vw' if (w,w') € R} then (w,w') € R}. (4)

4.2 Object Classes and Hierarchies

Each object class is interpreted as a set of states where it is accessible. As
explained in Section 2, when there are different types of operations in the in-
formation system, we replicate each class by the number of operations, e.g., C"

and C". In this case the interpretation of C" or C" indicates the set of worlds
where the class can be read or written, respectively,

T
Crivl = {w;, wj, ws, .. .}. (5)

The state w; exists in the interpretation of the object class C"[] iff the statement
read[write] C"[* is valid in this state.

As seen in Section 3, the statement C; C C5 indicates that all permissions
given on class C7 are also valid for class Cs. In all states where class C; is
accessible, class Cy is accessible too. From Relation (5), it follows that all states
in the interpretation of class C should exist in the interpretation of class Co;
ie.,

ct ccy. (6)

The class hierarchy statement can then be interpreted as,

(C1 E Cy)" = {w| if w e CT then w € CT}. (7)

4.3 Request Operator and Properties

The definition of the request operator req is similar to Fagin et al.’s knowledge
operator [5]. It has two arguments: a principal that makes the request and a
proposition that is requested. A request statement made in state w by principal
A is valid when its propositional argument is true in all compatible states with
w,

(M,w) = A req ¢ iff (M,w') |= ¢ for all w' such that (w,w’) € A%, (8)

Compatible states with state w for principal A are defined as a set of states
where all of the requests made by A in w will be granted.

The truth of A req ¢ does not imply that ¢ is granted. In fact, the access
control system has the responsibility of verifying whether ¢ should be granted
whenever A req ¢ is valid, i.e., the process of verifying if ¢ is true (granted) starts
after it is proven that the A req ¢ is true. The distinction between granting
a request and the truth of a request statement is crucial. According to the
definition (8), if ¢ is invalid in any of the compatible states with w for principal
A, then A is unable to make a valid request in w, i.e., (M,w) & A req ¢.
Whereas, when ¢ is true (granted) in all compatible states with w, then the
request statement A req ¢ is valid in w and the reasoner starts the process of
verifying whether the propositional argument of the request statement should
be granted.

The binary relations formed by the interpretation of users or roles exhibit
certain properties. Relations satisfying K45 properties; i.e., transitive and Eu-
clidean, fit best with the characteristics of access control in information systems.
The Euclidean property requires that for all wy,ws, w3 € W if (wy,ws) € AT
and (wy,w3) € AT, then (ws,w3) € AZ. The interpretation relations for princi-
pals should not be reflexive as the reflexivity necessitates that all valid requests

made in state w should be granted in the same state. The transitivity is re-
quired since successive requests can be combined into one composite request.
Similarly, a composite request made in state w can be considered as subsequent
individual requests that necessitates Euclidean property for the binary relations.
Given the definition (8) as well as the transitive and Euclidean binary relations
for users and roles, the request operator holds the following properties in the
Kripke structure M:

KEF(Areqop A Areq (9 = 1)) =F A req ;
KG if - ¢ then - A req ¢;

4+ Areqd =+ Areq (A req ¢);
5F-Areq¢ =+ Areq — (A req ¢);

Id - Areq (Areq ¢) =F Areq ¢.

K property is the direct consequence of the definition of the request operator. It
is valid whether or not binary relations exhibit transitive or Euclidean property.
K rule indicates that when a user makes a request, it also includes all the logical
consequences of her original request. In knowledge representation, properties 4
and 5 are called positive and negative introspection axioms, respectively. The
former follows from the transitive property of the binary relations and the latter
is the result of both transitive and Euclidean properties. KG is the knowledge
generalization rule that says if ¢ is granted in all states of structure M, then
A req ¢ is true everywhere. Id is the result of Euclidean property. Properties Id
and 4 show the idempotence of the req operator, i.e., the following equivalence
relation is valid,

Areq (Areq @) = Areq ¢. (9)
4.4 User Assignment and Object Classification
The interpretation of user assignment statements has operator is given by,
(A has R)" = {w|Vu' if (w,w') € R then (w,w') € AT}. (10)
The object classification statement O belong C is interpreted as follows:

O belong C™! = read|write] O = read|write] C"I"), (11)

4.5 Read and Write Statements

In Section 3, the read and write operations on objects and classes are constructed
with read and write operators, respectively. From the interpretation of object
classes given in Section 4.2, it follows that the statement read C” is true in
world w iff w € (CT)I. Hence read and write statements, only for object classes,
are interpreted below,

(read[write] CT[“’])I = {w| w e Ccrivl I} . (12)

10

Object interpretation is the similar to the class interpretation, i.e., it is given
by a set of individual states. However, the interpretation of objects do not re-
main constant even within a single state. Depending on the requests made by
principals to read or write an object in state w, its interpretation changes to
either C™% or 7, respectively. Relation (11) is used to convert read and write
operations on objects to the read and write operations on classes to which they
belong upon the corresponding requests that are made.

5 Rules and Reasoning

Although the semantic is given by the Kripke structure, reasoning at the level of
the structure would be inconvenient in access control systems. A set of inference
rules are then introduced. These rules together with the axioms form an axiom
system. Axioms are mainly given by the access control security policy as the
ACL (Access Control List), which consists of the following statements:

— Role hierarchies (RH), A, ; (R; isa R;);

— Object class hierarchies (CH), A, ; (Ci € Cj);

— User assignments (UA), A, ; (A; has R;);

— Object classifications (OC), A, ; (O; belong C;);

ik (R- control Op; Ck) ;
Op; € {read, write, ...}.

— Permission assignments (PA), A

The proof method is based on Massacci’s prefixed tableaux algorithm [10].
This method is used to test the satisfiability of a proposition. The tableaux
method builds a tree-like model M based on the input proposition and the global
axioms. In tree 7, each node is labeled with a proposition and has a prefix that
indicates the current state of the system. Tableaux rules are then repeatedly
applied to nodes in an arbitrary order for as long as possible. A branch B of
tree 7 is fully expanded when all rules have been applied to the nodes in B.
There exists a clash in B if a proposition and its negation exist in B with the
same prefix. The proposition ¢ is valid in an axiom system built based on a set
of global axioms G, if all branches of tree 7 that start with —¢ lead to clashes.
This indicates that —¢ is not satisfiable.

The rules for K45 modal logic, users in roles and role hierarchies are due to
Massacci [9] and are shown in Fig. 3. Here, o is the current state of the system.
o.A.n and ¢.A.m are present and new compatible states with o according to the
requests of principal A, respectively. Fig. 4 shows the required rules for object
class hierarchies where Op; € {read, write, ...}.

6 Example: RBAC Policies with Object Class Hierarchies

In this section, we illustrate a simplified model of a company with marketing and
R&D departments. The model includes six different roles: Administrator, R&D-
manager, R&D-staff, Marketing-manager, Marketing-staff, Customer. The role

11

P NP Lo (e AY) Lo T Lo Areq o
o: P o P p: o P |o': - dn: o: P K: o. An: P

a:
. o Areq o 5. oAn Avreq o & —(A req ¢)
“oAn: Areq 7 o Areqo T oAm: ()

. o:(UasR)req o
ur2: o: U req (R req ¢)

o: 2(U as R) req ¢
o: (U req (R req ¢))

url:

Lo Rl isa R2 o: Rl req ¢ . o: _‘(Rl isa RQ)
IK: o: Ro req ¢ I o: R1 req ©; o: ~(R2 req x;)

Fig. 3. Tableaux rules based on K45 properties, users in roles, and role hierarchy

o: Opj C{ o C{ C Cg o: ﬂOpj C% o: C{ C C%

Clii:

Ci:

o: Op] Cg o: _‘Op] C.17
o0 7 A req (Op; O) o: O belong C” o 7 A control (Op; ¢l - CiCCy
- o: A req (Op; C7) v o: A control (Op; C3)
c,. % Op,; C? 5. O belongC? c,: 7 —-0p; C? 5: O belongC?

o: Opj (@] o: —\Opj @]

Fig. 4. Rules for object classes and hierarchies

hierarchy shown in Fig. 6 is derived based on the lattice £ of the access classes
depicted in Fig. 5. Access classes are composed of a set of category and a security
level [12]. In this example the set of categories are subsets of {Marketing, R&D}
and security levels are defined by C (classified) and U (unclassified). We use the
following abbreviation to represent the concept of roles: Admin, RDMag, RDStf,
MktMag, MktStf, Cust. The role hierarchy (RH) is modeled using the following
inclusion axioms:

Admin isa RDMag, Admin isa MktMag, RDMag isa RDStf,
MktMag isa MktStf, RDStf isa Cust, MktStf isa Cust.

Objects are classified into six categories: Company-agenda, Patent, Technical-
report, Contract, Marketing-survey, and General-information. Two object classes
are defined for each category; one for read and the other for write operation.
Object class concepts are defined as: Agenda”, Patent”, TechRep”, Contract”,
MktSur”, Geninfo”, Agenda®”, Patent”, TechRep™, Contract®, MktSur®”, Geninfo™.
The classes for read and write are distinguished by superscripts r and w, respec-
tively. The class hierarchy is shown in Fig. 7. This hierarchy is also derived from

12

{{R&D,Marketing}, C)

/\

{{R&D}, C) {{Marketing}, C)
({R&D,Marketing}, L)

{R&DK {{Marketing}, U)

({}U)

Fig. 5. Security lattice £

access classes in Fig. 5. The inheritance relations among classes are given by the
following class hierarchy axioms (CH):

Agenda” C Patent”, Agenda” C Contract”, Patent” C TechRep”,
TechRep” C Geninfo”, Contract” £ MktSur”, MktSur” C Geninfo",
Geninfo” C TechRep", TechRep" C Patent”, Patent” = Agenda®,
Geninfo"” C MktSur®, MktSur” C Contract”, Contract” C Agenda®.

Permissions are assigned such that they relate roles and object classes that

Administrator

Company-agenda
/ \
R&D-manager Marketing-manager Patents Contracts
r [w
R&.D-staff Marketing-staff Technical-reports Marketing-survey
Customer General-information
Fig. 6. Role hierarchy Fig. 7. Class hierarchy

are located at the same level in the hierarchy; e.g., RDMag can read and write
Patent” and Patent", respectively. Permission assignment axioms (PA) for all

13

roles that exist in the model are shown below.

Admin control (read Agenda”), Admin control (write Agenda®),
RDMag control (read Contract”), RDMag control (write Contract®),
RDStf control (read TechRep”), RDStf control (write TechRep™),
MktMag control (read Contract”), MktMag control (write Contract™),
MktStf control (read MktSur”), MktMag control (write MktSur®),
Cust control (read Geninfo"), Cust control (write Geninfo™).

The class hierarchy reduces the number of permission assignment axioms;
e.g., for Admin, it is sufficient to specify the read permission only over the class
Agenda”. All read permissions over other classes for Admin can be implied using
the class hierarchy. A similar inference capability based on the role hierarchy
already exists in the RBAC model, e.g., the specification of permissions for RDStf
implicitly gives the same permissions to RDMag. However, the class hierarchy
provides additional axioms that can be used together with the role hierarchy to
enhance the reasoning power.

Suppose user Bob who is assigned to role Marketing-manager wishes to read
file f1 that is classified under Marketing-survey, MktSur”. This request is equiv-
alent to the following relation:

Bob req read f1.

We prove that the negation of the propositional argument of the above request,
—read f1, is not satisfiable in any model that is built based on the global axioms
RH, CH, UA, OC, and PA. The reasoning process (shown in Fig. 8) starts with
the negation statement. The global axioms used in the process of reasoning
are indicated with an italicized font. All branches that are shown here lead to
clashes. Since the negation is not satisfiable; i.e., the relation itself is valid and
Bob’s request should be granted.

7 Conclusion and Future Work

The notion of object classes is appended to RBAC. A method is introduced,
based on the modal logic, to formalize RBAC policies with object classes and to
use object class hierarchies for reasoning about access control.

In our approach, we replicated classes by the number of operations (C” and
C"™), and interpreted each of them as a set of individual states, Relation (5). This
approach closely resembles the original operation-object (read-filel) definition
of permissions in RBAC. Whereas, using the proposed method, one only needs
to replicate object classes rather than all individual objects. This results in a
great simplification for typical information systems where the number of objects
is usually quite large, however they can be categorized into few classes.

Not all axioms in the ACL have the same level of importance in an in-
formation system. While user assignment (UA) and object classification (OC)
statements can be specified by local managers, role and object class hierarchies

14

o: —read f1

o: Bob req (read f1) (UR)

o: Bob has MktMag (UA)

o: MktMag req (read f1) (IK)
o: f1 belong MktSur” (00)

o: MktMag req (read MktSur”) (Ck)
o: MktMag control (read Contract”) (PA)
o: Contract” C MktSur” (OH)

o: MktMag control (read MktSur") (Cy)

/ N\
o: "MktMag req (read MktSur") o: read MktSur”

1 o:read f1 (Co)

1

Fig. 8. Proving steps for the request Bob req read f1

as well as permission assignments can be considered as the signature of the ac-
cess control policies and should be determined by high authority administrators.
In the proposed method, object classification and class hierarchies are specified
via different operators belong and C. Operator belong provides a mechanism
to easily downgrade (sanitize) or upgrade a specific object into the appropri-
ate class, while C provides the hierarchies between classes determined by the
security administrator.

The use of an expressive logic, such as modal logic, simplifies the application
of different constraints that will be investigated in future work.

Acknowledgments. This research was supported by Institute for Information
Technology Advancement (IITA) & Ministry of Information and Communication
(MIC), Republic of Korea.

References

1. M. Abadi, M. Burrows, B. Lampson, and G. Plotkin. A calculus for access control
in distributed systems. ACM Trans. Program. Lang. Syst. (USA), 15(4):706 — 734,
Sept. 1993.

2. J.F. Barkely, V. Cincotta, D.F. Ferraiolo, S. Garrvrilla, and D.R. Kuhn. Role based
access control for the world wide web. NIST 20th National Computer Security
Conference, pages 331 — 340, 1997.

3. E. Bertino, B. Catania, E. Ferrari, and P. Perlasca. A logical framework for rea-
soning about access control models. ACM Trans. Inf. Syst. Secur. (USA), 6(1):71
127, 2003.

10.

11.

12.

13.

14.

15.

15

J.H. Chae and N. Shiri. Formalization of RBAC policy with object class hierar-
chy. In Proc. of the 8rd Information Security Practice and FExperience Conference
(ISPEC), 2007.

R. Fagin, J.Y. Halpern, Y. Moses, and M.Y. Vardi. Reasoning about Knowledge.
The MIT Press, Cambridge, Massachusetts, 1995.

D.F. Ferraiolo, J.F. Barkely, and D.R. Kuhn. A role based access control model
and reference implementation within a corporate Intranet. ACM Trans. Inf. Syst.
Secur. (USA), 1(2):34 — 64, 1999.

S. Jajodia, P. Samarati, M.L. Sapino, and V.S. Subrahmanian. Flexible support
for multiple access control policies. ACM Trans. Database Syst. (USA), 26(2):214
— 260, 2001.

M. Koch, L.V. Mancini, and F. Parisi-Presicce. A graph-based formalism for
RBAC. ACM Trans. Inf. Syst. Secur. (USA), 5(3):332 — 365, 2002.

F. Massacci. Reasoning about security: A logic and a decision method for role-
based access control. Lecture Notes in Artificial Intelligence (Subseries of Lecture
Notes in Computer Science), 1244:421 — 435, 1997.

F. Massacci. Tableaux methods for access control in distributed systems. Lecture
Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science),
1227:246 —, 1997.

F. Rabitti, E. Bertino, Won Kim, and D. Woelk. A model of authorization for
next-generation database systems. ACM Trans. Database Syst. (USA), 16(1):88 —
131, 1991.

P. Samarati and S.C. Vimercati. Foundations of Security Analysis and Design:
Tutorial Lectures, chapter Access Control: Policies, Models, and Mechanisms, pages
137-196. Springer Berlin Heidelberg, 2001.

R.S. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman. Role-based access
control models. IEEE Computer, 29(2):38 — 47, 1996.

R.S. Sandhu and P. Samarati. Access control: Principles and practice. IEEE
Communications Magazine, 32(9):40 — 48, 1994.

T.Y.C. Woo and S.S. Lam. Authorization in distributed systems: a new approach.
J. Comput. Secur. (Netherlands), 2(2-3):107 — 136, 1993.

