The DHCP Failover Protocol: A Formal
Perspective

Rui Fan' and Ralph Droms? and Nancy Griffeth? and Nancy Lynch!

! MIT CSAIL
2 Cisco Systems
3 Lehman College, CUNY

Abstract. We present a formal specification and analysis of a fault-
tolerant DHCP algorithm, used to automatically configure certain host
parameters in an IP network. Our algorithm uses ideas from an algo-
rithm presented in [5], but is considerably simpler and at the same time
more structured and rigorous. We specify the assumptions and behavior
of our algorithm as traces of Timed Input/Output Automata, and prove
its correctness using this formalism. Our algorithm is based on a com-
position of independent subalgorithms solving variants of the classical
leader election and shared register problems in distributed computing.
The modularity of our algorithm facilitates its understanding and analy-
sis, and can also aid in optimizing the algorithm or proving lower bounds.
Our work demonstrates that formal methods can be feasibly applied to
complex real-world problems to improve and simplify their solutions.

1 Introduction

The Dynamic Host Configuration Protocol (DHCP) [4] is a widely deployed
mechanism allowing devices to automatically obtain a unique IP address and
other configuration information needed for communication on an IP network
such as the Internet. Current implementations of DHCP use a single DHCP
server to assign addresses from a predefined address pool. If the server fails,
then addresses from the pool can no longer be reassigned, and are in effect lost
from the address space. DHCP has recently been supplemented by the DHCP
Failover (DHCPF) protocol [5], which manages an address pool using multiple
servers. DHCPF increases the fault tolerance of DHCP, and also allows greater
performance through load-balancing.

The main difficulty encountered in managing addresses using multiple servers
instead of one is the need to maintain a consistent view across all the servers of
the currently assigned addresses. Most standard database consistency techniques
cannot be used to solve the DHCPF problem because they are too slow. A key
insight of the algorithm described in [5] is to use two mechanisms for assigning
addresses. The first mechanism relies on synchronized clocks; it is fast, requiring
no communication, but limits how long addresses can be assigned. The second
mechanism is slower, using explicit acknowledgments between the servers, but
avoids the limitations on assignments. This algorithm is currently described in
an Internet Draft that is over 130 pages long. Part of the length of the Draft is

due to the need to deal with many possible types of concurrent server failures.
The algorithm represents different combinations of failures as states of a system,
and defines a large number of transitions between the states as failures occur or
are resolved.

In this paper, we look at the DHCPF problem from a more formal and
theoretical perspective. First, we extract the essential behavior of the algorithm
in [5] and precisely specify the behavior as traces of a set of interacting Timed
I/0 Automata (TIOA) [6]. In this formulation, DHCPF is a kind of timed mutual
exclusion problem. As in mutex, the safety condition requires that any address
is used by at most one client at a time. The liveness condition requires that,
under certain favorable timing conditions that are likely to occur in practice,
any client wanting an IP address is granted one, as long as some addresses are
available.

Our second contribution is to decompose this mutual exclusion problem into
several simpler and independent subproblems, each mimicking a standard prob-
lem in distributed computing. In particular, we view DHCPF as involving the
following two steps. First, for each IP address, we choose a leader server to be
the only server allowed to assign that address. The leader for an address can
change as different servers fail and recover, but we guarantee that there is at
most one leader at a time. Thus, the first part of the problem can be seen as a
multi-shot leader election problem. The second part of the problem consists of
the leader assigning its address in such a way that even if it fails, and a different
server becomes leader, the subsequent leader preserves the safety and liveness
properties on that address. This can be seen as implementing a single-writer,
multi-reader shared register, where the writer can change over time. In partic-
ular, only the current leader of an address is allowed to write assignments for
the address to the register, but any server that takes over for a failed leader can
read the register to ensure it does not double-allocate the address, and also gains
the privilege to write to the register. The main idea that we adopt from [5] is to
write to the register in two ways, either by an implicit, fast write, requiring no
communication but relying on synchronized clocks, or by an explicit, slow write,
using server acknowledgments.

There are several benefits to our formal treatment of DHCPF. First, the
precise specification of DHCPF helps end-users of the service, who may need a
rigorous understanding of the behavior of DHCPF that is difficult to obtain from
the Internet Draft. Second, implementing DHCPF as a composition of smaller
subalgorithms helps to understand and analyze its behavior, and also makes the
algorithm easier to improve or optimize. For example, we can study the effects
of tuning network parameters, such as the amount of clock skew or the bound on
message delay, on the performance of our algorithm by studying their effects on
the individual subalgorithms. We can also isolate the effects of different types of
failures on the algorithm to how they affect the subalgorithms. This isolation is
the main reason that our algorithm is simpler than the algorithm in [5]. Lastly,
our decomposition suggests that it may be possible to prove lower bounds for
the DHCPF problem by proving lower bounds for the subproblems, which seems

to be a considerably easier task.

Our treatment of DHCPF, while formal, was not mechanical. A considerable
effort was involved in distilling the expansive description of DHCPF in the In-
ternet Draft into a more concise formal specification. Nevertheless, parts of our
specification are still more complicated than we would like. A second problem
was finding a modular DHCPF algorithm, by matching parts of the specifica-
tion against self-contained distributed computing problems. Systematizing this
design process, indeed, formalizing the formalization process, would be a fasci-
nating challenge.

The remainder of this paper is organized as follows. In Section 2, we describe
the TIOA model. We give an overview of DHCPF and state the properties it
satisfies in Section 3. We describe a DHCPF algorithm in Section 4, and prove
its correctness and performance properties in Section 5. Finally, we conclude in
Section 6.

2 Model and Notation

We model the clients, servers and communication network of our DHCPF algo-
rithm as interacting Timed I/O Automata (TTOA). TIOA allows modeling of
automata with continuous state spaces, whose executions evolve in real time.
Our algorithm does not use the full power of this formalism. In what follows,
we describe the TIOA model only to the extent necessary to understand our
algorithm and its proof. Please see [6] for additional details. Each Timed I/0
automaton has internal state variables, and discrete or continuous actions which
change its state. We call discrete actions simply actions, and we call continuous
actions trajectories. Actions always occur instantly, while a trajectory may have
a positive time duration. As an example, we can model a mobile robot by a
TIOA. The state represents the position of the robot. Trajectories are move-
ments of the robot, and actions are changes in its destination (which we imagine
as involving an instantaneous computations).

Several TIOAs can be composed. Roughly speaking, this forms a new au-
tomata whose state space is a Cartesian product of the state spaces of the con-
stituent automata, and whose action space is the union of the constituent action
spaces. However, certain states and actions become identified in the composi-
tion process; we describe this in more detail later. An execution is a sequence
of the form a = yyo17102...7v,0,. Here, each ; represents a trajectory, and
each o; represents a (discrete) action. We say a state occurrence (resp., action
occurrence) is a particular instance of a state (resp., action) which occurs in an
execution. Note that this is different from the state or action itself, which can
occur multiple times in an execution. Let o be an execution, and let s,s’ be
state occurrences in . We write s < s’ if s occurs before s’ in . We define
s = s’ in the obvious way; we also extend this notation to action occurrences
0,0’ in a. We write s” € [s, '] if s is a state occurrence in «, and s < s’ < 5.
Lastly, we say the time at which a state occurrence s occurs is the sum of the
time durations of all the trajectories before s. We write this as ((s).

To model the clients in DHCPF, let C' be an index set representing an ar-
bitrary set of client processes. We use the notation ,4',, etc. throughout the

paper to denote clients. Similarly, let .S be an index set representing server pro-
cesses; we use 7,7, 71, etc. to denote servers. Each server can fail or recover.
When a server fails, it stops performing any actions or trajectories. When it
recovers, all its internal state variables are set to default values, and it begins
executing from its initial state. We do not consider malicious server behaviors.
Let @ denote an arbitrary set of IP addresses; we write ¢ € @ for a particular IP
address. Servers will allocate addresses from @ to clients. Each client and server
is equipped with a real valued monotonically nondecreasing clock variable, which
intuitively represents that process’s perception of real time*. For the remainder
of this paper, fix an arbitrary A € RZ% We assume the clock of any process
differs from real time by at most A. That is, we assume

Assumption 1 Letk € CUS. Then for any state occurrence s in any execution,
we have |s.clocky, — ((s)] < A.

Clients and servers communicate over a point-to-point message passing net-
work. We assume that the network may lose, duplicate or reorder messages,
but does not generate spurious messages. The network works as follows. Let
k,k' € CUS be any two processes. When k wants to send a message m to k’
during some action o, we say that k adds (m, k') to buf fer. If m is not lost by
the network, then after a finite but nondeterministic time representing the mes-
sage delay, the action recvy i/ (m) occurs, causing k' to receive m; furthermore,
k' knows that k sent the message. Note that these notational conventions are
adopted from [6]. In describing our DHCPF algorithm in Section 4, we assume
a network service exists which implements these communication actions.

3 A Formal Specification of DHCPF

In this section, we formally define the DHCPF problem. In particular, we de-
fine the interface between clients and servers in DHCPF. We also define the
assumptions DHCPF makes about its operating environment. Finally, we define
the properties DHCPF satisfies, given the environmental assumptions, in terms
of the traces of a TIOA. In Section 4, we describe an algorithm satisfying this
specification.

3.1 The DHCPF Interface

Figure 1 shows the client/server interface in DHCPF. It mimics, except for su-
perficial differences, the client/server interface of the non-fault-tolerant DHCP.
This is done to make the use of DHCPF instead of DHCP transparent to clients,
in order to facilitate its deployment.

We will describe the interface of DHCPF by describing its typical modes of
operation. DHCPF works by leasing IP addresses to clients. That is, a server
tells a client that it can use a certain address up to some lease time, after

4 Note that clock evolves according to a trajectory. In fact, clock is the only variable
in our algorithm whose value follows a trajectory; the values of all other variables
only change by (discrete) actions.

which the client is supposed to release the address. There are two main types of
interactions in DHCPF. When a client does not have a lease, it tries to request
a lease. If the client already has a lease, it can try to renew the lease. Each type
of interaction requires sending and receiving multiple messages. It is helpful to
be able to identify all the messages in an interaction. We do this by labeling all
the messages sent during the interaction by an interaction instance k. Any two
different interactions (even by the same client) are labeled with different «. This
labeling can be achieved using standard timestamping techniques [7, 3]. We let
K denote the set of all interaction instances.

We now describe the interaction for a client 7 to request a lease. Please also see
Figure 1. Client 7 first broadcasts a discover message to all the servers, labeled
by some interaction instance k. A server j that receives the discover message
sends an offer message to 3 for some address ¢ € $°. Note that j must offer 4
an address immediately (if any are available). That is, the DHCP (and hence
DHCPF) specification does not give j time to first communicate with the other
servers to find out the current lease times for all addresses, before deciding what
address to offer to i. It is precisely this need for an immediate response by j
that prevents most database algorithms from being used to implement DHCPF.
i may get offers for several ¢’s from different servers. ¢ chooses one such ¢ as
its preferred IP address, and broadcasts a request to lease that ¢ until time 7.
Some server then responds to ¢ with an ack message, leasing ¢ to ¢ until time 7/,
where 7/ may be different from the lease time 7 which 4 requested. i is supposed
to release ¢ when i’s clock variable equals 7'.

If ¢ already has a lease for ¢ until time 7/, then 4 can try to renew its lease. To
do this, ¢ broadcasts a renew message to all the servers, including in the message
the values of ¢, 7/ and 7, where 7 is the new lease time that ¢ wants. The message
is labeled by k. Some server then responds to ¢ with an ack message extending
1’s lease on ¢ to time 7", where 7/ may be different from #’s desired lease .

In this paper, we assume that clients behave correctly. In particular, we as-
sume that clients follow the order of interaction described above to request or
renew an address. We also assume that clients release an IP address after their
lease for the address expires. In general however, the servers have little means
to enforce, or sometimes to even detect such behaviors. We leave the task of
dealing with faulty clients as interesting future work.

Lastly, for any j € S, we model server j’s (stop) failure and recovery via the
fail; and recover; actions.

3.2 DHCPF Assumptions

In this section, we describe the assumptions that DHCPF makes about its envi-
ronment. The safety and liveness properties of DHCPF rely on different assump-
tions. The DHCPF safety property roughly says that any IP address is leased to
at most one client at a time. To satisfy this property, DHCPF requires a failure

5 If all the addresses in @ are already offered or leased to other clients, then the server
does not send offer.

bcast; ((discover, k)) 1 looks for an IP address; & is the interaction instance.
recv; ;((discover, k)) J receives i’s discover message.

send; ; ((offer, k, ¢)) j offers ¢ to i.

recv; ;((offer, k, ¢)) i receives j’s offer.

bcast; ({request, k, ¢, 7)) |i requests ¢ till time 7.

recv; ;(({request, x, ¢, 7)) |j receives i’s lease request.

bcast;({renew, s, ¢, 7, 7')

recv; ;((renew, k, ¢, 7, 7'))|j receives i’s renew message.
send; ;((ack, k, ¢, 7)) J gives i address ¢ till time 7.
recv; ;((ack, k, ¢, 7)) 1 receives j’s acknowledgment.
fail;, recover; j fails or recovers.

) |7 wants to renew ¢ till time 7; 7’ is i’s last lease time for ¢.

Fig. 1. The DHCPF protocol interface, for ¢ € C;j € S.

detector, which is a service telling every server which other servers have failed.
The DHCPF liveness properties says that when a client requests or tries to renew
an address, it will get an address within a few message round trips’ time, as long
as some addresses are available. This property is only satisfied in “nice” periods
of an execution. These assumptions are described in the proceeding sections.

An effort was made to “minimize” the assumptions that DHCPF relies upon.
Indeed, at an intuitive level, it seems unlikely that any DHCPF algorithm can
work correctly if servers have no idea about each others’ status, if servers con-
tinuously fail and recover, or if the network delays messages for very long times.
Furthermore, we believe that the assumptions we make are sufficiently weak that
they are likely to be satisfied, at least typically, in practice. Finally, while we
do not study questions related to minimality or impossibility in this paper, we
believe that these may be interesting future work.

In the remainder of this section, let o be an arbitrary execution. All state
and action occurrences are assumed to occur in a.

A Failure Detector Service Recall that each server can fail, and then subse-
quently recover. We define the following.

Definition 3.1 Let j € S and let s be a state occurrence. We say j is alive in
s if there exists an action occurrence o = recover; such that o < s, and for all
action occurrences o' such that o < o’ < s, we have o’ # fail;. If j is not alive
m s, we say j is dead in s.

We assume that all servers are initially alive.

Definition 3.2 Let s and s’ be state occurrences, with s < s'. We let A(s,s’) =
{j1(G € S)N Vs €s,8]:] is alive in s")} be the set of servers that are alive
throughout the interval [s, s'].

A failure detector service T informs each server which other servers are alive
or dead. In practice, 7" might represent a system administrator who manually
informs servers about failures and recoveries. Formally, we assume that for each
j € 8, in addition to j’s actions shown in Figure 1, j also has the following two
sets of actions, which we call FD-actions.

1. Vj" € S : recvrj((dead, j')). T informs j that j’ is dead.
2. Vj' € S : recvr ;((alive, j')). T informs j that j is alive.

In order to be useful, T is required to be accurate and timely. In particular,
let A be some nonnegative constant. The accuracy property says that if a server
j' has been alive or dead for A or more time before the current time, then any
information 7" gives to a server j about j’ is correct. The timeliness property
says that if j is alive for at least A time, then j will receive failure information
from 7" about every server j' € S. These are captured in the following definition.

Definition 3.3 Let A € RZ°. We say a failure detector T is A-perfect if the
following hold for any state occurrences s and s’ such that ((s') — {(s) > \.

1. (Accuracy) Let j, 5" € S, and suppose the action occurrence recvy, ;({(dead, j'))
(resp., recvr;((alive,j'))) immediately precedes s'. Then j' is dead (resp.,
alive) in some state during [s, s'].

2. (Timeliness) Suppose j € A(s,s’). Then for every j' € S, either
recvy,j((fail, j')) € [s,s'] or recvr;({recover,j')) € [s, s'].

In order to guarantee correct behavior, the DHCPF algorithm we describe in
Section 4 requires that a A-perfect 1", for some finite . In [5], a weaker failure
detector is used which can sometimes give incorrect information. However, in
such cases, the algorithm of [5] can actually allocate the same IP address to
more than one client. We believe that this limitation is inherent. That is, we
believe (though we do not prove) that any fault-tolerant algorithm implementing
a reasonable form of DHCP requires the use of a server failure detector satisfying
similar safety and liveness properties to those we define above. Indeed, failure
detectors are a widely adopted notion in distributed computing, and are provably
necessary to solve many problems, especially agreement problems of the type
similar to DHCPF; see e.g. [1, 2].

Stable and Timely Periods We now describe the assumptions DHCPF makes
in order to satisfy its liveness properties. As mentioned earlier, these properties
only hold during “nice” periods of an execution. A nice period roughly corre-
sponds to a sufficiently long time interval in which no servers fail or recover, and
in which messages are delivered quickly. More precisely, we define the following.

Definition 3.4 Let A € RZ9, and let s and s’ be state occurrences with s < s'.
We say that [s, s'] is A-stable if we have the following

1. There exists j € S such that j is alive in state occurrence s”, Vs : ((s)— A <
¢(s") < ¢(s).
2. For all action occurrences o such that ((s) — A < (o) < ((¢'), we have

o & {fail, recover, }.

Thus, [s,s'] is A-stable if in the entire time duration [((s) — A, {(s')], no servers
fail or recover, and there is at least one live server.

Definition 3.5 Let s and s’ be state occurrences such that s < ', and let X €
R29 be such that A < ((s')—((s). We say [s, §'] is A\-timely if for any message m,
for any k, k' € CUS, and for any action occurrence o adding (m, k') to buf fer,
such that ((s) < (o) < ((s')—A, there exists action occurrence o’ = recvy iy (m),
such that 0 < o’ < s’.

Thus, [s, s'] is A timely if the interval is at least A in duration, and any message
sent during the interval at least A time before s’ is received during [s, s'].

3.3 DHCPF Properties

In this section, we state the properties that DHCPF guarantees, under the as-
sumptions of Section 3.2. We first define the following.

Definition 3.6 Leti € C, ¢ € &, and let s be a state occurrence.

1. We say i owns ¢ in s if there exists an action occurrence
o = send, ;({ack, *, ¢, T)) such that o < s, and ((s) < T+ A.

2. We let w(s,¢) ={i|(i € C) A (i owns ¢ in s)}.

Thus, ¢ owns ¢ in s if ¢ has been sent an acknowledgment before state s to
lease ¢ until time 7, and s happens at or before time 7 + A. Intuitively, the A
in the definition is to account for the fact that, when ¢ is given a lease on ¢ for
time 7, 4 may not release ¢ until real time 7 + A, due to i’s clock skew.

The following definition describes the properties satisfied by the DHCPF
protocol. The safety property states that at most one client owns any IP address
at a time. The request and renew liveness properties are complicated to state. But
intuitively, they simply say that in nice time periods in which servers do not fail
or recover, messages are delivered quickly, and not all IP addresses have already
been allocated, a client always succeeds in quickly requesting or renewing an
address. The liveness properties are described in more detail following Definition
3.7.

Definition 3.7 Let v,5 € RZ°. Suppose T is a v-perfect failure detector. Then
an algorithm A satisfies the DHCPF protocol if A’s external actions includes
the actions shown in Figure 1, and for every execution « of A, the following
properties hold.

1. Safety: For any ¢ € ® and any state occurrence s, we have |w(s,)| < 1.

2. Request Liveness: Let i € C, k € K, and let s and s’ be state occurrences,
with s < s'. Let o = bcast;((discover, k,*)). Let o; = recv; ;((discover, K, *,)),
Vj € S. Let o4 = send, ;({offer, K, ¢, *)),Vo € D. Suppose that [s,s'] is (4v +
4A)-stable and 0-timely, and {(s") — ((s) > 45. Also suppose that o € [s, '],
and (o) < ((s') —45. Then there exists &1, &2 € RZ0 such that the following
hold.

(a) For every j € A(s,s"), we have o; € [s,5'], and ((o;) < ((0) + 9. Let s;

be the state occurrence immediately following o;, ¥j € A(s,s’).

(b) FEither there exists ¢ € ¢ such that o4 € [s,s'] and {(o4) < ((0)+ 26, or
for every ¢ € @, there exists j, € S such that one of the following holds.

i. Let cré = send;, .({offer,*,¢,x,)) and 035 = recv, j, ((request, x, ¢, *)).
We have aé =< 0j,, ((aé) > ((0j,) =& —24, and O'(Qz) A aj,.

it. Let crf;’, = recv, . ((request,*, ¢, 74)). We have 0'35 < 0j,, and ((0;,) <
max(7y + 34, C(Ug) + & +34).

iti. Let cré = recvi . ((renew, x, ¢, 75, x)). We have oé < 0j,, and((0;,) <
max(7y + 34, (o)) + & +34).

(c) Let &' C &, and suppose Vo € &' : o4 € [s,s']. Let
oy, = recvy i(ack, k, ¢, %)),Y¢ € @. Then there exists ¢ € @' such that
oy € [s,8'] and ((07,) < ((0) + 40.

3. Renew Liveness: Let i € C, k € K, 7,77 € RT, ¢ € &, and let s and
s’ be state occurrences with s < s'. Let o = send, ;({ack,*,$,7')), o' =
bcast;({renew, k, ¢, 7,7')), and ¢” = recv, ;({ack, k, ¢, *)). Suppose [s,s'] is
(dv+4A)-stable and d-timely, and ((s")—C(s) > 25. Also, suppose o € [s, '],
with 0 < o', (o) < {(s')—20 and ((¢') <7 —0—A. Then o’ € [s,s'] and
((o”) < C(o") +25.

We now describe conditions 2 and 3 in more detail. Intuitively, the request
liveness property says that a client that requests an IP address will get one
quickly, unless there is some “excuse” not to give it one. Specifically, let [s, s']
be an interval that is at least 46 time long, and is stable and timely. Then if a
client 7 broadcasts a discover message at time ¢t = ((o), its message is received
by all live servers no later than time ¢ + 6. Condition 2.b states that either i
receives an offer for some IP address ¢, or the servers have an excuse not to offer
1 any address; conditions 2.b.7 — 2.b.44¢ list various excuses not to offer ¢ address
¢. In condition 2.b.7, ¢ has recently been offered to some client, but has not been
requested. Thus, ¢ is reserved for the other client. In 2.b.7¢, some client requested
¢ for time 7, in action occurrence . The quantity max(74+34, ((03)+&2+34)
represents a lease for ¢ that was potentially given out to that client®. If (o s) <
max(Tg + 3A,C(U;Z) + & + 3A), then ¢’s discover message arrived at server j,
before the last (potential) lease for ¢ has expired, which justifies ¢ not being
offered ¢. Condition 2.b.797 is similar to 2.b.i7, but deals with a renew on ¢ by
another client. Lastly, condition 2.c says that if i is offered some IP addresses,
then 7 will also be given a lease for some such address no later than time ¢ 4 44.
The renew liveness condition says that in a stable and timely interval, if client
1 tries to renew ¢ sufficiently long before its previous lease 7/ on ¢ expires, then
1 will be granted a new lease on ¢. Finally, note that despite their complicated
statement, the excuses in the liveness property are in some ways inherent to the
DHCPF problem. Nevertheless, it would be desirable to find a more succinct

way of expressing them.
5 The & and A terms represent some “slack” in the estimate for the potential lease.

4 A DHCPF Algorithm

In this section, we describe an algorithm satisfying the DHCPF specification in
Definition 3.7. Our algorithm uses ideas described in [5], and also introduces
several new ones. Compared to [5], our algorithm is more structured, and is
considerably simpler to understand and analyze. The algorithm is based on a
decomposition of the DHCPF protocol into two subproblems, with the goal to
base the subproblems on well-studied problems in distributed computing, and to
maximize the amount of “independence” between the subproblems. In the first
problem, we find, for each address ¢ € @, a server which we call the leader for
¢. The leader for ¢ is the only server that is allowed to lease ¢ to the clients.
The leader for ¢ may change during an execution, as servers fail and recover.
However, we will ensure that at all times, there is at most one leader for ¢. We
call this the leader election problem. Given a leader for ¢, say j € S, the second
problem involves j leasing ¢ to the clients in a way such that even if j fails,
and another server j' takes over as leader for ¢, the leases given out by j’ for ¢
will not conflict with leases given out by j. We call this the lease problem. In
the remainder of this section, we first describe an algorithm to solve the leader
election problem, then give an algorithm which uses the leader election algorithm
to solve the lease problem. Our DHCPF algorithm, satisfying the properties in
Definition 3.7, is the (formal) composition of these two algorithms.

4.1 Leader Election Algorithm

We now present the Flect algorithm for solving the leader election problem. We
first describe the algorithm, then prove the properties it satisfies in Theorems
4.2 and 4.3. For the remainder of this section, fix an arbitrary v € RZ%. Elect
uses a v-perfect failure detector 7. Recall that A is a bound on the maximum
clock skew of any server (or client).

input recvy,;({dead, j’)) input recvy,;((alive, j'))
Effect: Effect:
live « live\{j'} live « live U {j'}
for every ¢ € ¢ do for every ¢ € ¢ do
if ((7 = ming live)A if (j # ming live) then
(clock > rec-time + 2v + 2A)) then leader «— leader \ {¢}
leader «— leader U {¢}
lead-time[¢] < clock output lead; (¢)
lead[¢] — true Precondition:
lead[¢] = true
input alive; Effect:
Effect: lead[¢p] — false

rec-time «— clock

Fig. 2. The Elect; algorithm, for j € S.

The pseudocode for server j running the Elect; algorithm is shown in Figure
2. For each ¢ € @, let <4 be a total ordering on the set S. If S' C S, then

ming S” denotes the minimum server in S’, with respect to ordering <,. The
idea of Elect is to let the min, live server be the leader for ¢7. Information
about which servers are alive is provided to j by T7; j keeps track of the servers
it thinks are alive in the set live, which initially equals S. j keeps track of the
IP addresses for which it is the leader in the set leader®; leader initially equals
(). lead[@] is a helper variable to flag when j becomes the leader for ¢. When j
recovers from a failure, it stores the time of its recovery in rec-time. Whenever
j receives an alive message about server j' from 7, 7 adds j’ to live. After this,
if for any ¢ € @, j is no longer the ming live server, it removes ¢ from leader.
When j receives a dead message for j' from 7, j removes j’ from fail. Then,
if j becomes the ming server for ¢, and if j’s current time is sufficiently larger
than j’s last recovery time, j becomes leader for ¢, by adding ¢ to leader. j also
records the time it becomes leader in lead-time[d].

Correctness of FElect Before stating the correctness properties Elect satisfies,
we first define the following.

Definition 4.1 Let ¢ € @, and let s be any state occurrence. We say (2(s,d) =
{j1 (G €8)N (¢ € s.leader;)} is the set of leaders for ¢ in s.

Recall that for state occurrences s < s, A(s,s’) is the set of servers that are
alive throughout the interval [s, s'], and ((s) is the real time at which s occurs..
The following safety property states that for any address ¢, there is at most one
server that is the leader for ¢ at any time. Due to lack of space, we omit the full
proof of the theorem; it appears in the full version of this paper.

Theorem 4.2 (Safety) For any execution a of Elect, any state occurrence s
in a, and any ¢ € P, we have |2(s,p)| < 1.

Proof. The basic idea is that each server waits for a period of time after it
recovers before trying to become leader. During that time, because 7" is timely,
the server will be able to hear about any other live servers which might be
competing to become leader. Thus, all candidates to become leader will know
about each other, and so only the minimum one will be elected leader. O

The following liveness property says that in any sufficiently stable state oc-
currence, for any ¢ € @, the ming live server is the leader for ¢. The proof
appears in the full paper. The basic idea is that in a stable execution, all the
live servers know about each other, and so the minimum live server is elected
leader.

Theorem 4.3 (Liveness) Let « be any execution, and let s be any state oc-
currence such that s is (v + 4A)-stable. Then for all ¢ € D, we have ¢ €
s.leadermin, A(s,s)-

 Note that the reason we use a (possibly) different ordering < for each ¢ is for load-
balancing. Indeed, we can define a canonical ordering < on S and let the minimum
(w.r.t. <) live server be the leader for every IP address; but this may overload the
minimum live server while the other servers do nothing.

8 Note that j can be the leader for several addresses at the same time.

4.2 Lease Algorithm

In this section, we describe the lease algorithm, uncreatively named Lease. Lease
uses FElect; in particular, every server j € S running Lease needs to know lead-
time[g];, for all ¢ € ®, and also needs to know leader;. That is, j needs to know
when it last became the leader for ¢ (if ever), and what addresses it is leader
for. The Lease algorithm is shown in Figure 3. We first describe the algorithm,
then prove the properties it satisfies in the next section.

Consider any ¢ € @, and suppose j is the current leader for ¢. The main thing
Lease needs to ensure is that when j gives out a lease for ¢, the other servers
know about this lease in some way, so that if j later fails, the next leader for ¢
will not give out a conflicting lease. To let other servers know about its leases, j
gives out two types of leases: an (intuitively, short) Minimum Client Lead Time
(MCLT) lease, and an (intuitively, long) acknowledged lease. For the remainder
of this paper, we fix a constant y € RT which we call the MCLT value. Roughly
speaking, when a client 7 sends j a request message to lease ¢ until time 7, j first
gives i a lease equal to j’s current clock value plus p. This is the MCLT lease;
note that it may be less than 7. Immediately after acknowledging the client, j
broadcasts a potlease-write message to all the servers containing ¢ and 7. When a
server j' receives this message, it sets potlease[¢];s < 7; now, j’ knows that some
client has requested a lease of 7 on ¢. 5/ also acknowledges 7 with a potlease-
write-ack message. When j receives acks about ¢ and 7 from every server in S,
Jj sets acklease[p]; «— 7. Now, if i sends a renew message for ¢ for time 7/, j
will give ¢ a lease for time 7; this is an acknowledged lease. Thus intuitively, j
begins by giving i a “temporary” MCLT lease, intended to tide i over while j
negotiates a “real” acknowledged lease for ¢ with the other servers.

input leadj((b)
Effect:
potlease[¢p] «— max(lead-time[p]+
w4+ 24, potlease[d])

input recv; ; ((discover, k, 7))
Effect:
S — {¢| (¢ € leader) A ((x, ¢, *) & reserved)A
(potlease[¢p] + 2A < clock)}
if S # 0 then
choose ¢ € S
reserved «— reserved U {(k, ¢, clock)}
add ((offer, k, ¢, 0), i) to buffer

input recv; ; ((request, k, ¢, 7))
Effect:
reserved «— reserved\ (i, %, %)
if (¢ € leader) A (potlease[d] + 2A < clock) then
acklease[¢] — clock + p
T «— max(7, acklease[$])
potlease[d] «— acklease[d]
add ((ack, k, ¢, acklease[}]), i) to buffer
for every j/ € S do
add ((potlease-write, ¢, v,), j/) to buf fer

input recv; ; ((renew, K, ¢, T, 7'/))
Effect:
if (¢ € leader) A (7! > clock) then
acklease[¢] «— max(clock + p, acklease[d])
7 «— max(7, acklease[$])
potlease[¢] «— max(acklease[d], potlease[p])
add ((ack, k, ¢, acklease[d]), i) to buffer
for every j/ € S do
add ((potlease-write, ¢, ., 7), j') to buffer

input recv; ((potlease-write, ¢, k, 7))
Effect:
potlease[p] «— max(T, potlease[d])
add ((potlease-write-ack, ¢, ., T), j') to buf fer

input recvj/ i ((potlease-write-ack, ¢, k, 7))
Effect: '
write-acks[k] «— write-acks[r] U {5’}
if write-acks[k] = S then
acklease[¢p] «— max (7, acklease[d])

input cleanup ()
Bffect:
S — {(5,d,t) | (5, b, t) € reserved)A
(t < clock — 6)}
reserved « reserved \ S

Fig. 3. The Lease; algorithm.

We now describe the Lease algorithm for a server j in more detail, keeping in
mind the above schema. In j’s initial state, we set reserved; = 0, potlease[¢]; =
acklease[p]; = 0,Y¢ € @, and write-acks[k]; = 0,Vk € K. To request a lease, a
client ¢ broadcasts a discover message. When j receives this message, it checks
three things. First, j checks that it is the leader for ¢, i.e. ¢ € leader;. Then j
checks that ¢ ¢ reserved;; that is, no other client asked j for ¢ before i. Lastly,
J checks that potlease[¢]; +2A < clock;. potlease[d]; represents the j’s estimate
of the highest lease which could possibly have been given out for ¢, by any server
(e.g., by previous leaders for ¢). If potlease[¢]; +2A < clock;, then j knows that
any previous leases for ¢ have definitely expired. If all three conditions hold, then
j sends an offer for ¢ to 7. j also adds i’s interaction instance k, along with ¢
and the current time, to reserved;. Having received offers from possibly multiple
servers, i sends a request message for its preferred address. If j receives a request
message from i for ¢ with lease time 7, it again checks the above conditions. If
they hold, then j sends ¢ an MCLT lease, i.e., a lease equal to clock; + p. j also
sends potlease-write for ¢ and 7 to all the servers. If j/ receives j’s potlease-write,
it sets potlease|g];; «— max(r, potlease[d];s), and acknowledges j with potlease-
write-ack. j keeps track of which servers have acknowledged it in write-acks[k];.
When write-acks[k]; = S, j sets acklease[¢]; «— max (7, acklease[d];).

When a client ¢ which currently has a lease time 7/ for ¢ asks j to renew ¢ for
time 7, j first checks that it is the owner for ¢, and then that 7’ > clock;. The
latter condition checks that the current lease 7" has not yet expired, giving 7 the
right to renew ¢. If both conditions hold, j sets acklease[¢]; «— max(clock; +
W, acklease[d];), and sends ¢ a lease for ¢ until time acklease[¢];; thus, j gives
an acknowledged lease. j also broadcasts potlease-write for ¢ and 7 to the other
servers.

For the remainder of this paper, fix a constant § € RT. The cleanup; action
removes addresses from reserved; that were offered at least 6 time ago to some
clients, but have not been requested. This is to reclaim addresses offered to
clients that fail (or are slow) after being offered an address.

4.3 The Composed DHCPF Algorithm

We define our DHCPF algorithm to be the formal composition [| y FElectj x Lease;.
We refer to [6] for a full description of the composition operator x. Briefly, x
works by sharing the variables that the composed automata have in common,
and identifying the output actions of one automaton with the input actions of
the same name of another automaton. In our case, this means that for all j € S,
FElect; and Lease; both have access to the variables leader;, and lead-time[¢];,
V¢ € @. Elect; and Lease; have only one type of action in common, lead;(¢), V¢ €
¢. By composing the algorithms, the input action lead;(¢) of Lease; is triggered
whenever the output action lead;(¢) of Elect; occurs. Thus, Elect; notifies Lease;
whenever j becomes the leader for ¢. We will call [, Elect; x Lease; the algorithm
C, for “composed”.

5 Properties of C

In this section, we show that the execution traces of C satisfy the DHCPF specifi-
cation in Definition 3.7. In the remainder of this section, fix & = 90171 ... TnVn
to be an arbitrary execution of C. Define s; to be the state of C immediately
before 7y, for k € 0..n. We first consider the safety properties.

5.1 Safety Properties of C

The basic idea for showing that C never allocates the same IP address to more
than one client is to show that the potlease[@] value of the leader for ¢ is always
an overestimate of the actual lease given out for ¢. For example, suppose the
last lease for ¢ was given out by server j' # 7, at real time ¢. Then, if ;' gave
out an MCLT lease, the value of the lease is approximately ¢ + u. If 7 becomes
the leader for ¢, at a time t' > ¢, its first step is to set its potlease[¢] value to
at least t/ + pu + 2A, which overestimates the real lease time. Otherwise, if the
lease given out by j’ was an acknowledged lease, then j received a potlease-write
message for the lease from 5, and thus also set its potlease[] value to be at least
the value of j'’s lease. Now, because the leader’s potlease[¢] value is at least as
large as the highest lease given out for ¢, and because the leader checks that
the current time on its clock (plus some slack) is larger than potlease[¢] before
giving out a new lease for ¢, then ¢ will never be double allocated. We now state
a series of lemmas to formalize this idea. Due to lack of space, the complete
proofs appear in the full paper. The proof method in most cases is an induction
on the execution length. That is, we show a lemma holds in the initial state of
the execution, and check that every step of the execution preserves the lemma.
The lemmas were chosen so that these checks are typically quite straightforward.
In fact, most of the proofs seem to be checkable by interactive theorem prover
tools.

The first lemma states that potlease[¢]; never decreases during c, for any j
and ¢.

Lemma 5.1 Let j € S,¢ € @, and let s and s’ be state occurrences such that
s < s'. Then s.potlease[¢]; < s'.potlease[];.

We define the following.

Definition 5.2 Leti € C, k € K, ¢ € D, 7,7 € RZ%, and suppose there exists
an action occurrence o = bcast;({request, k, ,T)) or o’ = bcast;({renew, k, ¢, T,7'))
in a. Then we define i, =1, ¢ = ¢, and 7, = T.

Thus, i, ¢, and 7, are the client, IP address and desired lease time asso-
ciated with a request or renew interaction instance x. Note that these are well
defined because every interaction in « uses a different x, so that at most one of o
or ¢’ can occur in . The following lemma says that given an interaction instance
k and its associated ¢,, and 7, if one server is contained in the write-acks|x]
variable of another server, then the former server’s potlease[d,] is at least 7.

Lemma 5.3 Let k € K, j,j' € S, and let s be a state occurrence. Suppose
J € s.write-acks|k]j . Then s.potlease[dy|; > Ty.

The next lemma compares the values of potlease[d], acklease[¢] and clock
at different servers, for any ¢. The basic proof idea is that j can estimate
acklease[d]; either through a potlease-write message from j' when j’ gives out
an acknowledged lease, or by adding p to j’s own clock, when j' gives out an
MCLT lease. The 2A term accounts for the possible skew between j and j'’s
clocks.

Lemma 5.4 Let ¢ € @, j,5' € S, and let s be a state occurrence. Then we have
max(s.potlease(d);, s.clock; + p + 2A) > s.acklease[p];.

The next lemma states that the potiease[¢] value of the leader for ¢ is at
least as large as any acklease[¢] value. The proof uses Lemma 5.4, the fact that
there is at most one leader for ¢ at a time (by Theorem 4.2), and the fact that
J sets potlease[d]; to max(lead-time[¢]; + p+ 24, potlease[¢];) upon becoming
leader for ¢.

Lemma 5.5 Let ¢ € @, j € S, and let s be a state occurrence. Then if £2(s, ¢) #
0, we have s.potlease[¢]q(s,4) > s.acklease[d];.

The next lemma states that acklease[¢] never decreases, for any j and ¢.

Lemma 5.6 Let j € S,¢ € @, and let s and s’ be state occurrences such that
s < s'. Then s.acklease[¢]; < s'.acklease[¢];.

Combining the above lemmas, the following theorem states that at most one
client is assigned any IP address at any time. Intuitively, the theorem holds
because the leader for ¢ has a good estimate of the maximum possible lease
given out for ¢ using potlease[p], and checks that this lease has expired before
giving out a new lease for ¢.

Theorem 5.7 Any execution of C satisfies the safety property in Definition 3.7.

5.2 Liveness Properties of C

The next two theorems state that C satisfies the request and renew liveness
conditions of the DHCPF specification. Recall that 0 is the amount of time a
server reserves an IP address for a client after receiving its discover message.
Complete proofs appear in the full paper.

Theorem 5.8 Let & = 6, and & = p. Then any execution of C satisfies the
request liveness property in Definition 3.7.

Proof. Despite the complicated statements of the request and renew liveness
properties, it is in fact straightforward to show that C satisfies them. This is
because the properties are basically a list of all the problems which might occur
to prevent liveness. Thus, the liveness proof consists of showing that when all
such problems are ruled out, C is live. O

Theorem 5.9 Any execution of C satisfies the renew liveness property in Defi-
nition 3.7.

Combining Theorems 5.7, 5.8 and 5.9, we have shown that C satisfies all the
properties of a DHCPF protocol.

6 Conclusions

In this paper, we presented a formal specification of a fault-tolerant DHCP
algorithm for unique IP address assignment. The algorithm is implemented as a
composition of two algorithms, modeling dynamic versions of the leader election
and shared register problems. This structure facilitated the proof of correctness
of the algorithm. Its simplicity also lends well to practical implementations and
deployment.

There are several directions for extending our work. While we feel that
DHCPF is naturally modeled as a timed mutual exclusion problem, as in our
Definition 3.7, there seems to be substantial freedom in choosing the various
parameters and assumptions making up this definition. For example, is a failure
detector really necessary to implement DHCPF? Do we need stable and timely
periods to ensure liveness? If so, can these periods be made smaller than in our
definition? Can we find other natural ways to characterize liveness properties,
perhaps avoiding the complexity of the request liveness definition? In another
vein, having specified DHCPF in a particular way, is the decomposition of the
problem into leader election and shared register abstractions the best one? For
example, does this decomposition ensure the most independence between the
subproblems, so that each problem can be solved in isolation and later com-
posed? Does decomposing DHCPF into subproblems lead to a less efficient, if
also less complex solution than solving the problem as a monolithic whole? Some
of these questions can be expressed as formal questions of lower bounds. For oth-
ers, especially the design issues, we currently lack a proper theory to rigorously
address them. We hope that our abstract model and analysis contributes to
understanding these interesting and important problems.

References

1. Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest failure
detector for solving consensus. J. ACM, 43(4):685-722, 1996.

2. Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable
distributed systems. J. ACM, 43(2):225-267, 1996.

3. Danny Dolev and Nir Shavit. Bounded concurrent time-stamping. SIAM J. Com-
put., 26(2):418-455, 1997.

4. Ralph Droms. Dynamic Host Configuration Protocol. RFC 2131 (Draft Standard),
March 1997. Updated by RFCs 3396, 4361.

5. Ralph Droms, Kim Kinnear, and Mark Stapp et al. DHCP Failover Protocol,
http://wwws.ietf.org/proceedings/03mar/I-D /draft-ietf-dhc-failover-12.txt, March
2003.

6. Dilsun K. Kaynar, Nancy A. Lynch, Roberto Segala, and Frits W. Vaandrager. The
Theory of Timed I/O Automata. Morgan and Claypool, 2005.

7. Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Commun. ACM, 21(7):558-565, 1978.

This article was processed using the A TEX macro package with LLNCS style

