
Exploring the Connection of Choreography and
Orchestration with Exception Handling and

Finalization/Compensation ?

Yang Hongli, Zhao Xiangpeng, Cai Chao, and Qiu Zongyan

LMAM and Department of Informatics, School of Math.,
Peking University, Beijing 100871, China
{yhl,zxp,caic,qzy}@math.pku.edu.cn

Abstract. Web service choreography describes protocols for multiparty
collaboration, whereas orchestration focuses on single peers. One key
requirement of choreography is to support transactions, which makes ex-
ceptional handling and finalization very important features in modelling
choreography. A projection is a procedure which takes a choreography
and generates a set of processes in the orchestration level. Given a chore-
ography, how to project exceptional handling and finalization constructs
is still an open problem. This paper aims to study exception handling and
transactionality in choreographies from a projection view. We propose
formal languages for both choreography and orchestration with trace se-
mantics, and a projection based on the relationship between choreography
and scope rooted in WS-CDL and WS-BPEL respectively.

Keywords: Choreography, Orchestration, Projection, Exception Han-
dling, Finalization, Compensation

1 Introduction

Web services promise the interoperability of various applications running on
heterogeneous platforms over the Internet. Web service composition refers to
the process of combining web services to provide value-added services, which
has received much interest to support enterprise application integration.

Two levels of view to the composition of web services exist, namely orches-
tration and choreography. The description of the single services, possibly with
cooperation of other services, is called an orchestration. The de facto standard
for orchestration is WS-BPEL [3] (Web Services Business Process Execution
Language) developed by a consortium comprising BEA, IBM, Microsoft etc.
The global view of the interactions are described by the so-called choreography.
WS-CDL(Web Service Choreography Description Language) [2] is a W3C can-
didate recommendation, designed for describing the common and collaborative
observable behavior of multiple services that interact with each other. Another

? Supported by National Natural Science Foundation of China (No. 60573081)

1



notation, SSDL [1], also allows the description of protocols for multiparty collab-
oration using message-oriented programming abstractions. In short, choreogra-
phy describes the system in a global-view manner whereas orchestration focuses
on the peers separately.

Using WS-CDL, a contract contains a “global” definition of the common flow
ordering conditions and constraints of a task, which should be in turn realized
by combination of the several local systems [2]. Once the contract is clearly
defined and jointly agreed to, participants can be built and tested according
to it independently. However, two challenges exist: (1) how to automatically
generate correct local requirements for the roles from the global contract; (2)
how to verify whether a given process can play as a participant whose observable
behavior conforms to the requirement of a given choreography.

Much work has been carried out, while much is still going on in the projection
and conformance validation between choreography and orchestration. Carbone
et al. [11] studied a two-level paradigm for the description of communication be-
haviors, on the global message flows and end-point behavior levels respectively.
Three principles for well-structured global description and a theory for projection
are developed. In [7, 8], Busi et al. formalized choreography and orchestration by
using process algebra, where conformance takes the form of a bisimulation-like
relation. By means of automaton, Schifanella et al. [4] defined a conformance
notion which tests whether interoperability is guaranteed. Fu et al. [12] specified
a conversation protocol by a realizable Büchi automaton, and the peer imple-
mentations are synthesized from the protocol via projection. Zhao et al. [17]
proposed a small language as a formal model of the simplified WS-CDL and
projected a given choreography to orchestration views.

One key aspect in composing web services is to support transactions of
process executions. Exception handling and transactionality are important fea-
tures in both choreography and orchestration levels. WS-CDL provides finalizer
actions to confirm, cancel or modify the effects of its completed actions. In or-
chestration level, if a long-running transaction fails, appropriate compensations
are executed for the completed parts of the transaction, which is supported
by WS-BPEL with its scope-based compensation. Butler et al. integrated the
compensation feature into CSP, and provided both operational semantics and
denotational (trace) semantics [9, 10]. Bruni et al. presented a hierarchy of trans-
actional calculi with increasing expressiveness in [6]. Qiu et al. [15] and Pu
et al. [14] studied the semantics of WS-BPEL fault and compensation handling.
Li et al. [13] proposed a language with operational semantics to model exception
handling and finalization of WS-CDL. To the best of our knowledge, no work is
done about modelling exception handling and transactionality from a projection
view, which resolves how exception handling and finalization in a choreography
can be implemented in orchestration level.

In our previous work [16], we have presented a simplified language for chore-
ography, and a simple process language for participant roles, both with formal
syntax and semantics. We discussed the concept of projections, which map a
given choreography to a set of role processes. We defined the concept of re-



stricted natural choreography which is easily implementable, and proposed two
structural conditions as a criterion to distinguish the restricted natural chore-
ography. Although useful as a formal investigation of the relationship between
choreography and orchestration, the framework is not powerful enough to spec-
ify real case studies. The main weak point for the expressiveness is the shortage
of mechanism for describing exception handling and transactionality.

This paper aims at extending our framework for both choreography and or-
chestration with structures related to exception handling and transactionality.
The choreography language Chor and orchestration language Role, which are
inspired by WS-CDL and WS-BPEL respectively, are developed with formal
syntax and trace semantics. We present a projection from Chor to Role which
focuses on the relationship between choreography in Chor and scope in Role
rooted in WS-CDL and WS-BPEL respectively. Both the two structures have
actions, exception block, finalizer or compensation action. Because of their sim-
ilarities, our projection will map a choreography in Chor to a scope at each role
process in Role. In the work, we develop a technique for define trace semantics
of the role process language that introduces a stuck notation.

The rest of the paper is organized as follows. We first introduce the syntax
and semantics of Chor with exception handling in Section 2. Then we add the
finalization feature into Chor language in Section 3. Section 4 defines a Role
language with formal syntax and semantics. Section 5 presents the projection
rules with some discussion about the related issue, and Section 6 concludes.

2 The Chor Language with Exception Handling

In this section we develop the language Chor with syntax and trace semantics.

2.1 Syntax

In the definitions below, A and B range over activity declarations; E ranges over
exception blocks; e ranges over exceptions; and n ranges over names. We use X
as a shorthand for list, similarly, for e : A. Given a list l, hd(l) returns the first
element of l, and tl(l) returns the same list with the first element removed.

A choreography is participated by a finite number of roles R1, · · · , Rn. A
choreography specification comprises some choreography declarations CDecl and
a root choreography RC.

CS ::= CDecl, RC

The root choreography is enabled by default, whereas other choreography
are enabled only when they are performed. The root choreography is a tuple,
including an activity A, and an exception block E.

RC ::= [A,E]

A declaration of a non-root choreography with name n takes the form:

CDecl ::= n[A,E]



Here is the syntax for the activities in Chor.

A ::= skip (no action) | ai (activity)
| c[i,j] (communication) | throw e (throw exception)
| perf n (perform) | A;A (sequence)

| A
iu A (choice) | A ‖ A (parallel)

Activity skip does nothing. Meta-variable ai denotes a basic activity of role
Ri. The communication from Ri to Rj takes the form of c[i,j], where c is a
channel name. Activity throw e causes an exception e at each role. Activity
perf n performs the declared choreography with name n. The composite activities
considered here include sequential composition, choice, and parallel composition.

Here A
iu A means that role Ri is the dominant role of the choice. It is used as a

directive in projection to specify that Ri is the “decision maker”, and all other
roles should follow Ri’s decision on which branch to take in this choice. A more
detailed study about the dominant role can be found in [16].

The exception block E is defined as a sequence of e : A, where e is an
exception name, and the activity A is the exception handler for e. We allow
∗ : A as a special case to define a universal handler in an exception block.

E ::= e : A

A choreography specification is well-formed if all the following conditions hold:

– All non-root choreography names are different from each other.
– In each perform activity perf n, the name n ranges over non-root choreog-

raphy names in the choreography specification.
– All exception names in each exception block are different from each other.

2.2 Semantics

An environment Γ is a map from non-root choreography names to their defi-
nitions with the form [A,E], which can be constructed by parsing the text of
declarations CDecl. We will assume that the execution of a choreography is al-
ways under the corresponding Γ . For convenience, notation n.1, n.2 will be used
to obtain the activity and the exception block of choreography n.

We define the semantics of an activity as a set of traces, and will use r, s,
and t to denote traces. A trace may have a terminal mark at its end, indicating
whether the execution of the activities terminates successfully or not. Mark X
represents a successful termination, and Âe represents a termination with excep-
tion e. Concatenation of traces is denoted by juxtaposition. For example, t〈X〉
represents a concatenated trace which terminates successfully. In our semantics,
we always give maximal traces, i.e. each trace has a terminal mark at its end.

Activity skip does nothing and always terminates successfully. Activity throw e
causes exception e. Activity ai always terminates successfully, so does c[i,j].

[[skip]]Γ =̂ {〈X〉} [[ai]]Γ =̂ {〈ai,X〉}
[[throw e]]Γ =̂ {〈Âe〉} [[c[i,j]]]Γ =̂ {〈c[i,j],X〉}



To define the semantics of the perform activity perf n, we need to define the
semantics of executing an exception block under some exception e. We introduce
function hdl(E, e)Γ , which returns a set of traces after handling exception e in
exception block E under environment Γ . If a handler for e, which may take the
form of e : A or ∗ : A, is found in E, then the traces of A are returned. Otherwise,
the exception will be propagated to the immediate enclosing choreography.

hdl(E, e)Γ =̂





[[A]]Γ if hd(E) = e : A ∨ hd(E) = ∗ : A
hdl(tl(E), e)Γ if hd(E) = e′ : A ∧ e′ 6= e
{〈Âe〉} if E is empty

Now we define the semantics of the perform activity as:

[[perf n]]Γ =̂ {s〈X〉 | s〈X〉 ∈ [[n.1]]Γ } ∪ {st | s〈Âe〉 ∈ [[n.1]]Γ ∧ t ∈ hdl(n.2, e)Γ }
If activity n.1 terminates successfully, so is the perform activity. Otherwise, if
n.1 throws an exception e, the exception handler in n.2 for e is executed, and
the trace t produced by this execution is appended to trace s.

The semantics of choice is defined by set union. Although i does not appear
in the semantics, it is critical in the projection discussed in Section 5.

[[A
iu B]]Γ =̂ [[A]]Γ ∪ [[B]]Γ

We introduce the sequential and parallel composition of traces, and lift them
to sets of traces, then give semantics of sequential and parallel composition.

s〈X〉; t =̂ st s〈Âe〉; t =̂ s〈Âe〉
[[A;B]]Γ =̂ {s; t | s ∈ [[A]]Γ ∧ t ∈ [[B]]Γ }

s〈τ〉 ‖ t〈τ ′〉 =̂ {r〈τ ⊕ τ ′〉 | r ∈ interl(s, t)}
[[A ‖ B]]Γ =̂ {r | r ∈ (s ‖ t) ∧ s ∈ [[A]]Γ ∧ t ∈ [[B]]Γ }

Here τ and τ ′ are meta variables over terminal marks {X, Âe}. The function
interl(s, t) denotes the set of all interleaving traces of s and t. The definition is
routine and is omitted here. The terminal mark of parallel composition is defined
by operator ⊕, as shown in the table below.

⊕ X Âe1

X X Âe1

Âe2 Âe2 Âe1]e2

If both branches terminate successfully, so is their parallel composition. When
both branches terminate with some exception(s), then we need to handle the
parallel exceptions by operator ]. There are many possible ways to define ]. For
example, we can define different priorities for exceptions and return the highest
one; or define a hierarchy of exceptions and return the least upper bound. The
details of handling parallel exceptions are omitted here. If only one branch fails,
we have the exception for the parallel composition. We do not consider the forced
termination problem [3] in this paper.



Provided the semantics of activities, we can define the semantics of the root
choreography as follows, which is similar with the perform activity:

[[[A,E]]]Γ =̂ {s〈X〉 | s〈X〉 ∈ [[A]]Γ } ∪ {st | s〈Âe〉 ∈ [[A]]Γ ∧ t ∈ hdl(E, e)Γ }

Many laws for structural congruence, e.g., associativity and symmetry, hold
for choice and parallel composition. Also, skip is the unit element of the sequential
operator, and throw e the left zero, i.e. throw e;A = throw e. Besides, we can
easily prove that any choreography will always terminate, either successes or
fails with an exception, i.e. any choreography is deadlock-free.

Now we present an example to illustrate the semantics.

Example 1. In the following declaration, notation a1
l , a

1
m and a1

n denote basic
activities at role R1.

m[(a1
l ; throw en), em : a1

m], [perf m, en : a1
n]

Here environment Γ consists of a map from choreography name m to its
body, i.e. Γ = {m 7→ [(a1

l ; throw en), em : a1
m]}. When the root choreography

[perf m, en : a1
n] executes under Γ , choreography m is performed. The activity

a1
l is executed first, and then exception en is thrown. Since en cannot be handled

in m, it is re-thrown to the root choreography, where en is handled by the
exception block. When activity a1

n terminates successfully, the root choreography
terminates. Thus, we derive the following semantics:

[[perf m]]Γ = {〈a1
l , Âen

〉} [[[perf m, en : a1
n]]]Γ = {〈a1

l , a
1
n,X〉}

3 Adding Finalization

In this section, we extend Chor language with constructs for finalization.
The non-root choreography declaration is extended to include a finalizer F ,

with the form:
CDecl ::= n[A,E, F ] F ::= A

Unlike the case for exceptions, we do not consider named finalizers, and F is
simply defined as an activity for finalization. However, there is no substantial
difficulty to extend the model to support named finalization.

The syntax of activities is extended with the finalize activity fin n, which
performs the finalizer of the successfully terminated choreography n.

A ::= · · · | fin n | · · ·

After introducing finalization structures, we need to extend the semantics,
since finalizers are dynamically installed during the execution of choreographies.
If the performing of a choreography n terminates successfully, the finalizer of n
will be installed.



In the definitions below, meta-variable ϕ,ψ, χ range over finalization con-
texts. A finalization context is a (possibly empty) sequence of finalization clo-
sures of the form (n : F : ψ), where n is a choreography name, F the finalizer
of n, and ψ the finalization context accumulated during performing choreogra-
phy n, as n might perform some other choreographies in its course. Here is an
example of a finalization context: 〈(n1 : F1 : 〈〉), (n2 : F2 : 〈(n3 : F3 : 〈〉)〉)〉.

We express the semantics of an activity as a set of pairs with the form (s, ϕ′),
where s represents a trace of the activity, and ϕ′ represents the new finalization
context after executing the activity. We always assume that the execution of
activity is under some finalization context ϕ and environment Γ (now with
elements of the form n 7→ [A,E, F ]). Initially, ϕ is empty.

The basic activities skip, ai, c[i,j] and throw e have no effect on the finalization
context, so the extension is trivial.

[[skip]]ϕΓ =̂ {(〈X〉, ϕ)} [[throw e]]ϕΓ =̂ {(〈Âe〉, ϕ)}
[[ai]]ϕΓ =̂ {(〈ai,X〉, ϕ)} [[c[i,j]]]ϕΓ =̂ {(〈c[i,j],X〉, ϕ)}

For the perform activity perf n, if activity n.1 completes successfully, closure
(n : n.3 : ψ) is inserted in front of ϕ, where n.3 is the finalizer of choreography n,
and ψ is the accumulated finalization context during performing choreography
n. If n.1 throws an exception, ϕ remains the same. Symbol “−” means something
that we do not care about.

[[perf n]]ϕΓ =̂ {(s〈X〉, (n : n.3 : ψ) a ϕ) | (s〈X〉, ψ) ∈ [[n.1]]〈〉Γ } ∪
{(st, ϕ) | (s〈Âe〉, ψ) ∈ [[n.1]]〈〉Γ ∧ (t,−) ∈ hdl(n.2, e)ψ

Γ }

Here hdl(E, e)ϕ
Γ is an extension of hdl(E, e)Γ . When E is empty, the exception

is rethrown to the performer of current choreography.

hdl(E, e)ϕ
Γ =̂





[[A]]ϕΓ if hd(E) = e : A ∨ hd(E) = ∗ : A
hdl(tl(E), e)ϕ

Γ if hd(E) = e′ : A ∧ e′ 6= e
{(〈Âe〉,−)} if E is empty

The semantics of fin n is defined as follows. We assume the execution of a
finalizer does not modify the current finalization context. Function getf (n, ϕ)
gets the finalizer F of choreography n from ϕ by searching through the context.
Similar to the specification of WS-CDL, if no corresponding finalizer found,
nothing happens. If closure (n : F : ψ) is found, we execute F under ψ.

[[fin n]]ϕΓ =̂ {(s, ϕ) | (s,−) ∈ getf (n, ϕ)Γ }

getf (n, ϕ)Γ =̂





[[skip]]ϕΓ if ϕ = 〈〉
[[F ]]ψΓ if hd(ϕ) = (n : F : ψ)
getf (n, tl(ϕ))Γ if hd(ϕ) = (n′ : F : ψ) ∧ n 6= n′

For sequential composition, we first execute A under context ϕ. Suppose the
context becomes ψ after the execution; we then execute B under ψ, which results



in context χ. If A ends with an exception execution, then B does not execute.

[[A;B]]ϕΓ =̂ {(st, χ) | (s〈X〉, ψ) ∈ [[A]]ϕΓ ∧ (t, χ) ∈ [[B]]ψΓ } ∪
{(s〈Âe〉, ψ) | (s〈Âe〉, ψ) ∈ [[A]]ϕΓ }

For parallel composition, we execute both branches under context ϕ and en-
vironment Γ , and then combine the traces and accumulated finalization closures
interleavingly. Here s ‖ t and interl have the same meaning as in Section 2.2.

[[A ‖ B]]ϕΓ =̂ {(r, χ) | r ∈ (s ‖ t) ∧ χ ∈ (interl(ϕ′, ϕ′′) a ϕ) ∧
(s, ϕ′ a ϕ) ∈ [[A]]ϕΓ ∧ (t, ϕ′′ a ϕ) ∈ [[B]]ϕΓ }

The semantics of choice activity is simple: [[A
iu B]]ϕΓ =̂ [[A]]ϕΓ ∪ [[B]]ϕΓ .

The semantics for the root choreography is similar to the semantics of the
perform activity:

[[[A,E]]]Γ =̂ {s〈X〉 | (s〈X〉,−) ∈ [[A]]〈〉Γ } ∪
{st | (s〈Âe〉, ψ) ∈ [[A]]〈〉Γ ∧ (t,−) ∈ hdl(E, e)ψ

Γ }

We show the use of the finalizer construct with the following example.

Example 2. This example includes three non-root choreographies m, n and p.
Here a1

m and a1
f denote basic activities at role R1; a2

p and a2
f denote basic activ-

ities at role R2. The notation ε denotes that the exception block is empty.

m[a1
m, ε, a1

f ] n[perf m, ε, fin m] p [a2
p, ε, a

2
f ]

In the root choreography, choreographies n and p are performed in parallel.
Afterwards, exception e is thrown and handled by the root choreography.

[((perf n ‖ perf p); throw e), e : (fin n)]

Initially, choreographies n and p run in parallel with empty finalization context
and environment Γ , which maps the choreography names to bodies of three
non-root choreographies. Before fin n, the finalization context is 〈(n : fin m :
〈(m : a1

f : 〈〉)〉), (p : a2
f : 〈〉)〉, or in the reverse order. Then fin n executes fin m,

which turns to execute activity a1
f . Afterwards, the root choreography terminates

successfully. The two perform activities yield the following traces:

[[perf p]]〈〉Γ = {(〈a2
p,X〉, 〈(p : a2

f : 〈〉)〉)}
[[perf n]]〈〉Γ = {(〈a1

m,X〉, 〈(n : fin m : 〈(m : a1
f : 〈〉)〉)〉)}

The trace set of the root choreography is {〈a1
m, a2

p, a
1
f ,X〉, 〈a2

p, a
1
m, a1

f ,X〉}. ¤



4 The Role Language

A choreography describes the interaction among roles from a global view. It is
intended to be implemented by coordination of a set of independent processes.
In order to study the relationship between the globally described choreography
and the coordinative activities of each role, we define a simple Role language
here. The syntax and the trace semantics are defined as follows.

4.1 Syntax

In the definitions below, P ranges over processes. The syntax of Role is:

P ::= skip (no action) | a (local action)
| c! (send) | c? (receive)
| throw e (throw) | fin n (compensation)
| P ;P (sequence) | P uP (choice)
| P ‖ P (parallel) | n[P, E, F ] (scope)
| c1?→P1 [] c2?→P2 (guarded choice)

E ::= e : P F ::= P RP ::= [P, E]

The major difference from Chor is that it takes a local view on communications,
where sending and receiving actions represent roles’ local view of interactions.
We would use the term “communication action” to denote either a sending or a
receiving action. A sending action and a receiving action engage in a handshake
when they have the same channel name and both roles involved are ready to
perform them. Besides, here we use the normal non-deterministic choice, and
introduce the guarded choice.

Another important difference from Chor is that we have scopes embedded in
the processes, with its exception block E, and rename the “finalizer” to “com-
pensation”. These terms follow the WS-BPEL specification. Also, we have role
process RP , which is used to represent independent roles.

The top structure in Role is the task S which is the parallel composition of
a set of role processes on the set of local channels CH.

S ::= CH • (‖i [Pi, Ei])

4.2 Semantics

The trace semantics for Role language can be similarly defined as in Section 3.
We introduce compensation context ϕ, which is a (possibly empty) sequence of
compensation closures of the form (n : F : ψ), where n is a scope name, F is
the compensation block of n, and ψ is a compensation context that accumulates
during performing process n.1.

We express the semantics of a process under some compensation context ϕ as
a set of pairs with the form (s, ϕ′), where s represents a trace of the process, and



ϕ′ represents the new compensation context after executing the process under
ϕ. Initially, ϕ is empty.

The basic processes skip, a and throw e have no effect to the compensation
context, so the semantics is trivial.

[[skip]]ϕ =̂ {(〈X〉, ϕ)} [[a]]ϕ =̂ {(〈a,X〉, ϕ)} [[throw e]]ϕ =̂ {(〈Âe〉, ϕ)}

For the scope activity n[P, E, F ], if process P completes successfully, 〈n : F :
ψ〉 will be inserted to the front of ϕ. Here ψ is the accumulated compensation
closures during performing P . If P throws an exception, ϕ remains the same.

[[n[P, E, F ]]]ϕ =̂ {(s〈X〉, 〈n : F : ψ〉a ϕ) | (s〈X〉, ψ) ∈ [[P ]]〈〉} ∪
{(st, ϕ) | (s〈Âe〉, ψ) ∈ [[P ]]〈〉 ∧ (t,−) ∈ hdl(E, e)ψ}

The function hdl(E, e)ϕ can be defined similarly as in Section 3.

hdl(E, e)ϕ =̂





[[P ]]ϕ if hd(E) = e : P ∨ hd(E) = ∗ : P
hdl(tl(E), e)ϕ if hd(E) = e′ : P ∧ e′ 6= e
{(〈Âe〉,−)} if E is empty

The semantics of fin n is also similar:

[[fin n]]ϕ =̂ {(s〈X〉, ϕ) | (s〈X〉,−) ∈ getf (n, ϕ)}

The semantics of choice is simple: [[P1 uP2]]ϕ =̂ [[P1]]ϕ ∪ [[P2]]ϕ.
The semantic rules given above do not have much difference from what for

Chor. Now we discuss the more interesting parts related to the communication
and parallel structures. The technique used here is inspired by [5] to define the
traces of parallel processes. Furthermore, the semantics for sequential composi-
tion is redefined, too.

In the forthcoming discussion, α ranges over the local actions and communi-
cations (e.g. c! and c?). The trace terminal marks X and Âe are still used. Addi-
tionally, we introduce a new terminal mark δX to represent that the process gets
stuck and waits to communicate along channels in X, where X is a power set of
communication actions. In general, δX represents the interleaving of waiting to
communicate. For instance, δ{{a?,b?},{c!}} waits for either a? or b?, or waits for
c! interleavingly. For simplification, we will write δ{a?,b?} to represent δ{{a?,b?}},
and write δa! instead of δ{{a!}}. We use ε for the empty trace, and write st for
the concatenation of t onto s, which is equal to s if s ends with δX .

For the sequential composition of P1 and P2, if P1 ends with either Âe or δX

(raising exception or getting stuck), then P2 does not execute.

[[P1;P2]]ϕ =̂ {(st, χ) | (s〈X〉, ψ) ∈ [[P1]]ϕ ∧ (t, χ) ∈ [[P2]]ψ} ∪
{(s〈τ〉, ψ) | (s〈τ〉, ψ) ∈ [[P1]]ϕ ∧ τ ∈ {Âe, δX} for some X}

A sending action c! or receiving action c? represents the potential for a process
to perform communication. Action c! may eventually succeed with trace 〈c!,X〉,



which can be reduced to c with a parallel receiving action c?; or fail with trace
〈δc!〉, which means that the sending will never succeed in the future (thus the
process gets stuck). We have similar explanation to the receiving action.

[[c!]]ϕ =̂ {(〈c!,X〉, ϕ), (〈δc!〉, ϕ)} [[c?]]ϕ =̂ {(〈c?,X〉, ϕ), (〈δc?〉, ϕ)}

The semantics of guarded choice is defined as follows, where 〈c1?〉s denotes
a trace composed by concatenation of action c1? and trace s.

[[c1?→P [] c2?→Q]]ϕ =̂ {(〈δ{c1?,c2?}〉, ϕ)} ∪ {(〈c1?〉s, ϕ) | s ∈ [[P ]]ϕ} ∪
{(〈c2?〉s, ϕ) | s ∈ [[Q]]ϕ}

For the semantics of parallel composition of processes, we introduce some
auxiliary definitions in the first. The predicate match(α1, α2, c) indicates whether
α1 and α2 are a pair of matching communication actions on channel c, i.e.

match(α1, α2, c) =̂
{

true if {α1, α2} = {c?, c!}
false otherwise

For the parallel composition of traces, we distinguish two different cases: (1)
at most one trace ends with δX ; (2) both traces end with δX .

For the first case, we define:

s〈τ〉 ‖ t〈τ ′〉 =̂ {r〈τ ⊕ τ ′〉 | r ∈ merge(s, t)}

where τ and τ ′ are meta variables over terminal marks {X, Âe, δX}. The terminal
mark of parallel composition is shown in the table below.

⊕ X Âe1 δX

X X Âe1 δX

Âe2 Âe2 Âe1]e2 Âe2

Function merge(s, t) returns the set of all traces formed by merging s and t fairly,
allowing synchronization of matching communications. We let merge(s, ε) =
merge(ε, s) = {s}. When s and t are nonempty, their fair merge is defined in-
ductively, where c in the trace denotes a handshake of c! and c?.

merge(〈α1〉s1, 〈α2〉t1) =̂ {〈α1〉r | r ∈ merge(s1, 〈α2〉t1)} ∪
{〈α2〉r | r ∈ merge(〈α1〉s1, t1)} ∪
{〈c〉r | match(α1, α2, c) ∧ r ∈ merge(s1, t1)}

Thus we have 〈c!,X〉 ‖ 〈c?,X〉 = {〈c,X〉, 〈c!, c?,X〉, 〈c?, c!,X〉}, and 〈c!,X〉 ‖
〈δc?〉 = {〈c!, δc?〉}.

For the second case, we define:

s〈δX〉 ‖ t〈δY 〉 =̂




{} if ∃α ∈ ⋃

X, β ∈ ⋃
Y, c•

match(α, β, c)
{r〈δX∪Y 〉 | r ∈ merge(s, t)} otherwise



If there exists any matching stuck marks (e.g., δ{{a!},{b?,c?}} and δ{{c!},{d?}} are
matched on channel c), then the set of traces of s ‖ t is empty. This is because
the merge should be fair: if one process has an action c!, another process has a
c?, and neither of them communicate with other processes, then their parallel
composition should not deadlock. In other words, a trace should never end with
δ{{c!},{c?}}. We simply discard such “unfair” traces.

Otherwise, we wait for communication along channels in X ∪ Y . Thus, we
have 〈δa!〉 ‖ 〈δa?〉 = {}, and 〈δa!〉 ‖ 〈δb?〉 = {〈δ{{a!},{b?}}〉}, which denotes the
process waits to communication along the actions a! and b? forever.

The rule for parallel composition of processes is the same as in Section 2.2.

[[P1 ‖ P2]]ϕ =̂ {(r, χ) | r ∈ (s ‖ t) ∧ χ ∈ (interl(ϕ′, ϕ′′) a ϕ) ∧
(s, ϕ′ a ϕ) ∈ [[P1]]ϕ ∧ (t, ϕ′′ a ϕ) ∈ [[P2]]ϕ}

As an example, we have [[c! ‖ c?]]ϕ = {(〈c,X〉, ϕ), (〈c?, c!,X〉, ϕ), (〈c!, c?,X〉, ϕ),
(〈c!, δc?〉, ϕ), (〈c?, δc!〉, ϕ)}. The trace 〈c,X〉 denotes that the two actions com-
municate with each other. The trace 〈c!, δc?〉 denotes that the sending action
appearing on the left side of the parallel construct will eventually communicate
with some other receiving action (but not the one on the right side), while the
receiving action on the right side has to stuck because it cannot find a matching
action. We define the semantics in this way so that compositionality is achieved
– as an example, please simply consider the semantics of c? ‖ c! ‖ c?.

The semantics for a role process is similar to a root choreography:

[[[P, E]]] =̂ {s〈X〉 | (s〈X〉,−) ∈ [[P ]]〈〉} ∪
{st | (s〈Âe〉, ϕ) ∈ [[P ]]〈〉 ∧ (t,−) ∈ hdl(E, e)ϕ}

It is easy to prove that the parallel composition and both forms of choice
satisfies commutativity and associativity in the semantics above.

Finally we define the semantics of a task. We introduce closeCH(T ) that
“closes” all channels of CH in trace set T , in the sense that the channels in CH
will not used for communication with outside. To achieve this, we take two steps:
first, we exclude all the traces that include either c! or c?, with them the result
of the filter is empty. Then, we modify the stuck mark of the remaining traces
by removing communications along channels in CH.

closeCH(T ) =̂ {close1(t, CH) | t ∈ T ∧ ∀c ∈ CH • t ¼{c!, c?} = 〈〉}

close1(t, CH) =̂
{

t if t = t′〈X〉 ∨ t = t′〈Âe〉
t′〈δX|CH〉 if t = t′〈δX〉

Here we define X | CH =̂ {A | ∃B ∈ X • A = (B \ CH) ∧ A 6= ∅}, where B \
CH removes all communications along channels in CH from B. For example,
{{c!}}|{c} = {}, and {{a?, b?}, {c!}}|{b, c} = {{a?}}.

Thus, we have close{c}([[[c!, ε] ‖ [c?, ε]]]) = {〈c,X〉} and close{c}([[[c!, ε] ‖
[skip, ε]]]) = {〈δ{}〉}, which denotes an internal deadlock.

The semantics of a task is simply defined as follows:

[[CH • (‖i [Pi, Ei])]] =̂ closeCH([[‖i [Pi, Ei]]])



Fig. 1. Endpoint Projection Rules
π(skip, i) b= skip
π(ai, i) b= a
π(ai, j) b= skip when j 6= i

π(c[i,j], i) b= c[i,j]!

π(c[i,j], j) b= c[i,j]?

π(c[i,j], k) b= skip when k 6= i ∧ k 6= j
π(throw e, i) b= throw e
π(perf n, i) b= n[π(n.1, i), π(n.2, i), π(n.3, i)]
π(fin n, i) b= fin n

π(e : A, i) b= e : π(A, i)
π(A1; A2, i) b= π(A1, i); π(A2, i)
π(A1 ‖ A2, i) b= π(A1, i) ‖ π(A2, i)

π(
i

A1 uA2, i) b= γ1; π(A1, i)u γ2; π(A2, i) where

�
γ1 = ‖j∈1..n∧j 6=i c′j !

γ2 = ‖j∈1..n∧j 6=i c′′j !

π(
i

A1 uA2, j) b= c′j?→π(A1, j) [] c′′j ?→π(A2, j) when j 6= i

Although the semantics seems complicated, we would point out that the
complexity is rooted from the basic communication activities that any process
algebra has, as discussed in Brookes’s paper [5], rather than the exception han-
dling and finalization constructs.

5 Projection

A projection is a procedure which takes a choreography specification in Chor
and generates a set of processes in Role, where each process corresponds to a
role in the choreography. No standard projection is defined in WS-CDL. In this
section we give our projection rules, and discuss some issues related.

Firstly, we give a projection rule for the root choreography [A,E], where A
and E are projected to the process and exception block at each role process i.

π([A,E], i) =̂ [π(A, i), π(E, i)]

The project rules for each form of activity is given in Fig. 1. The basic activity
ai generates action a at role Ri, or skip at other roles. The interactive activity
c[i,j] generates sending action c! and receiving action c? at role Ri and Rj respec-
tively. The rule for throw activity throw e is based on an assumption that each
exception occurred in a choreography is global, which causes the same exception
at every role. The activity perf n is projected to each role as a scope with name
n, process π(n.1, i), exception block π(n.2, i), and compensation block π(n.3, i),
where n.1, n.2, and n.3 are the activity, exception block and finalizer of choreog-
raphy n respectively. Note that this rule depends on the corresponding context
Γ . Finalizing fin n generates the same action fin n at each role. Exception block
e : A is simply projected to an exception block e : π(A, i) at role i. The rules for
sequential and parallel compositions are trivial.



The most interesting rules are those for choice structure
i

A1 uA2. For each
role Rj (j 6= i), we should introduce two fresh channels, namely c′j and c′′j . The

projection of
i

A1 uA2 on a role other than Ri takes the form of a guarded choice.
On the other hand, the projection on role Ri is an ordinary choice with each
branch beginning at a set of sending actions. As a result, when the execution of
the roles arrives at their versions of the choice structure, role Ri makes the real
choice, and notifies all the other roles on which branch it selects. Thus, all the
roles will take the same branch in their versions of the choice consistently.

We illustrate a simple example of projection here.

Example 3. The choreography below involves two roles. After R2 receives a mes-
sage from R1, it may either acknowledge R1 and proceeds, or throw an exception
so that the choreography is interrupted.

C = [c[1,2]; (c[2,1] 2u throw e), ε]

After projection, we get the following processes (we omit the scope here since
the exception handler is empty):

P1 = c[1,2]!; (c′?→c[2,1]? [] c′′?→throw e) P2 = c[1,2]?; ((c′!; c[2,1]!)u(c′′!; throw e))

where c′ and c′′ are the fresh channels introduced in projection. It is not dif-
ficult to verify that [[CH • ([P1, ε] ‖ [P2, ε])]] ¼ acts(C) = [[C]], where CH =
{c[1,2], c[2,1], c′, c′′}. ¤

In the equation above, we use the filter operation ¼ to restrict a trace (or a
trace set) to mention only actions from a given action set. The notation acts(C)
denotes the set of all activities appearing in choreography C. This extra step
removes the handshake actions of the fresh channels.

Example 4. The choreography C below illustrates concurrent exception:

C = [(a1
1

1u throw e1) ‖ (a2
2

2u throw e2), ε]

After projection, we get the following processes:

P1 = ((c′1!; a
1
1)u(c′′1 !; throw e1)) ‖ (c′2?→skip [] c′′2?→throw e2)

P2 = (c′1?→skip [] c′′1?→throw e1) ‖ ((c′2!; a
2
2)u(c′′2 !; throw e2))

where c′1, c′′1 , c′2 and c′′2 are four fresh channels.
Let CH include all the channel names, we can also verify that [[CH• ([P1, ε] ‖

[P2, ε])]] ¼ acts(C) = [[C]], with the trace set:

{〈a1
1, a

2
2,X〉, 〈a2

2, a
1
1,X〉, 〈a2

2, Âe1〉, 〈a1
1, Âe2〉, 〈Âe1]e2〉}

Please notice that 〈Âe1〉 and 〈Âe2〉 are not in the trace set, since we do not have
forced termination.



We hope that the combination of processes can realize the behavior of the
choreography. That is, for projection π and choreography C, we hope to prove
the following equation:

[[CH • (π(C, 1) ‖ · · · ‖ π(C, n))]] ¼ acts(C) = [[C]] (1)

where CH includes all the communication channels defined in the choreography
and the fresh channels added by projection. In the previous examples, we already
see this equation holds.

This equation says that if we “close” the set of traces generated by the parallel
composition of all the role processes wrt the inter-role channels defined in C, and
restrict the activities in each trace to the activity set of C, then the result should
be equal to the set of traces of the choreography from which the role processes
are projected. A formal proof of Equation (1) is an important future work.

6 Conclusion and Future Work

Web service choreography describes a global-view protocol for collaboration
among multiple roles, while a set of suitable orchestrations can form a imple-
mentation of the protocol. Formal models of choreography and orchestration are
important and useful in exploring the subtle features in languages such as WS-
CDL and WS-BPEL, and the connection between them. In this paper, we con-
tinue the research initiated in [16], with special focus on exception handling and
transactionality. Two languages Chor and Role for choreography and orchestra-
tion respectively are introduced, together with formal semantics. Corresponding
projection rules are provided, too.

The main contributions of this paper are:

1. We present a denotational (trace) semantics for exception handling and fi-
nalization for the choreography language Chor. To the best of our knowledge,
no work has been done in this area.

2. We also present a trace semantics for the role process language Role, where
we introduce a “stuck” notation.

3. We provide a set of projection rules that form a map from the choreogra-
phy language to the role process language. The projection is based on the
similarity of choreography and scope constructs, and naturally projects a
choreography to a scope at each role process. The concept dominant role is
also vital in defining the projection.

The correctness of the projection should be investigated further, in the sense
to ensures that the combination of the set of processes produced does realize
the behavior described by the choreography. For this, we need to formally prove
Equation (1). Additionally, we want also to extend the model to support vari-
ables, states, and contents of exchanged messages.

Acknowledgements. We would like to thank Shengchao Qin for many helpful
comments.



References

1. SOAP service description language. http://ssdl.org.
2. Web services choreography description language version 1.0, 2005. http://www.

w3.org/TR/2005/CR-ws-cdl-10-20051109/.
3. Business process execution language for web services, version 1.1, May 2003. http:

//www-106.ibm.com/developerworks/webservices/library/ws-bpel.
4. M. Baldoni, C. Badoglio, A. Martelli, V. Patti, and C. Schifanella. Verifying the

conformance of web services to global interaction protocols: a first step. In Proc.
of WS-FM’05, LNCS 3670. Springer, 2005.

5. S. Brookes. Traces, pomsets, fairness and full abstraction for communicating
processes. In Proc. of CONCUR’02, LNCS 2421. Springer, 2002.

6. R. Bruni, H. Melgratti, and U. Montanari. Theoretical foundations for compensa-
tions in flow composition languages. In Proc. of POPL’05. ACM Press, 2005.

7. N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavattaro. Choreography and
orchestration: A synergic approach for system design. In Proc. of ICSOC’05, LNCS
3826. Springer, 2005.

8. N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavattaro. Choreography and
orchestration conformance for system design. In Proc. of Coordination’06, LNCS
4038. Springer, 2006.

9. M. Butler, T. Hoare, and C. Ferreira. A trace semantics for long-running transac-
tions. In 25 Years of CSP, LNCS 3525. Springer, 2004.

10. M. Butler and S. Ripon. Executable semantics for compensating CSP. In Proc. of
WS-FM’05, LNCS 3670. Springer, 2005.

11. M. Carbone, K. Honda, N. Yoshida, R. Milner, G. Brown, and S. Ross-Talbot. A
theoretical basis of communication-centred concurrent programming, 2006. http:
//www.w3.org/2002/ws/chor/edcopies/theory/note.pdf.

12. X. Fu, T. Bultan, and J. Su. Conversation protocols: A formalism for specification
and verification of reactive electronic services. In Proc. of CIAA’03, LNCS 2759.
Springer, 2003.

13. J. Li, J. He, G. Pu, and H. Zhu. Towards the semantics for web services choreog-
raphy description language. In Proc. of ICFEM’06, LNCS 4260. Springer, 2006.

14. G. Pu, H. Zhu, Z. Qiu, S. Wang, X. Zhao, and J. He. Theoretical foundations of
scope-based compensation flow language for web service. In Proc. of FMOODS’05,
LNCS 4307. Springer, 2006.

15. Z. Qiu, S. Wang, G. Pu, and X. Zhao. Semantics of BPEL4WS-like fault and
compensation handling. In Proc. of FM’05, LNCS 3582. Springer, 2005.

16. Z. Qiu, X. Zhao, C. Chao, and H. Yang. Towards the theoretical foundation
of choreography. Accepted by WWW’07. Available as a tech. report at http:

//www.is.pku.edu.cn/∼fmows/.
17. X. Zhao, H. Yang, and Z. Qiu. Towards the formal model and verification of web

services choreography description language. In Proc. of WS-FM’06, LNCS 4184.
Springer, 2006.


