
An Incremental and Modular Technique for

Checking LTL\X Properties of Petri nets

Kais Klai1, Laure Petrucci1, and Michel Reniers2

1 LIPN, CNRS UMR 7030
Université Paris 13

99 avenue Jean-Baptiste Clément
F-93430 Villetaneuse, France

{kais.klai,laure.petrucci}@lipn.univ-paris13.fr
2 Design and Analysis of Systems (OAS)

Department of Mathematics and Computer Science
Technical University Eindhoven (TU/e)

P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands
M.A.Reniers@tue.nl

Abstract. Model-checking is a powerful and widespread technique for
the verification of finite state concurrent systems. However, the main
hindrance for wider application of this technique is the well-known state
explosion problem. Modular verification is a promising natural approach
to tackle this problem. It is based on the ”divide and conquer” principle
and aims at deducing the properties of the system from those of its
components analysed in isolation. Unfortunately, several issues make the
use of modular verification techniques difficult in practice. First, deciding
how to partition the system into components is not trivial and can have a
significant impact on the resources needed for verification. Second, when
model-checking a component in isolation, how should the environment of
this component be described? In this paper, we address these problems
in the framework of model-checking LTL\X action-based properties on
Petri nets. We propose an incremental and modular verification approach
where the system model is partitioned according to the actions occurring
in the property to be verified and where the environment of a component
is taken into account using the linear place invariants of the system.

1 Introduction

Model-checking is a powerful and widespread technique for the verification of
finite state concurrent systems. Given a property and a model of the system,
the model-checker performs an exhaustive exploration of the state space of the
system to check the validity of the property. When the property is proved un-
satisfied by the system, the model-checker supplies a counterexample, i.e., an
execution scenario illustrating the violation of the property. However, the main
hindrance for wider application of the model-checking approach to verify concur-
rent and distributed systems is the well-known state explosion problem. In fact,
the size of the state space of systems grows exponentially with the number of

their components. Numerous techniques have been proposed to tackle the state
explosion problem in order to get a manageable state space. Among them, on-
the-fly model-checking (e.g., [10, 5]) allows for generating only the ”interesting”
part of the model; partial order reduction (e.g., [1, 19]) is a reduction technique
exploiting independence of some transitions in the system to discard unnecessary
parts; symbolic model-checking (e.g., [7, 9, 6]) aims at checking the property on a
compact representation of the system by using BDD (Binary Decision Diagram)
techniques [2]. More related to this paper, modular verification (e.g., [20, 3, 13,
12]) is a promising natural approach which takes advantage of the modular design
of concurrent and distributed systems. Using the ”divide and conquer” principle,
the system is broken down into components and each of these is analysed sepa-
rately. Thus, the verification of the global system is downsized to the analysis of
its individual components. This could reduce dramatically the complexity of the
analysis. However, several issues make using modular verification difficult. First,
deciding how to partition the system into components is not trivial and can have
a significant impact on the resources needed for verification [4]. Second, when
model-checking a component in isolation, a model of the environment interacting
with the component often has to be introduced, so that the component is not
completely free in its interaction with the environment. In [15], Mc Millan calls
this problem the environment problem. Finally, once each component is specified
with the abstraction of its environment, it is of utmost importance to prove that
the decomposition characterises completely the properties of the whole system.

In this paper, we address these problems by supplying some heuristical but
formal solutions. First, the global net N is viewed as the composition of n com-
ponents 〈N1, . . . , Nn〉 where N1 is a subnet containing all the actions occurring
in the property to be checked, and ∀i, j = 1, . . . , n, i 6= j, Ni and Nj are two
subnets with disjoint sets of places. The choice of places and transitions within
the components follows a particular scheme (see Section 3). Then, each subnet
Ni is augmented with some additional places in order to abstract the environ-
ment i.e. {Nj | j = 1, . . . , n, j 6= i} (see Section 4). The set of the abstraction
places is formally determined by using the linear invariants of the global system.
Based on these decomposition and abstraction steps, our modular verification
approach of a LTL\X formula ϕ on the global net N can be summarised as
follows: We first prove that once ϕ holds in all components (completed by their
environment abstraction) analysed separately, one can check it on a reduced syn-
chronised product of the components built in an incremental way. Then, if ϕ is
unsatisfied by one component, a non-constraining relation is defined as a prop-
erty allowing, when satisfied, to deduce that it is unsatisfied by the global net
as well. The non-constraining relation is asymmetric and should be checked be-
tween two components. Its satisfaction makes the analysis of modules separately
equivalent to a global analysis. In this paper, we present a modular algorithm to
check this relation. When the non-constraining relation is unsatisfied, the parti-
tion 〈N1, . . . , Nn〉 is refined by composing its first elements (N1 and N2) leading
to a smaller partition which will be processed in the same way. In the worst case
the property will be checked on a partition of size 1 (i.e. the whole net).

After recalling basic notions and notations related to Petri nets and the LTL
logic in Section 2, Section 3 presents our decomposition scheme. Based on this
decomposition, Section 4 shows how linear invariants can be used to complete a
module with an abstraction of its environment. Section 5 discusses how a local
counterexample is allowed by the environment of the corresponding component.
This is achieved using the non-constraining relation which is checked in a mod-
ular way. Section 6 is dedicated to our incremental and modular verification
approach. Section 7 is devoted to final discussion and comparison with related
works on modular verification. Finally, concluding remarks and perspectives are
presented in Section 8.

2 Preliminaries and notations

In this section, we recall some basic notions of Petri net theory and introduce
some notations. We also recall the syntax and semantics of the LTL logic.

Vectors and matrices Let v be a vector or a matrix, then vT denotes its transpose.
So, if v, v′ are two vectors then vT .v′ corresponds to their scalar product. Let v

be a vector of INP . The support of v is ||v|| = {p ∈ P | v(p) > 0}.

Petri nets A Petri net is a tuple N = 〈P, T, Pre, Post〉 with disjoint sets P and
T of places and transitions, and the backward and forward incidence matrices
Pre : P × T −→ IN and Post : P × T −→ IN. Given a transition t, Pre(t)
and Post(t) denote the t-column of Pre and Post respectively. The preset of a
place p (resp. a transition t) is defined as •p = {t ∈ T |Post(p, t) > 0} (resp.
•t = {p ∈ P |Pre(p, t) > 0}), and its postset as p• = {t ∈ T |Pre(p, t) > 0}
(resp. t• = {p ∈ P |Post(p, t) > 0}). The preset (resp. postset) of a set X of
nodes is given by the union of the presets (resp. postsets) of all nodes in X .
•X• denotes the union of the preset and the postset of X . Given a place p, 1p

denotes the vector of INP where each element is zero except the element indexed
by place p, which has value 1.

A marking of a net is a mapping m : P −→ IN. We call 〈N, m0〉 a net with

initial marking m0. A marking m enables the transition t (m t
−→) iff m(p) ≥

Pre(p, t), ∀p ∈ P . In this case the transition can occur, leading to the new
marking m′, given by: m′(p) = m(p) − Pre(p, t) + Post(p, t), ∀p ∈ P . This

occurrence is denoted by m t
−→m′. If there exists a chain (m0

t1−→m1 . . . tn−→mn),
denoted by m0

σ
−→mn, the sequence σ = t1 . . . tn is also called a computation or

a firing sequence. We denote by T ∗ (resp. T∞) the set of finite (resp. infinite)
sequences of T . T ω = T ∗ ∪ T∞ denotes the set of all sequences of T . The finite
(resp. infinite) language of (N, m0) is the set L∗(〈N, m0〉) = {σ ∈ T ∗ |m0

σ
−→}

(resp. L∞(〈N, m0〉) = {σ ∈ T∞ |m0
σ

−→}) and Lω(〈N, m0〉) = L∗(〈N, m0〉) ∪
L∞(〈N, m0〉).

Subnets Let N = 〈P, T, Pre, Post〉 be a Petri net. N ′ = 〈P ′, T ′, P re′, Post′〉 is
a subnet of N induced by (P ′, T ′), P ′ ⊆ P and T ′ ⊆ T , iff ∀(p, t) ∈ P ′ × T ′,

Pre′(p, t) = Pre(p, t) and Post′(p, t) = Post(p, t). If m is a marking of N then its
projection on the places of N ′, denoted by m⌊P ′ , is defined by m′(p) = m(p), ∀p ∈

P ′. If σ is a computation of N , the projection of σ on a set of transitions X ⊆ T ,
denoted by σ⌊X , is the sequence obtained by removing from σ all transitions not
in X . The projection function is extended to sets of sequences (i.e., languages)
as follows: ∀Γ ⊆ T ω, Γ⌊X = {σ⌊X — σ ∈ Γ}. Given a subnet N ′ of N , we also
use the projection notations to denote by m⌊N ′ (resp σ⌊N ′) the restriction of

marking m (resp. sequence σ) to places (resp. transitions) of N ′.

Linear invariants Let v be a vector of INP , v is a positive linear invariant iff
v.W = 0, where W = Post−Pre. If v is a positive linear invariant and m σ

−→m′

is a firing sequence, then vT .m′ = vT .m.

Linear-time Temporal Logic (LTL) LTL formulae are defined by: ϕ ::= a | ¬ϕ

| ϕ ∧ ϕ | G ϕ | F ϕ | ϕ U ϕ | X ϕ, where a is an action label, G, F, U and
X denote the always, eventually, until and next operators respectively. A LTL
formula is generally interpreted over labelled transition systems (e.g. a Petri net
reachability graph). For a detailed description of LTL, refer to [16]. In this paper
we deal with LTL\X (LTL minus the next operator) properties.

3 Decomposition scheme

In this section, we present a decomposition of a Petri net N according to some
LTL\X formula ϕ and discuss its properties. Before giving a formal definition of
the retained decomposition, we first define a more general decomposition. Here,
we require that the composition of the components using transition fusion results
in the original net, and that the components have no place in common.

Definition 1 (Decomposition). Let N = 〈P, T, Pre, Post〉 and, for 1 ≤ i ≤
n, Ni = 〈Pi, Ti, P rei, Posti〉 be nets. Then 〈N1, . . . , Nn〉 is a decomposition of
N iff the following criteria hold:

– P =
⋃n

i=1 Pi and Pi ∩ Pj = ∅, for 1 ≤ i < j ≤ n;
– T =

⋃n
i=1 Ti;

– ∀i ∈ [1..n], ∀p ∈ Pi, ∀t ∈ Ti : Pre(p, t) = Prei(p, t);
– ∀i ∈ [1..n], ∀p ∈ Pi, ∀t ∈ Ti : Post(p, t) = Posti(p, t);
– ∀i ∈ [1..n], ∀p ∈ Pi,

•p(Ni) = •p(N).

Given a partition 〈N1, . . . , Nn〉 of a given Petri net N and two elements Nk and
Nl of this partition, with k ≤ l, we denote by N(k,l) the subnet obtained by
the composition of all subnets Nk, Nk+1, . . . , Nl. Such a composition leads to a
new partition 〈N1, . . . , N(k,l), . . . , Nn〉 which involves n− l + k components. The
following definition introduces the structure of the subnet N(k,l) for 1 ≤ k ≤ l.

Definition 2. Let 〈N1, . . . , Nn〉 be a decomposition of a net N = 〈P, T, Pre, Post〉.
∀1 ≤ k ≤ l ≤ n, N(k,l) = 〈P(k,l), T(k,l), P re(k,l), Post(k,l)〉 is defined as follows:

– P(k,l) =
⋃l

i=k Pi;

– T(k,l) =
⋃l

i=k Ti;
– Pre(k,l)(p, t) = Pre(p, t), for all p ∈ P(k,l) and t ∈ T(k,l);
– Post(k,l)(p, t) = Post(p, t), for all p ∈ P(k,l) and t ∈ T(k,l).

From now on, we denote by 〈N1, I, N2〉 the decomposition of a Petri net N

into two subnets N1 and N2 with disjoint sets of places and that share the set
of interface transitions I. For any subnet N(k,l) of N , the language of N(k,l)

contains the language of N restricted to the transitions of N(k,l):

Proposition 1. Let 〈N1, . . . , Nn〉 be a decomposition of a net N . ∀1 ≤ k ≤ l ≤
n and for all markings m of N :

Lω(〈N(k,l), m⌊N(k,l)
〉) ⊇ Lω(〈N, m〉)⌊N(k,l)

Definition 1 allows for many different decompositions of a Petri net into n com-
ponents. In the following, we define a specific decomposition which is guided by
the knowledge of the transitions occurring in the formula ϕ to be checked on N .

Definition 3 (Decomposition according to a formula ϕ).
Let N = 〈P, T, Pre, Post〉 be a Petri net and let ϕ be a LTL\X formula involving
a non-empty subset of transitions Tϕ. Then NTϕ

= 〈N1, . . . , Nn〉 is the decom-
position of N according to ϕ iff NTϕ

is a decomposition of N such that for all
1 ≤ i < n, the nets Ni = 〈Pi, Ti, P rei, Posti〉 satisfy the following criteria:

– P1 = •Tϕ
• and Pi+1 = •Ti

• \
⋃i

j=1 Pj;

– Ti = •Pi
•.

Tϕ P1 I(1,2) P2 I(2,3) · · · I(n−1,n) Pn In

N1 N2 Nn

Fig. 1. Iterative decomposition scheme

Figure 1 illustrates the decomposition scheme of Definition 3. Note that this
decomposition is such that each component interacts with at most two other ones
(i.e. they are positioned linearly) and that the leftmost component in this scheme
contains the transitions Tϕ that occur in the formula ϕ to be checked. One could
consider the subnet containing Tϕ only as the first leftmost subnet. However,
such a choice would allow all possible sequences on Tϕ (i.e., T ω

ϕ) and hence
needs to be restricted further. This is ensured by completing the subnet with
the places connected to Tϕ in the original net. Then, the transitions connected to
these places are also added so that the subnet obtained still satisfies Definition 1.
Subnets Ni and Ni+1 share a subset of transitions which we call I(i,i+1).

Try

Retry

Idle

Wserv

Fail

Cons

Send

Ncons

Pos

Active

Wack

Mess

Neg

KO

Off

On

Receive

OK

Passive

Analyse

N1 N2 N3

Fig. 2. A decomposable Petri net

Example 1. Figure 2 illustrates an example of a decomposable Petri net model
of a simplified client-server system. The server switches between states Passive
and Active on reception of On and Off signals respectively. The client is initially
Idle. When it wants to send a message, it waits for the server to be active (place
Wserv). Then, it sends its message and waits for an acknowledgement (place
Wack). In case of a positive acknowledgement, it becomes Idle again. Otherwise,
it tries to retransmit the message (place Fail). On reception of a message, the
server analyses it and sends an acknowledgement (place Analyse).

The considered set of transitions Tϕ is {Try, Retry} (the black transitions
in Figure 2). Using these two transitions, one can express several properties
characterising the communication between the client and the server. For instance
the formula G(Retry ⇒ ((¬Retry)UTry)) states that each message sent can be
retransmitted at most once. In this decomposition of the client-server model,
subnet N1 is unbounded since transition Cons can be executed infinitely often,
thus flooding place Idle with tokens. A correct modular approach should analyse
a component of the system completed by an abstraction of its environment. In
the next subsection, we show how to exploit the system invariants in order to
automatically construct such an abstraction.

4 Abstraction of the environment using linear invariants

Linear invariants of a Petri net correspond to a safety property of the system
(see e.g. [8, 11]). They are computed by finding a generative family of positive
solutions of a linear equation system. Even though the worst case time com-
plexity of this computation is not polynomial, in practice the algorithm behaves
efficiently w.r.t. the reachability graph construction.

Here, we propose to use linear invariants as a witness of the synchronisation
between the two subnets of the net N with decomposition 〈N1, I, N2〉. Let VN

be the set of positive linear invariants of net N ; these are called the global

invariants. With an invariant v ∈ VN , we associate two places a
(v)
1 , a

(v)
2 which

are added to N1 and N2 respectively. The current marking of the added places
summarises the information given by the corresponding positive linear invariant
v. The net obtained by adding an abstraction place for each invariant from a set
V ⊆ VN is called the component subnet for V and denoted from now on by N̂j .

Definition 4 (Component subnet). Let 〈N1, I, N2〉 be a decomposition of a
net N and let V ⊆ VN . The component subnet related to Ni = 〈Pi, Ti, P rei, Posti〉

generated from the set of invariants V is N̂i = 〈P̂i, T̂i, P̂ rei, P̂ osti〉 such that:

– T̂i = Ti;

– P̂i = Pi ∪Aj (where i ∈ {1, 2} and j 6= i), with Aj = {a
(v)
j |v ∈ V } the set of

abstraction places;
– for all p ∈ P̂i and t ∈ T̂i, P̂ rei(p, t) = Pre(t)T .Φ(p) and P̂ osti(p, t) =

Post(t)T .Φ(p), where the mapping Φ from P ∪ A1 ∪ A2 to INP∪A1∪A2 is

defined by Φ(p) = 1p, for p ∈ P , and Φ(a
(v)
j) =

∑
p∈Pj

v(p).1p for a
(v)
j ∈ Aj.

The mapping from a global marking to markings of the component subnets is now
defined to determine the initial marking of places representing the invariants.

Definition 5. Let 〈N1, I, N2〉 be the decomposition of a net N and let N̂i (i =
1, 2) be the induced component subnets. For each marking m of N , Φi the pro-

jection mapping on N̂i is defined by: Φi(m)(p) = mT .Φ(p) for all p ∈ P̂i.

For transitions of the component subnet, all computations of the original marked
net are also computations of the component subnet.

Proposition 2. Let 〈N1, TI , N2〉 be a decomposition of a net N . Then, for all

markings m of N , Lω(〈N̂i, Φi(m)〉) ⊇ Lω(〈N, m〉)⌊ bNi
.

Note that it is also the case that Lω(〈Ni, m⌊Ni
〉) ⊇ Lω(〈N̂i, Φi(m)〉): the addition

of the places representing the invariant(s) is restricting the computations. The
more invariants, the more precise the approximation of the global net behaviour.

As a consequence of proposition 2, we can use the invariants of the original
net to obtain component subnets that hopefully disallow all counterexamples.
Which set of invariants should be used for constructing the component subnets
is a difficult question which will not be answered in this paper. However, we note
that considering invariants that only have a support in one of the components
is useless since they typically lead to a disconnected place in the other compo-
nent. As a heuristic we propose to use all invariants that have support in both
components, thus providing most information about the environment. Hence, we
compute the component subnets for the decomposition 〈N(1,i), I(i,i+1), N(i+1,n)〉
using all invariants that have support in both N(1,i) and N(i+1,n).

Example 2. The generative family of invariants of the model of Figure 2 is:

1. v = Idle + Fail + Wserv + Wack
2. v′ = Idle + Fail + Wserv + Mess + Analyse + Pos + Neg
3. v′′ = Active + Passive + Analyse

Try

Retry

Idle

Wserv

Fail

Cons

Send

Ncons

a
(v)
2

a
(v′)
2

N1

a
(v)
1

a
(v′)
1

Cons

Send

Ncons

Pos

Active

Wack

Mess

Neg

KO

Off

On

Receive

OK

Passive

Analyse

N(2,3)

Fig. 3. The component subnets bN1 and bN(2,3)

The first two invariants cover both subnets while the third one is local to subnet
N(2,3). Figure 3 illustrates the client component subnet obtained by using the
first two invariants. The component subnet corresponding to the server can be
obtained in a similar way. Note that the original client subnet has been enlarged

with abstraction places a
(v)
2 and a

(v′)
2 . Let us explain for instance the underlying

meaning of the abstraction place a
(v′)
2 . Since Φ(a

(v′)
2) = 1Mess +1Analyse +1Pos +

1Neg, this place contains the sum of tokens of these four places (i.e., 0). As
Mess is an output place of the transition Send and the three other ones are not,

Post(a
(v′)
2 , Send) = 1. The other arcs are obtained in a similar way.

Up to now, we have proposed a decomposition scheme based on the LTL\X for-
mula to be checked and exploited the place invariants in order to abstract the
environment of a given component while keeping some information about the in-
teraction around the interface between two parts of the system. This scheme will
be used in the following to deal with model-checking. Given a component of the
system completed with an abstraction of its environment (a component subnet)
how useful is a separate analysis of this component w.r.t. a global analysis of the
whole net? The next section is devoted to characterising and checking whether
a counterexample found locally in a component is allowed by its environment.

5 Checking the validity of local counterexamples

In order to check the validity of a counterexample found locally for a component,
we introduce a sufficient condition, namely the non-constraining relation.

5.1 The non-constraining relation

The non-constraining relation is an asymmetric property to be checked be-
tween two given marked component subnets obtained from a net decomposition:
〈N2, m2〉 does not constrain 〈N1, m1〉 if for any firing sequence enabled from

〈N1, m1〉, there exists a firing sequence enabled from 〈N2, m2〉, both having the
same projection on the shared transitions. Then, we prove that the firing se-
quences enabled in the non-constrained component exactly represent the firing
sequences of the global net, up to the projection on the component transitions.

Definition 6 (Non-constraining relation). Let 〈N1, m1〉 and 〈N2, m2〉 be
two marked nets with disjoint sets of places. Then, 〈N2, m2〉 does not constrain
〈N1, m1〉 iff Lω(〈N1, m1〉)⌊N2

⊆ Lω(〈N2, m2〉)⌊N1
.

Expressed as an inclusion between two projected languages, the non-constraining
relation can be considered as a strong condition characterising a complete free-
ness of the involved component w.r.t. its interface with the environment. A naive
partition of the global net into components makes this relation quite often un-
satisfied. However, using abstraction places, the freeness of a given component
on the interface transitions is reduced and its communication behaviour is finely
approximated. For instance, in Figure 3 both component subnets have the same
projected language on the interface transitions, i.e. Send.(Cons + Ncons)ω.

Proposition 3. Let 〈N1, I, N2〉 be a decomposition of a net N and let m be a

marking of N . If 〈N̂2, Φ2(m)〉 does not constrain 〈N̂1, Φ1(m)〉 then the following

assertion holds: Lω(〈N̂1, Φ1(m)〉) ⊆ Lω(〈N, m〉)⌊ bN1
.

Note that the non-constraining relation is a sufficient but not necessary condi-
tion for deducing the validity of a counterexample. It ensures that all possible
local counterexamples are valid. This approach could be refined so that each
representative of a set of counterexamples is checked separately.

A direct consequence of Proposition 3 is that, if 〈N̂2, Φ2(m)〉 does not con-

strain 〈N̂1, Φ1(m)〉, one can deduce that a given LTL\X formula ϕ does not hold

in the global net N as soon as it is proved unsatisfied by 〈N̂1, Φ1(m)〉.

Proposition 4. Let 〈N1, I, N2〉 be a decomposition of a net N and m a marking
of N . Let ϕ be an LTL\X formula such that the involved actions belong to N1. If

〈N̂2, Φ2(m)〉 does not constrain 〈N̂1, Φ1(m)〉 then the following assertion holds:

〈N̂1, Φ1(m)〉 6|= ϕ =⇒ 〈N, m〉 6|= ϕ

The non-constraining relation is defined as an inclusion between languages.
Checking such a property represents the main difficulty of our approach. A
naive test of this relation would result in building the synchronised product of
the reachability graphs of the component subnets, which could drastically limit
the applicability of our method. Thus, the remaining part of this section will be
devoted to reducing the complexity of checking the non-constraining relation.

5.2 Reduction of the non-constraining relation test

Given two nets 〈N1, m1〉 and 〈N2, m2〉 with disjoint sets of places, the idea is
to insert a new net 〈N3, m3〉 in the non-constraining relation checking process

so that the following implication holds: if 〈N2, m2〉 does not constrain 〈N3, m3〉,
then 〈N2, m2〉 does not constrain 〈N1, m1〉.

Obviously, from the point of view of efficiency, this would reduce the com-
plexity of the non-constraining relation check if and only if checking whether
〈N2, m2〉 does not constrain 〈N3, m3〉 is less expensive than checking whether it
does not constrain 〈N1, m1〉. In the following proposition, we first present the
general context of this reduction by giving the minimal conditions for N3 so
that the above implication holds. Then, based on our decomposition scheme, we
define the component subnet that will play the role of N3 and which guarantees
the reduction of the complexity of the non-constraining relation check.

Proposition 5. Let N1, N2 and N3 be nets with sets of transitions T1, T2 and
T3 respectively, such that T1 ∩T2 ⊆ T3. Let m1, m2 and m3 be markings for N1,
N2 and N3, respectively. If Lω(〈N3, m3〉)⌊N1

⊇ Lω(〈N1, m1〉)⌊N3
, then 〈N2, m2〉

is non-constraining for 〈N3, m3〉 ⇒ 〈N2, m2〉 is non-constraining for 〈N1, m1〉.

Now, using the same abstraction principle, one can abstract both component
subnets. This leads to what we call the interface component subnet, which allows
for representing the language of the global net compactly, up to a projection
on the interface. It is obtained by connecting the interface transitions to the
abstraction places of both components. This structure is used in the next section
in order to check efficiently the non-constraining relation.

Definition 7 (Interface component subnet). Let 〈N1, I, N2〉 be the decom-

position of a net N and let N̂i (i = 1, 2) be the induced component subnets for
a set of invariants V ⊆ VN . The interface component subnet related to this
decomposition is Î = 〈P̂ , T̂ , P̂ re, P̂ ost〉 such that, for i, j ∈ {1, 2}, i 6= j:

– T̂ = I;

– P̂ = A1 ∪ A2, with Ai = {a
(v)
i |v ∈ V } the set of abstraction places of N̂i;

– for all a ∈ Ai and t ∈ T̂ , P̂ re(a, t) = P̂ rej(a, t) and P̂ ost(a, t) = P̂ ostj(a, t).

For a marking m of N , m̂(p) = Φ1(m)(p) + Φ2(m)(p) for all p ∈ P̂ .

Example 3. Figure 4 represents the interface component subnets involved in the
decomposition of the net in Figure 2 associated with their initial markings.

Proposition 6. Let 〈N1, I, N2〉 be a decomposition of a net N . Let N̂i (i = 1, 2)

and Î be the induced (interface) component subnets for a set of invariants V ⊆

VN . Let m be a marking of N . Then: 〈N̂2, Φ2(m)〉 is non-constraining for 〈Î , m̂〉

⇒ 〈N̂2, Φ2(m)〉 is non-constraining for 〈N̂1, Φ1(m)〉.

This proposition is exploited in order to restrain the test of the non-constraining
relation of N̂(i+1,n) w.r.t. N̂(1,i), to a lighter relation between N̂(i+1,n) and the

interface component subnet Î(i,i+1). One can apply the same principle in an

iterative way to deduce the following implication: if N̂(j,n) is non-constraining

for Î(j−1,j) for all i + 1 ≤ j ≤ n, then N̂(i+1,n) is non-constraining for N̂(1,i).
This can drastically reduce the complexity of checking the non-constraining

relation, since it is modularly checked on very small components, one at a time.

a
(v)
1

a
(v′)
1

Cons

Send

Ncons

a
(v)
2

a
(v′)
2

I(1,2)

KO

Off

On

Receive

OK

a
(v′)
2

a
(v′′)
2

a
(v′)
3

a
(v′′)
3

I(2,3)

Fig. 4. The Client-Server interface component subnets

6 An incremental and modular model-checker

In this section, we use the decomposition and abstraction techniques presented in
the previous sections to give an incremental modular technique for establishing
the validity of a formula ϕ on a net N . Algorithm 1 illustrates the technique. The
net is supposed to be decomposed as described in Definition 3: N = 〈N1, . . . , Nn〉.

The algorithm verifies the validity of formula ϕ on the component subnet N̂(1,j)

starting from j = 1 (first loop). To establish N̂(1,j) |= ϕ, one can use any
standard model checker for LTL\X formulas on Petri nets. In case the formula
ϕ holds in this component subnet (line 4), the validity of ϕ w.r.t. the other

component subnet N(j+1,n) is checked. This is done modularly on N̂i for all

i, j < i ≤ n (lines 6–8). Since the component subnets N̂i do not contain any

transition of Tϕ, N̂i |= ϕ can be established only using reachability, deadlock
and divergence information; for example using symbolic observation graphs as
in [9]. When the property ϕ is proved satisfied by N̂(1,j) and all N̂i (for i > j),
analysed separately, the property is checked on a reduced synchronised product
(lines 9–10) using algorithm 2. This task is discussed and detailed in section 6.1.

If one of the verifications of ϕ fails, the next phase of the algorithm consists in
checking whether the component subnets not involved in the previous verification
process allow the counterexample to occur. This step is ensured by checking the
non-constraining relation between the component in which ϕ is unsatisfied and
these components considered as its environment. Algorithm 3 performs this task
in a modular way, as described in section 6.2.

At this point of the algorithm, we know that the property does not hold either
in N̂(1,j) nor in N̂k for some j < k ≤ n. In the first case, the environment is the

right-hand side partition 〈N̂j+1, . . . , N̂n〉 and the non-constraining relation step
is invoked once (line 19). While, in the second case, the environment is the left-

Algorithm 1: Checking ϕ on the components of a decomposition

Require: ϕ, 〈N1, . . . , Nn〉
Ensure: Check ϕ on 〈N1, . . . , Nn〉
1: int i,j;
2: j=1;
3: while j¡n do

4: if bN1,j satisfies ϕ then

5: i=j+1;
6: while bNi satisfies ϕ do

7: i=i+1;
8: end while

9: if i ¿ n then

10: Check property ϕ on a
reduced synchronised product

11: else

12: if ¬(〈 bNi−1, . . . , bN1〉 constrains
bI(i−1,i)) and ¬(〈 bNi+1, . . . , bNn〉

constrains bI(i,i+1)) then

13: return false; // N 6|= ϕ

14: else

15: j=j+1;
16: end if

17: end if

18: else

19: if ¬(〈 bNj+1, . . . , bNn〉 constrains
bI(j,j+1)) then

20: return false; // N 6|= ϕ

21: else

22: j=j+1;
23: end if

24: end if

25: end while

26: return true; // N |= ϕ

hand side partition 〈N̂1, . . . , N̂i−1〉 and the right-hand side one 〈N̂i+1, . . . , N̂n〉,

and both have to be non-constraining for N̂i. Thus the non-constraining relation
is checked at most twice, once for each part of the environment (line 12). If the
non-constraining relation step is successful, the counterexample is allowed by the
corresponding environment and it is also allowed by the net as a whole. Thus,
the invalidity of ϕ can be deduced: N 6|= ϕ. If the counterexample turns out not
to be allowed by these component subnets, the verification process is started
again, but a larger component subnet N̂(1,j+1) is then used (lines 15 and 22).

Two parts of algorithm 1 are not described yet: how to check the property on
a reduced synchronised product (line 10) and how to check the non-constraining
relation (lines 12 and 19). This is the issue of the following subsection.

6.1 Checking a property on a reduced synchronised product

Given a Petri net N and its decomposition in n component subnets 〈N̂1, . . . , N̂n〉,

the fact that an LTL\X property ϕ holds in each component N̂i (for i = 1 . . . n)
is not sufficient to deduce that ϕ holds in N as well. However, it helps to deduce
that the possible invalidity of ϕ in N comes necessarily from the interaction
between the different components. Hence we need to focus on the behaviour of
these components around the interface and abstract the local behaviours since
they have been proved satisfying the property. The symbolic observation graph
(SOG) technique [9] is particularly well-suited for that purpose. Indeed, a SOG
is a graph, built according to a subset of observed actions Obs where nodes
are sets of states connected to one another by unobserved actions and arcs are
exclusively labeled with action from Obs. Checking a LTL\X property on this

graph is equivalent to checking the property over the original reachability graph.
The size of the SOG is as small as the number of actions involved in the formula
to be checked. In general its size is negligible w.r.t. the size of the original graph.

Algorithm 2: Checking ϕ on a reduced synchronised product

Require: 〈N1, . . . , Nn〉, ϕ
Ensure: check ϕ over N = 〈N1, . . . , Nn〉
1: int k;
2: j=2
3: while j¡n do

4: Build SOG, the symbolic
observation graph of bN(1,j)

5: if SOG 6|= ϕ then

6: if ¬(〈 bNj+1, . . . , bNn〉 constrains
bI(j,j+1)) then

7: return false; // N 6|= ϕ

8: end if

9: end if

10: j=j+1
11: end while

12: return true; // N |= ϕ

Algorithm 2 uses this technique in an incremental way to check the property
by exploiting our decomposition and abstraction schemes. Starting from the
first component N̂(1,1), the property is checked iteratively on the SOG of N̂(1,j),

for j = 2, . . . , n, obtained by composing the component subnets N̂(1,j−1) and

N̂j (lines 4–5). The model checking is performed on an incremented component
subnet (line 10) and the associated SOG in two cases: the property holds in all the
previous iterations, the property does not hold and the non-constraining property
is unsatisfied. In the worst case, the property will be checked on the whole net. As
soon as the non-constraining relation is proved satisfied, the algorithm returns
false (the property does not hold in the global net).

6.2 The non-constraining checking algorithm

In [9], the authors propose an algorithm for checking the non-constraining rela-
tion between two subnets based on the synchronisation of their symbolic obser-
vation graphs. Here, we follow the same principle and propose a modular way
for checking such a relation so that the global result is deduced from several
tests performed on reduced subnets. Checking the non-constraining relation be-
tween two decomposed Petri nets is, in turn, done iteratively as described in
Algorithm 3. The parameters of this step are a partition 〈N1, . . . , Nn〉 and a
subnet I which is supposed to be adjacent to N1. This hypothesis explains the
fact that the partition 〈N̂i−1, . . . , N̂1〉 at line 12 of Algorithm 1 is used instead

of 〈N̂1, . . . , N̂i−1〉. Hence, the goal is to check whether the subnet induced by
the partition constrains I. This task is done iteratively (lines 4–9) starting from
the right-hand side of the partition and going left building towards the non-
constraining of I. The correctness of this algorithm follows from Proposition 6.

Algorithm 3: Checking the non-constraining relation

Require: 〈N1, . . . , Nn〉, I
Ensure: check whether〈N1, . . . , Nn〉 is

nont constraining for I

1: int k;
2: I(0,1) = I ;
3: k=n;
4: while k¿1 do

5: if Nk is constraining for bI(k−1,k)

then

6: return false; //the
non-constraining relation is
unsatisfied

7: end if

8: k=k-1;
9: end while

10: return true; //the non-constraining
relation holds

7 Discussion and related work

Several techniques have been proposed to push further the use of modularity in
model-checking concurrent systems. As far as the verification is concerned, tak-
ing benefit from the structural composition of Petri nets is known to be a hard
problem. Mainly, structural approaches aim at preserving some basic properties,
such as liveness and boundedness, by composition of Petri nets (e.g. [12, 18, 17]).
More general or behavioural approaches like [3, 13] deal with the minimisation
of the reachable state space of each module by hiding the internal moves, before
the synchronisation of modules. Reachability analysis has been proved to be ef-
fective on the resulting structure in [14] and the method has been extended to
operate the model-checking of LTL\X formulae. However, experimental results
show that this technique is efficient for some models, but for others the combi-
natorial explosion still occurs.
A common limit of existing modular approaches is that the components of the
system are supposed to be known a priori. Even though the decomposition pre-
sented here is rather simple, having an adequate structuration into components
is essential for the applicability of modular verification techniques.

In structural approaches, rather restrictive conditions are forced, thus re-
ducing drastically the applicability to concrete systems while the synchronised
product between components state graphs is quite often unavoidable in behav-
ioral modular approaches.

Regarding the existing modular verification approaches, the contribution of
this paper can be summarised in three points. First, our decomposition scheme
is general and no restriction on the structure of the model is imposed. Second,
we present an original formal way to combine decomposition and invariant-based
abstraction of the system. Finally, we propose a modular algorithm for checking
the equivalence between local and global verification. The approach we present
here improves and generalises the work presented in [12]. The main improvements
can be summarised in the three following points: First, contrary to [12], the
decomposition scheme is not supposed to be known a priori. Indeed, even if
the system can be decomposed intuitively into components, the decomposition

obtained is not guaranteed to be suitable for the model-checking process. In this
paper, we proposed to take advantage of the knowledge of the actions involved
in the property to be verified in order to define a set of possible decompositions
and combine such decompositions with the invariant-based abstraction. Second,
in [12] the class of properties that can be handled by the method is not clearly
identified. The authors speak about infinite observed sequences but it is not easy
to say whether a given property depends on this kind of sequences only. Here,
we extend the approach to LTL\X properties. Finally, we proposed a complete
and self-contained modular verification approach for the LTL\X logic.

8 Conclusion

In this paper we addressed the modular verification of LTL\X properties over
finite systems described as Petri nets. Our algorithm for such a modular verifica-
tion aims at verifying a formula on a part of the system only. To achieve this, a
subnet containing actions occurring in the property is completed by an abstrac-
tion of its environment and incrementally refined by including more and more
details from the original system until the property can be proved either true or
false. We exploit the structure of the system to both decompose the model w.r.t.
the property to be checked and to compute the abstraction of the obtained com-
ponents. The non-constraining relation is used to establish whether or not the
counterexamples that might result from the local verification are globally allowed
by the system. Some of the non-constraining relations that need to be established
can themselves be checked iteratively.A tool implementing these algorithms is
currently under development. It will provide experimental data fro testing on
the efficiency of our algorithm and on some of the heuristics incorporated in
it such as the decision to use all place invariants of the system. An interest-
ing perspective of this work would be the refinement of the non-constraining
relation. In fact, instead of checking the inclusion of two components projected
languages, one could check whether the projection of a specific counterexample
on the interface transitions is allowed by the environment component.

References

1. Girish Bhat and Doron Peled. Adding partial orders to linear temporal logic. In
Int. Conf. on Concurrency Theory (CONCUR), volume 1243 of Lecture Notes in
Computer Science, pages 119–134. Springer, 1997.

2. Randal E. Bryant. Symbolic Boolean manipulation with ordered binary-decision
diagrams. ACM Computing Surveys, 24(3):293–318, 1992.

3. Søren Christensen and Laure Petrucci. Modular analysis of Petri nets. Computer
Journal, 43(3):224–242, 2000.

4. Jamieson Cobleigh, Dimitra Giannakopoulou, and Corina Pasareanu. Learning
assumptions for compositional verification. In Int. Conf. on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), volume 2619 of Lecture
Notes in Computer Science. Springer, 2003.

5. Jean-Michel Couvreur. On-the-fly verification of linear temporal logic. In World
Congress on Formal Methods (FM), volume 1709 of Lecture Notes in Computer
Science, pages 253–271. Springer, 1999.

6. Jean-Michel Couvreur. A bdd-like implementation of an automata package. In
Int. Conf. on Implementation and Application of Automata (CIAA), volume 3317
of Lecture Notes in Computer Science, pages 310–311. Springer, 2004.

7. Jaco Geldenhuys and Antti Valmari. Techniques for smaller intermediary bdds. In
Int. Conf. on Concurrency Theory (CONCUR), volume 2154 of Lecture Notes in
Computer Science, pages 233–247. Springer, 2001.

8. Claude Girault and Rdiger Valk. Petri Nets for Systems Engineering — A Guide
to Modeling, Verification, and Applications. Springer, 2003.

9. Serge Haddad, Jean-Michel Ilié, and Käıs Klai. Design and evaluation of a symbolic
and abstraction-based model checker. In Int. Conf. on Automated Technology for
Verification and Analysis (ATVA), volume 3299 of Lecture Notes in Computer
Science. Springer, 2004.

10. Thomas A. Henzinger, Orna Kupferman, and Moshe Y. Vardi. A space-efficient
on-the-fly algorithm for real-time model checking. In Int. Conf. on Concurrency
Theory (CONCUR), volume 1119 of Lecture Notes in Computer Science, pages
514–529. Springer, 1996.

11. Kurt Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use. Springer, 1997. Three Volumes.

12. Käıs Klai, Serge Haddad, and Jean-Michel Ilié. Modular verification of Petri nets
properties: A structure-based approach. In Int. Conf. on Formal Techniques for
Networked and Distributed Systems (FORTE), volume 3731 of Lecture Notes in
Computer Science, pages 189–203. Springer, 2005.

13. Charles Lakos and Laure Petrucci. Modular analysis of systems composed of semi-
autonomous subsystems. In Int. Conf. on Application of Concurrency to System
Design (ACSD), pages 185–194. IEEE Comp. Soc. Press, 2004.

14. Timo Latvala and Marko Mkel. LTL model-checking for modular Petri nets. In Int.
Conf. on Application and Theory of Petri Nets (ATPN), volume 3099 of Lecture
Notes in Computer Science, pages 298–311. Springer, 2004.

15. Kenneth L. McMillan, Shaz Qadeer, and James B. Saxe. Induction in compositional
model checking. In Int. Conf. on Computer Aided Verification (CAV), volume 1855
of Lecture Notes in Computer Science, pages 312–327. Springer, 2000.

16. Amir Pnueli. Applications of temporal logic to the specification and verification of
reactive systems: A survey of current trends. In Current Trends in Concurrency,
volume 224 of Lecture Notes in Computer Science, pages 510–584. Springer, 1986.

17. Christophe Sibertin-Blanc. A client-server protocol for composition of Petri nets.
In Int. Conf. on Application and Theory of Petri Nets (ATPN), volume 691 of
Lecture Notes in Computer Science. Springer, June 1993.

18. Younès Souissi and Gérard Memmi. Compositions of nets via a communication
medium. In G. Rozenberg, editor, Advances in Petri Nets, volume 483 of Lecture
Notes in Computer Science, pages 457–470. Springer, 1991.

19. Antti Valmari. A stubborn attack on state explosion. Formal Methods in System
Design, 1(4):297–322, 1992.

20. Antti Valmari. Composition and abstraction. In MOVEP, volume 2067 of Lecture
Notes in Computer Science, pages 58–98. Springer, 2000.

