Coordination via Types in an Event-based Framework*

Gianluigi Ferrari!, Roberto Guanciale?, Daniele Strollo!%, Emilio Tuosto?

! Dipartimento di Informatica,
Universita degli Studi di Pisa, Italy
{giangi,strollo}@di.unipi.it
2 Jstituto Alti Studi IMT Lucca, Italy
{roberto.guanciale,daniele.strollo}@imtlucca.it
3 Computer Science Department, University of Leicester
et52@mes.le.ac.uk

Abstract. We propose a novel approach to service choreography through a typed
process calculus that features an event notification paradigm for coordinating dis-
tributed components (e.g., services). Basically, the type system expresses coordi-
nation policies for handling the events spawn in a network so that distributed
components react to events when the type of their public interface is “compati-
ble” with (the policies expressed by) the types of signals.

Remarkably, the type system can naturally handle multi-party sessions, as shown
in the formalisation of the OpenID protocol which requires multi-party sessions
for handling user identities

1 Introduction

A well known paradigm for programming/modeling distributed systems is event notifi-
cation (EN, for short), where distributed computational components can act as publish-
ers and/or subscribers. When a component intends to send data to or requests a service
from other components, it issues an event that eventually shall trigger a reaction from
subscribers that previously subscribed for such kind of events. An important character-
istic that discriminates EN systems lays in how the middleware dispatches events. Two
main approaches are possible: topic-based and content-based mechanisms [5,16].

The dispatching mechanism in topic-based (also known as subject-based) EN sys-
tems is simpler than in content-based systems. In topic-based EN systems, events are
categorized into topics which subscribers register to. When an event belonging to a topic
7T is emitted, all the components subscribed for T will eventually react to the event. No-
tice that publishers and subscribers have to know the topics at hand. In content-based
EN, component decoupling is enforced by allowing subscribers to register for events
satisfying a given property. When an event is emitted the middleware has to dispatch it
to all the subscribers whose property holds on that event (an example of content-based
is SIENA [4]). Notoriously, content-based dispatching mechanisms must be efficient
because notification sets, i.e. the set of subscribers that must be notified for the event,
can be order of magnitude larger than in topic-based EN [6,18]. A main advantage of

* Research supported by the EU FET-GC2 IST-2004-16004 Integrated Project SENSORIA and
by the Italian FIRB Project TOCALIT.

2 G. Ferrari, R. Guanciale, D. Strollo and E. Tuosto

content-based EN is that publishers and subscribers do not have to share any a pri-
ori knowledge about the topics. Subscribers use, instead, a language for expressing
properties on events that publishers must simply accomplish with when emitting their
events.A more abstract content-based model is the so called fype-based EN [9] where
topics are replaced by types (in a suitable type language). Typed events are also used in
commercial middlewares (see [9] and the references therein).

This paper considers the Signal Calculus (SC) [11], a topic-based EN process cal-
culus, and recasts it into a type-based framework, the eXtended Signal Calculus (XSC).
The XSC calculus is a “typed version” of SC where events are emitted with types that
coordinate publishers/subscribers interactions. For instance, an XSC publisher can emit
an event with type T x T’ that should be received by subscribers that can react to events
of type T and 7. XSC types have a twofold role. First, typing allows subscribers to fil-
ter their events of interest (as usual in type-based EN). Second, publishers exploit type
information to specify which (kind of) subscribers should react to events. For instance,
in the previous example, a subscriber that is able to react only to events of type T will
not be capable of reacting to an event T x . The way types are used is indeed the main
original contribution of XSC with respect to standard type-based EN systems.

A further advantage of XSC is that types allow us to handle sessions so that a sort
of “virtual communication link” among publishers and subscribers can be established
despite they do not need to know each other’s names. Intuitively, a session identifies the
scope within which an event is significant: partners that are not in this scope cannot react
to events of the session. Furthermore, the session handling mechanisms provided by
XSC can deal with multi-party sessions in a natural way. At the best of our knowledge,
multi-party sessions are ruled out from other approaches. For instance, in [13,3,2] only
two-party sessions are tackled. Indeed, these proposals aim to model the basic use of
sessions as done in many protocols of e.g. the IP-stack (TCP, HTTP, etc.). We argue that
XSC complements these approaches by providing higher-level constructs on sessions
that allow a closer formalization of more abstract protocols where multi-party sessions
are relevant.

To demonstrate the adequacy of our approach, we apply XSC to specify the OpenlD
protocol [17], a complex protocol for managing distributed identities whose behavior
requires many parties to participate to the same session. XSC mechanisms have allowed
us to identify and formally specify all the assumptions underlying the definition of the
OpenID protocol. We argue that our approach will make easier to reason and verify
properties of protocols requiring multi-party sessions.

The main effort of this paper is on the formal definition of XSC showing its ade-
quacy to handle complex coordination policies via typing information. This is part of an
ongoing work on the design, implementation and experimental evaluation of a middle-
ware, called JSCL [11], supporting coordination policies for service-oriented applica-
tions. The distinguished feature of our approach resides in the close interplay between
formal definition and implementation: the implementation of the JSCL middleware is
driven by the formal definition of the (X)SC calculus.

Structure of the paper Section 2 reviews the basic features of the SC calculus. Section 3
introduces the concept of multi-party sessions on events and shows how it yields a syn-
chronization mechanism. Section 4 introduces XSC types. The operational semantics

Coordination via Types in an Event-based Framework 3

of XSC is presented in Section 5. In Section 6 we specify the OpenlID protocol. Finally,
Section 7 gives some concluding remarks.

2 Preliminaries: Signal Calculus

The Signal Calculus (SC) is a process calculus introduced in [11] as a foundational
model of the JSCL (after Java Signal Core Layer) programming middleware, for coordi-
nating distributed components (e.g., web services). SC relies on the EN paradigm where
components, the basic building blocks of SC, interact by issuing/reacting to events. A
component represents a ’simple’ service interacting via asynchronous signal passing.
Each component is identified by a unique name, which, intuitively, can be thought of as
the URI of the published service. The signals exchanged among components are mes-
sages containing information regarding the managed resources and the events raised
during internal computations. Signals are classified by fopics; specifically, each compo-
nent specifies (i) the reaction to activate on reception of signals of a certain topic and (ii)
the set of event flows, namely the collection of component names the emitted signals
will be delivered. Hence, while reactions define the interacting behavior of the compo-
nent, flows define the component view of the coordination policies. The SC primitives
allow one to dynamically modify the topology of the coordination policies by adding
new flows and reactions to components.

Standard EN paradigms rely on brokered communication; SC, instead, adopts a
non-brokered notification mechanism where subscription and emission are explicitly
tagged with naming information, e.g. the name of the target components. This avoids
any centralization point by distributing the connection managing to each involved par-
ticipant. Brokered EN paradigms are more appropriate when coordination is handled
by an orchestrator, while non-brokered approaches fit much better when choreography
is adopted. For a detailed comparison among brokered and non-brokered EN see [14].

The adoption of the EN paradigm, for managing coordination policies has two main
advantages. On the one hand, it is a well known programming model and, on the other
hand, it permits the distribution of coordination activities and of the underlying com-
putational infrastructure. This distribution is obtained by decoupling publishers and
subscribers. The intuitive idea is that publishers and subscribers do not rely on any ’a
priori’ knowledge.

The dynamic flavor of the SC calculus permits modeling a wide range of coordi-
nation policies for service-oriented applications (e.g. in [10] the primitives have been
used to deal with dynamic and heterogeneous networks). However, other primitives
providing high-level abstractions for programming are desirable. In particular, in the
current formulation, information associated to signals is not structured and topics can-
not be created dynamically. Furthermore, the notion of session abstraction is missing:
components cannot keep track of concurrent event notifications.

4 G. Ferrari, R. Guanciale, D. Strollo and E. Tuosto

3 Extended Signal Calculus

In this section, we present an extension of the SC calculus, called XSC, that permits
managing of sessions and is also capable of handling structured topics via suitable

types.

3.1 Managing Sessions

The calculus is centered around the notion of component. A component a[B]% is a ser-
vice identified by a unique name a: the public address of the service. The expression
B describes service internal behavior. Expressions R and F, called reactions and flows,
respectively, have to be thought of as the service interface. We assume a set of topic
names A (ranged over by 7T), a set of signal variables (ranged over by x) and a set of sig-
nal names (ranged over by s,s1,s52...). Signal names represent data exchanged among
components and should carry additional information even if this feature is not explicitly
modeled. Finally, we assume a set of component names a, b, Hereafter, we adopt the
notation d to denote a set of component names.
The syntax of behaviors is given by the following grammar,

B:=0|B|B |B|

’ 5:107.B (Signal emission)

’ vt.B’ (Topic creation)

| +[x:1©M — B].B (Lambda reaction)
| +[x:1©7 — B].B’ (Check reaction)

| +lt~ad].B (Flow update)

where the productions in the first row have the usual process algebraic meaning. A sig-
nal emission’s : T©1'.B’ describes the emission of the signal s of topic T over the session
identified by the topic T'. Topics can be freshly generated using the topic creation prim-
itive. A lambda reaction +[x : ©©AT — B|.B' installs a “generic reaction” for the topic
T in the component interface; this reaction handles all signals with topic T, regardless
of their session. In the reaction behavior B, v and x are bound by the lambda reaction®.
After the installation of a reaction the continuation B’ is executed. Conversely, check
reaction installs a reaction that can handle only signals having the topic 7 issued for the
session T’ and, in this case, only x is bound in the reaction behavior B. A flow update
+|T ~~ d|.B extends the flow of a component, specifying the set of component names
d to which deliver signals having topic t. After the installation of a flow, the behavior
B’ is executed.
Reactions and flows syntax have the following syntax:

R:= 0| RR F:=0|F|F
| x:TOM — B (Lambda reaction) | T~~d (single flow)
| x:1©1T — B (Check reaction)

4 See Appendix A for a formal definition of free and bound names of the binders of XSC.

Coordination via Types in an Event-based Framework 5

where the empty reaction (resp. flow) 0 cannot respond to any signal (resp. cannot emit
a signal for any receiver) and reaction (resp. flow) composition R|R allows a component
to react to (resp. to emit) different kinds of signal. Reactions R; and R, are called
subreactions of the reaction composition R} |R;.

Reactions describe how a component reacts upon the reception of a signal. As
pointed out before, a lambda reaction is triggered by signals independently from their
session, while a check reaction reacts only to signals in the session T'. Once a reaction
to a signal takes place, the behavior B will be executed in the component in parallel
with the existing behaviors. Flows describe the component view of the choreography:
a component with a single flow T ~~ @ can deliver signals of topic T to components
specified in d.

Networks describe component distribution and carry signals exchanged among com-
ponents. Network syntax is defined as follows:

N:z=0 | aB|} | NN | (s:t©1@a) | v©.N

A network can be empty 0, a single component a[B]®, or the parallel composition of net-
works N||N’. Networks carry signals exchanged among components. The signal emis-
sion spawns into the network, for each target component, an “envelope” (s : 1©T@a)
containing the signal and the name a of the target component. Finally, the last produc-
tion allows to extend the scope of freshly generated topics over networks.

The structural congruence over reactions, flows and behaviors is the smallest con-
gruence relation that satisfies the commutative monoidal laws for (R, |,0), (F,|,0) and
(B, | ,0). Also, for the structural congruence over behaviors, the following laws hold:

vt.0=0, (vi.B) | B'=v1.(B|B'), ift ¢ fn(B)
and, whenever B =B':

+[x:T1©M — B].B" = +[x:1©M — B'].B"
+[x:1©7 — B].B' =+[x:1©7v — B'].B”

If B = B/, the following rules hold for structural congruence over reactions:

x:TOM — B=x:TOM — B
x:10T7 - B=x:107 — B

Similarly, = is the smallest equivalence relation that respects the commutative monoidal
laws for (N, ||,0) and the following ones:

a0)% =0, v1.0 =0, (VI.N)|N' = vt.(N|N), if t ¢ fn(N')

Fi=F Bi=B, Ri=R t¢ fn(R)U fn(F)U{a}

Q[Bl]ﬁl = 0[32}% 7 avi.BX =vt.a[B|R

To give an intuition of the features and the facilities of XSC, we consider a simple
scenario. The operational semantics will be presented in Section 4.

6 G. Ferrari, R. Guanciale, D. Strollo and E. Tuosto

Fig. 1. An example of synchronization between two components

3.2 Joining events

Since XSC components are autonomous entities communicating through asynchronous
primitives, it could be useful to introduce a lightweight synchronization mechanism that
allows us to express that a task can be executed whenever other concurrent tasks have
been completed. In this scenario we show how to encode a form of join synchronization
among concurrent tasks.

Figure 1 shows an emitter E, two intermediate components C; and C,, and the join
service J. The emitter E starts the communications raising two events of different topics
toward C and C that perform an internal computation and then notify their termination
by issuing an event to the join service. The component J waits that both the intermedi-
ate services have completed their tasks and then executes its internal behavior B. The
signals sent to C| and C; are both related to the same session 7 that is later used by J to
apply the synchronization on the same workflow. Clearly, the two intermediate services
Cj and C; can concurrently perform their tasks, while the execution of the service J can
be triggered only after the completion of their execution.

This example can be modeled by the XSC network E||Cy || Cs]|

J, where:

E 2 e[vis: 11015 : 12©1.0]°

Ti ey T

Ci & 027 O, i=1.2
JAa j[or(f)ﬂl@kf_""[xl:W@T_’m-0

The join component has only one active reaction installed for signals having topic 7.
When the two intermediary services forward their signals, the envelope containing the
Ty event cannot be consumed by the join, and remains pending over the network. The
reception of the T; envelope triggers the activation of the join generic reaction. The
reaction reads the session of the signal 7| and creates a new specialized reaction for the
signal topic T,. This reaction can be triggered only by signals that refer to the session
received by the T signal. When such kind of signal is received, the proper behavior B
is executed. Notice that the creation of the specialized reaction for the T, implies that a
possible pendent envelope is consumed.

4 Structured Topics

We have described how the session mechanism permits to specify complex coordina-
tion policies by constraining the ways components may react to notification of events.

Coordination via Types in an Event-based Framework 7

! xt"=t"xt '+t ="+

tXt=t t+t=t

ZJX (t//X[,,,)E(t/Xl//)XI/// [/+(t”+l///)E([/"'t//)"'l///
EX*=t t+e=t

I XE=E t+*=%

tx (+t") = (e xt)+ (e xt")

Fig. 2. Structural congruence over topics

The basic idea is to control the coordination workflow by exploiting information about
topics and sessions to trigger the execution of the suitable reactions. In this section, we
further develop this idea by introducing some operators on topics that induce an alge-
braic structure on events. We then show how the algebraic structure on events can be
used to have a finer control over the coordination activities of components.

We define the signal topic ¢ as follows:

tu=g ||| txt |14t

The constant topics € and « are used to define the empty and the global event kinds,
respectively. Intuitively, a signal having an empty topic can be consumed by a reaction
having an empty behavior. A signal having a global topic can be handled by any com-
ponent, activating any reaction. Signal topics can be composed using the constructors
x and +. A signal having topic ¢ x ¢ can be consumed only by components that can
handle both event kinds 7 and ¢'. Moreover a signal having topic ¢ + ¢’ can be consumed
by any component that can handle event kinds ¢ or ¢’. The constructors + and x can be
informally interpreted as logical disjunction and conjunction.

The formal definition of the meaning of structured topics is given algebraically by
introducing a structural congruence over them (see Figure 2). Notice that the x and +
are associative, commutative and idempotent. Also, x distributes over +, moreover, *
and € are their respective neutral elements. For instance, t X x =¢ and f + € = states that
a signal of topic ¢ X % or t 4 € activates the same reactions activated by signals having
topic t; similarly # X € = € states that a signal of topic ¢ X € cannot activate any reaction,
while ¢ 4+ x = * states that a signal of topic 7 + * activates any reaction. Formally, the
algebraic structure over topic takes the form of a C-Semiring [1].

Preorder relation. The binary relation T over topics is the least preorder satisfying
the following axioms:

tCe, *Ct tCt tCext, t+t'Ct

) i

Intuitively the preorder #; C #, formalizes the idea that the topic #; is less restrictive
than the topic t,. For example, a signal having topic T; + T, triggers either a reaction for
71 or one for 7;. Hence, the coordination policy expressed by T; 4 75 is less restrictive
than the one expressed by 7.

The algebraic structure over topics allows us to define the policies to aggregate
events. The XSC syntax of behaviors can be extended to deal with the structure of topics
by simply refining the signal emission primitive as 5 : #(©)1'.B’, where ¢ represents the

8 G. Ferrari, R. Guanciale, D. Strollo and E. Tuosto

signal topic. We have now to specify the way a component may react upon the reception
of a signal of a certain topic. In other words, a main question, here, is to understand
which reactions a component may dynamically activate to match the policy specified
by the topics of events. In this paper, we will answer this question by introducing a
suitable type system over component reactions. The type system allows us to precisely
identify the set of reactions matching a given event topic.

Conversation types (ranged over by T) classify signals by their topic structures
(policies) and sessions. Their syntax is defined below:

T:=t©Or | (Session conversation type)
t©* (Generic conversation type)

A session conversation type t(©)1 characterizes signals (of a topic t) within a session
T. A generic conversation type t(©x captures the notion of signals (of a topic #) not
belonging to a specific session.

Conversation types are equivalent if the structures of their topics and their sessions
are equivalent. Formally, equations in Figure 2 are extended with the following rules:

! /

=t
tOt=1r©Er tOx =1'©«

Conversation types can be equipped with a subtype relation which will be used to
formalize how signals are consumed by reactions. Namely, if 7 C T’ then reactions able
to consume signals with conversation type T’ can consume signals with conversation
type T as well.

=t

Subtype relation. The subtype relation T T T’ over conversation types is defined as
the smallest preorder relation that satisfies the following inference rules:

rCr tCf tCf
—F (1) —F(2) — ()
tOTCr©OT tOTC 1O tOx C ' ©*

Rules (1) and (3) have a clear interpretation in terms of the preorder over topics. Rule
(2) is controvariant wrt the session part of the conversation type and formalizes the idea
that a lambda reaction can be activated by signals independently by their session.

A reaction type is a (possibly empty) set of conversation types and describes the set
of signals that can be consumed by a reaction.

Reaction typing. A reaction R has reaction type T when - R : T can be inferred from
the following rules:

(1)

LA / / (2)
FO:0 Fx:t©t — B: {t©1'}

3) FR : T FRy:T»
Fx:tOAM — B: {t©x} FRi|Ry: T UT,

Rules (1+4) are quite natural; for instance, rule (3) states that the type of a lambda

Coordination via Types in an Event-based Framework 9

reaction x : T@©AT — B is the singleton {T(©+}. Reaction types have a natural subtype
relation given by the subset inclusion (T C T).

Given a non-empty reaction type T = {t,©ry,...,T,©r, : 11 € AU {x} fori =
1,...,n}, we let

><T:‘C]X...X"C,,, TX:rlx...xrn, JrTZ"C]—‘y—...—l—"(?,l, T*:rl—l—...—i—rn
while *T =% =T> and *T =& = T" if T = 0. The following properties trivially hold.

"T=x<T=0 T =1= (T#0 A Vri.ri € {t,%})
Tt=e<T=0 T =% (T=0V Vr.r=x)
T*:*@(T#@/\Hri.n:*) TJFZ‘C{:}(T#@/\VF,‘J}':‘C)

After having defined the preorder on topics and the subtype relation for conversation
types, we define a formal mechanism that establishes when a reaction is enabled to
handle a signal reception. This definition is the basic tool that will be exploited at run-
time to activate the reaction matching an event notification.

Reaction enabling. Ler T = t(©)T be a conversation type and T a non empty reaction
type. We say that reactions with type T can be activated by signals with conversation
type T, and we write T < T, if the following conditions hold:

1. tC*Tand T*C=x
2. VI' C T.T' 20 = T’ does not enjoy the Condition 1

Condition 1 expresses that the topic of the signals is less restrictive than the conjunction
of the topics of the reactions (+ £ T) and, since T is not empty then it is of the form
{vi©r1,...,t©@ry: ri € AU{x} fori=1,...,n}, reactions waiting for a session topic
different from T cannot be activated because Vi.r; =t V r; = x. Condition 2 ensures
that enabled reactions are minimal, namely, that each subreaction (VT C T) cannot be
activated by signals having signal type 7. The following table gives examples where
conditions 1 and 2 hold or not.

Conversation Type t©T Reaction Type T tC*T |T* C1 |Cond.2
T+ 1O {tu©r} v v v
T X T ©1T {11©71,12©*} v Vv Vv
T X Th©1 {11©1} X v Vv
1@t {n©7'} v x v
T +T©O1 {11©71,12©*} Vv v X
T1 X ©O1 {1101, 2O, 13©x} v v x

Enabled reaction set. Given a reaction R, the set of enabled subreactions by a conver-
sation type (Ot is defined as Rigr = {R*"R=R'|R" N =R : T A t©t =T}

Let Ry be x: 11©T — By and R; be x : T,(©AT — B,, examples exploiting the enabled
reaction set are given in Table 1. Notice that in the second row of Table 1 only one re-
action (R1|R2) is enabled. Upon reception of a signal having conversation type 7', both

10 G. Ferrari, R. Guanciale, D. Strollo and E. Tuosto

Conversation Type t©T ‘Reaction R ‘ Rier
T +101 R {R1}
T X 1H,©1 Ri|Ry {R1|R2}
T X T©O1 Ry 0
T+ 10O Ri|R, {R1,R2}

Table 1. Enabled reaction set example

subreactions R and R, will be concurrently activated. Also, in the fourth row of Table 1
two different reactions (R; and R») are enabled. Upon the reception of a signal having
conversation type 7, only one of them will be activated nondeterministically.

Preferred reactions. Let R be a reaction and t(©)T be a session conversation type. The
set of preferred reactions in R wrt t(©)T is defined as:

T =1
Riory = (Ri ERoi-FRI: T = VR ERe. F Ry : Ty = V
T} C T

Basically, each reaction R; € R;g)y| is composed only by check reactions for the 1
session or, if it is composed only by lambda reactions, then it cannot exists another
subreaction composed by check reactions for 7.

The topic structures can be adopted to model the example described in Section 3.2,

refining the emitter component as £ £ ¢[V.5: 11 + 2@T.01, ., 1z, ey

5 Operational Semantics

The operational semantics of XSC is given in the classical reduction style and exploits
the structural congruences defined in Section 3.1. Some auxiliary functions on flows
and reactions are introduced for simplifying the definition of the reduction relation on
networks.

The flow projection, (F)|,, defined as

a (T~ ad)lv=(t~a)le=(0)l;=0
(t~d)ls=d (Fi|R2) = (F1)1: U(F2) e
(F)ly+6,= (F)ly U(F)ly (F)Loyxe,= (F) 1y N(F) s,

takes a flow and a topic and yields the set of target component names for the topic 7.
The reaction projection, (R)| .1, defined as

(0) ls:*: (070)

(x:7©1" — B) | su@= ({s/x}B,0)

(x:T7OM" — B) | sue= ({s/x,7/7"}B,x : T©A" — B)

(R1|R2) lsu@e= (B' | B",R'|R"), if (R1)]ss@= (B',R') and (R2) lsuer= (B",R")

takes a reaction R and a signal s typed by T and returns a pair (B,R’) such that B
is the behavior of R instantiated with s and R’ is the reaction to be installed. Notice

Coordination via Types in an Event-based Framework 11

———— (RLambaUpd)
al+[x:1@M — B|.B' | B'|f — a[B' | B"|R*TOMF
——-— (RCheckUpd)
al+[x:1©7 — B|.B' | B'|f — a[B | B"|R¥"O7 8
— p (FlowUpd)
al+|t~b|.B|B]f —alB| Blp..,
(F)lioe=b
- tit (Emit)
als : t©t.Blp — a[B]FHZC,‘GB (s:1©1@c;)
R= R/|R() R € Rt@ri (R/)lx:t@r: (BI,RN) N—N
AR (RActivation) —— (NStep)
(s :1©@a) alB] — a[B|B|}’ NNy — N[Ny

Fig. 3. Operational semantics

that reaction projection permits to consume check reactions and to maintain lambda
reactions installed. Also, reaction projection is applied, by construction, to reactions
that can consume the signal s. This assumption is guaranteed by the reduction rules
using the type system.

The reduction relation — over networks is defined in Figure 3. Reactions can be
added to a component by executing the behavioral primitives RLambaUpd and RCheck-
Upd. These primitives change the interface of a by appending to the set of installed re-
actions the new one. The only difference between the two primitives regards the kind of
reaction installed. Analogously the FlowUpd updates the flow interface of a component
by appending new target component names. The Emit and RActivation rules define no-
tification dispatching: at emission time, component a spawns into the network a signal
targeted to all the components (¢; € Z;) subscribed for the signal type (according to the
(F)|; projection). Once a signal envelop has been spawn into the network the RActiva-
tion rule can be applied to the target component; the application of this rule activates,
non deterministically, a reaction among the ones in the reaction projection R’ € R;gy .
Then, the activated reaction is replaced in the interface of a by R” reaction obtained by
applying the reaction projection.

6 Federated Identity Example

In order to illustrate the main facilities made available by the XSC calculus, in this sec-
tion we show an example involving multi-party sessions. A typical scenario in which
several agents are involved into the same session is represented by user-centric digital
identity systems. We consider an application of the OpenID protocol, an open frame-
work for distributed identity management. The solution presented can be easy adapted
for similar systems e.g., i-Name [15] and Microsoft CardSpace [7].

The main advantage of the identity management systems is the unique identifica-
tion of the user agent on the network in the same manner an URI uniquely identifies a

12 G. Ferrari, R. Guanciale, D. Strollo and E. Tuosto

website. To reach this goal, these systems define a special kind of services, called iden-
tity providers, that act as intermediate agents among service consumers and providers.
Another key feature offered by OpenlD is the decentralization of the authentication
protocol decoupling the service from a particular identity provider.

Hereafter, we denote a service consumer as C, an identity provider as /P and a
service provider as SP. The protocol consists of two phases. In the first phase, C ac-
cesses its /P to be authenticated and to establish a private session. In the second phase
C accesses a service SP specifying its identity and the /P that certifies her/his creden-
tials. Notice that the actual authentication mechanism is not part of the specification of
OpenlID, and so it will not be treated: here we only deal with the message exchanges
among the involved parties.

We start by giving the informal description of the OpenID protocol:

[

. C initiates authentication with /P by presenting its credentials.

2. IP verifies user credentials and generates a new session shared with C. The session
will be used to identify C.

3. C initiates authentication by presenting a User-Supplied Identifier to the SP via its
User-Agent.

4. SP establishes an Endpoint URL used by C for authentication.

5. SP redirects the User-Agent of C to /P with an authentication request.

6. IP establishes whether C is authorized to perform authentication and wishes to do
so. The way C authenticates to /P and any authentication policy are out of scope
for OpenlD.

7. IP redirects the User-Agent of C back to SP with either an assertion stating that the
authentication is approved or a message that the authentication failed.

8. SP verifies the information received from the /P.

The OpenID protocol can be formally specified as the XSC network C||IP||SP where
C, IP and SP are the components defined in Figure 4. Notice that we omit to model the
data exchanged among components, because we focus on the session exchanges and
message sequences.

The user sends its credentials to the Identity Provider, rising an Auth event (via the
B. behavior). Notice that the client creates a new reaction to receive an event corre-
sponding to the successful authentication (AuthOK) from the identity provider.

When the identity provider receives an authentication request (Auth event), it gen-
erates a new session (s;,). This will be used later to identify the user agent without an
explicit communication of the user credentials. The service provider raises a successful
authentication event (AuthOK), communicating the generated session. Notice that we
assume that the user authentication is always successful, therefore we do not model the
implementation verification of the user credentials. Finally, the identity provider creates
a new reaction to receive a delegation event. This reaction can be activated only for the
generated session. Only the authenticated user owning this session can generate a signal
that can be consumed by this reaction.

When the user has been notified about the successful authentication, by receiving
the session shared with the identity provider (Baumox (Sip)), it can access to a federated
service. The user communicates the claimed identity (identifier) (and not the whole
credentials) to the service provider rising a Claim event.

Coordination via Types in an Event-based Framework 13

ey 0
¢ - c[BC]Authwi\Claimws|Delegatewi
B. £ vr.+ [x: AuthOK©Msip — Baumok (sip)]
.credentials : Auth©r.0
BAulhOK (sl'p) £ vr.+ (x : Redireczsp@);\'ssp - BRedireL't.\-,' (Sipa ssp)—‘

.identifier : Claim©r.0

+ [x : REdirECtsi@))\'SS - BRedirecl‘fA (sip75sp7s3ﬂ .
X : Delegate(©)sip.0

BRedirect;, (SipasprS) = +|_Ssp ~ SJ D: S‘YP©S3.O

BRedirectJ,- (sip y ssp)

Ip £ i[0}flLfthOch\Redirect,-pwc\Veriﬁedws
Rip £ x: Auth©Mr — By (r)
BAmh(") £ VSip. + ’—x : Delegate©5ip - BDelegaze (Sip)-|~
X : AuthOK(©s;).0
Bpelegare (Sip) £ vs3.+ [x: Verify©s3 — Byeyify | X : Redirect;p(©s3.0
Bverify £ X Verified©)s3.0
SP 2 S[O}gjdirectx,-wcwerifywi
Ryp 2 x: Claim@©Mr — Beyaim (1)
Bciaim(r) £ VSsp-+ [X 1 S5p©As3 — Bcheck (53)].% : Redirects;©sgp.0
BCheck(s3) £ +[x : VeriﬁEd©S3 - BVeriﬁed“ X Verify©33-0

Fig. 4. XSC specification of the OpenlD protocol

When a service provider receives a Claim event, it delegates the authentication of
the identity to the identity provider. This is performed redirecting the client to the iden-
tity provider. Observe that the service provider generates a new session s, that is com-
municated via the redirect request (X : Redirect,;(©s;),.0). The generated session is used
as a new event, the service provider waits this event to perform the authentication. In
OpenlD this is implemented through the generation of a user-specific URL.

When the user receives the Claim response and the session shared with the service
provider s, it forwards the request to the identity provider, delegating the authentica-
tion to it.

Finally, on reception of a delegate event for the authenticated user (Delegate(©)s;p),
the identity provider generates a three-party session s3 and requests the user to forward
it to the service provider. The identity provider and the service provider use this session
to verify the user claim. If the verification is successful, the service provider continues
according to Byeifieq after the reception of the consumer parameter p, i.e., the behavior
representing the service supplied by SP which depends on the provided service and
therefore it is not specified.

7 Concluding Remarks

We introduced a process calculus to handle multi-party sessions and coordination poli-
cies in an event-notification (EN) framework. Our approach is based on type informa-

14 G. Ferrari, R. Guanciale, D. Strollo and E. Tuosto

tion that naturally support and extend typed-based EN systems. We demonstrated the
adequacy of the approach by specifying the OpenID protocol.

As future work we plan to investigate which properties the XSC type system enjoys.
We are also studying different interpretation for the algebraic structure of topics. For
instance, by relaxing the idempotency of _ x _ we get a theory which allows one to
count the number of topics, thus leading to a notion of linear types. Finally, the type
system described in this paper yields a constraint semiring structure [1] that has been
successfully exploited to model QoS aspects of distributed systems [8,12]. We argue
that this will allow us to express QoS driven coordination policy within our type system.

We also plan to validate and assess our approach on a variety of languages for
programming service coordination policies. A step toward this goal would be to encode
the Global Calculus [3] in XSC.

At the implementation level, the JSCL middleware (see Section 2) has already been
extended with some of the new concepts of XSC (e.g., logical ports and signal sessions),
while topic creation and structured topic composition are under development.

References

1. Stefano Bistarelli, Ugo Montanari, and Francesca Rossi. Semiring-based constraint satisfac-
tion and optimization. Journal of the ACM, 44(2):201-236, March 1997.

2. Michele Boreale, Roberto Bruni, Luis Caires, Rocco De Nicola, Ivan Lanese, Michele Loreti,
Francisco Martins, Ugo Montanari, Anténio Ravara, Davide Sangiorgi, Vasco Thudichum
Vasconcelos, and Gianluigi Zavattaro. SCC: A service centered calculus. In Mario Bravetti,
Manuel Nifiez, and Gianluigi Zavattaro, editors, WS-FM, volume 4184 of Lecture Notes in
Computer Science, pages 38-57. Springer-Verlag, 2006.

3. Marco Carbone, Kohei Honda, and Nobuko Yoshida. Structured communication-centred
programming for web services. In Rocco De Nicola, editor, Programming Languages and
Systems, volume 4421 of Lecture Notes in Computer Science, pages 2—17. Springer-Verlag,
2007.

4. Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Achieving scalability
and expressiveness in an internet-scale event notification service. In Annual Symposium on
Principles of Distributed Computing PODC, pages 219-227, 2000.

5. Antonio Carzaniga and Alexander L. Wolf. Content-based networking: A new communica-
tion infrastructure. In IMWS ’01: Revised Papers from the NSF Workshop on Developing an
Infrastructure for Mobile and Wireless Systems, volume 2538 of Lecture Notes in Computer
Science, pages 59—-68, London, UK, 2002. Springer-Verlag.

6. Antonio Carzaniga and Alexander L. Wolf. Forwarding in a content-based network. In Anja
Feldmann, Martina Zitterbart, Jon Crowcroft, and David Wetherall, editors, Proceedings of
the ACM SIGCOMM 2003 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication, August 25-29, 2003, Karlsruhe, Germany, pages
163-174. ACM Press, 2003.

7. David Chappell. Introducing windows cardspace. MSDN Library. Available at http:
//msdn2.microsoft.com/en-us/library/aa480189.aspx.

8. Rocco De Nicola, Gianluigi Ferrari, Ugo Montanari, Rosario Pugliese, and Emilio Tuosto.
A Basic Calculus for Modelling Service Level Agreements. In Jean-Marie Jacquet and Gian
Pietro Picco, editors, Coordination, volume 3454 of Lecture Notes in Computer Science,
pages 33 — 48. Springer-Verlag, April 2005.

http://msdn2.microsoft.com/en-us/library/aa480189.aspx
http://msdn2.microsoft.com/en-us/library/aa480189.aspx

10.

11.

12.

13.

15.
16.

17.

18.

Coordination via Types in an Event-based Framework 15

. Patrick Th. Eugster and Rachid Guerraoui. Distributed programming with typed events.

IEEE Software, 21(2):56—64, March/April 2004.

Gianluigi Ferrari, Roberto Guanciale, and Daniele Strollo. Event based service coordination
over dynamic and heterogeneous networks. In Asit Dan and Winfried Lamersdorf, edi-
tors, ICSOC, volume 4294 of Lecture Notes in Computer Science, pages 453—458. Springer-
Verlag, 2006.

Gianluigi Ferrari, Roberto Guanciale, and Daniele Strollo. Jscl: A middleware for service
coordination. In Elie Najm, Jean-Francois Pradat-Peyre, and Véronique Donzeau-Gouge,
editors, FORTE, volume 4229 of Lecture Notes in Computer Science, pages 46—60. Springer-
Verlag, 2006.

Dan Hirsch and Emilio Tuosto. SHReQ: A Framework for Coordinating Application Level
QoS. In K. Aichernig Bernhard and Beckert Bernhard, editors, 3rd IEEE International Con-
ference on Software Engineering and Formal Methods, pages 425-434. IEEE Computer So-
ciety, 2005.

Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language primitives and type dis-
cipline for structured communication-based programming. Lecture Notes in Computer Sci-
ence, 1381:122-141, 1998.

. Yi Huang and Dennis Gannon. A comparative study of web services-based event notification

specifications. In ICPP Workshops, pages 7-14. IEEE Computer Society, 2006.

i-name specifications. Available at http://www.inames.net/developers.html.

Ying Liu and Beth Plale. Survey of publish subscribe event systems. Technical Report
TR574, Computer Science Department, Indiana University, 2003.

David Recordon and Brad Fitzpatrick. OpenID Authentication 1.1. Available at http:
//openid.net/specs/openid-authentication-1_1.html.

David Tam, Reza Azimi, and Hans-Arno Jacobsen. Building content-based publish/subscribe
systems with distributed hash tables. In Karl Aberer, Vana Kalogeraki, and Manolis
Koubarakis, editors, Databases, Information Systems, and Peer-to-Peer Computing, volume
2944 of Lecture Notes in Computer Science, pages 138—152. Springer-Verlag, 2003.

http://www.inames.net/developers.html
http://openid.net/specs/openid-authentication-1_1.html
http://openid.net/specs/openid-authentication-1_1.html

16 G. Ferrari, R. Guanciale, D. Strollo and E. Tuosto

A Free names

We define the free names of our syntactic categories in the usual way:

fn(0) =0
fn(!B) = fn(B)
fn(HT ~al.B') = {t,a} U fn(B')
fn(By | Ba) = fn(B1)U fn(B>)
fn(+[x:1©7 — B|.B) = fn(B)\{x}U{t,7}Ufn(B’)
Jn(+[x:t©M' — B].B') = fn(B) \ {x, 7'} U{t} U fn(B’)
fn(s t©r1.B) = fn(B)U{s,T} U fn(t)
fn(vt.B') = fn(B")\ {1}
fn(0) =0
fn(Ri|R>) = fn(R1)U fn(R>)
fn(x:1©1t — B) = fn(B)\ {x}u{r, v}
fn(x:T©A — B) = fn(B)\ {x,T}U{t}
fn(o) =0
In(Fi|F) = fn(F)U fn(F)
fn(t~b) ={1,b}
fn(0) =0
fn(vt.N) = fn(N)\{t}
fn((s:t©1t@a)) = {s,a,t} U fn(r)
Jn(Ni[|N2) = fn(N1)U fn(N2)
fn(alBI}) = fn(B)U fn(F)U fn(R) U{a}
fn(t) ={t}
fn(€) = fn(x) =

	Coordination via Types in an Event-based Framework
	Gianluigi Ferrari, Roberto Guanciale, Daniele Strollo, Emilio Tuosto

