
Composition of Model Programs

Margus Veanes1, Colin Campbell2?, and Wolfram Schulte1

1 Microsoft Research, Redmond, WA
{margus,schulte}@microsoft.com
2 Modeled Computation LLC, Seattle, WA
colin@modeled-computation.com

Abstract. Model programs are a useful formalism for software testing and de-
sign analysis. They are used in industrial tools, such as SpecExplorer, as a com-
pact, expressive and precise way to specify complex behavior. One of the chal-
lenges with model programs has been the difficulty to separate contract modeling
from scenario modeling. It has not been clear how to separatethose concerns in a
clean way. In this paper we introduce composition of model programs, motivate
why it is useful to be able to compose model programs, and whatcomposition of
model programs formally means.

1 Introduction

Model programs are a useful formalism for software testing and design analysis. They
are used in industrial tools like SpecExplorer [1] as a compact, expressive and precise
way to specify complex behavior. Model programs are unwoundinto transition systems
that can be used in model-based testing, for runtime conformance checking of a system
under test, and for design validation [4, 15–17].

In practice we have observed two distinct uses of model programs. The first use
is as asoftware contractthat encodes the expected behavior of the system under test.
Here, the model program acts as an oracle that predicts system behavior in each possible
context. The unwinding of such a contract model is typicallyinfinite, since for many
systems, such as those that allocate new objects at runtime,there are infinitely many
possible states.

The second use is to define thescenariosto be tested or analyzed. Here, the purpose
of the model program is to produce (when unwound) states and transitions of interest
for a particular test or type of analysis. For example, one might want to direct a test
to consider only certain interleavings of actions instead of all possible interleavings.
Another example would be a model that specifies a finite set of input data to be used as
system inputs.

Current practice tends to combine these two roles within a single model program,
even though it is recognized that cleanly separating these concerns would be much
better engineering practice. In addition, we have observedthat as contract models grow,
it would be helpful if they could be divided into submodels ofmanageable size. Up to
now we have lacked the formal machinery to accomplish this.

? The work in this paper was done at Microsoft Research.

At issue is the separation of design aspects into distinct but related model programs.
If model programs are related exclusively by common action labels, then the desired
system behavior is the intersection of possible traces for each aspect. In classical au-
tomata theory, the technique of achieving intersection of traces is product composition.
We extend this technique here to defineparallel compositionof model programs.

Not all composition is parallel; sometimes it is useful to think in terms of phases
of system operation. A typical example occurs when there is an initialization phase,
followed by an operational phase with many possible behaviors, followed by a shut-
down phase. We define theserial compositionof model programs, which is analogous
to serial composition of finite automata for language concatenation.

The main contribution of the paper is the formalization of the parallel composition
of model programs in a way that builds on the classical theoryof LTSs [12]. Our goal
is thereforenot to define yet another notion of composition but to show how thecom-
position of model programs can be defined in a way that preserves the underlying LTS
semantics.

It is important to note here that the composition of model programs issyntactic.
It is effectively a program transformation that is most interesting when it is formally
grounded in an existing semantics and has useful algebraic properties. This fills an
important semantic gap and makes compositional modeling more practical in tools like
Spec Explorer.

Achieving this goal required us to “rethink” the way actionsare treated. Spec Ex-
plorer uses a mixture of a Mealy view and an LTS view that causes a complication in
the definition of conformance. In this paper we adopt a consistent LTS-based view of
action traces. This enables a direct application of the formal LTS based teory of testing
using ioco [3] when the direction (input or output) of actions is specified. A key aspect
of the composition of model programs is that actions are represented by terms that may
include variables and values, and the notion of an action vocabulary is defined using
only the function symbol part of the action. When actions aresynchonized, values are
shared throughunificationand may transfer data from one model program to another.

Model program composition is the cornerstone of theNModelframework that pro-
vides a modeling library for model programs written in C#. NModel is in the process of
becoming an open source project and is the software support for the forthcoming text-
book [11] that discusses the use of model programs as a practical modeling technique.
While this paper provides the foundations of model program composition, the textbook
shows practical techniques and applications, with an emphasis on composition as a
method of layering system behavior into independent features.

The techniques for parallel and serial composition of modelprograms, as we will
see below, have characteristics that make them appealing for use in the domain of soft-
ware testing and design validation. We begin with an example. Then in sections 3 and 4
we give a formalization.

1.1 Example

Consider three model programsM1, M2 andM3 that specify, respectively, a GUI-based
application, a dialog box used in that application and a testscenario. The state spaces of
the model programs are disjoint but their action signatureshave nonempty intersections.

In the presentation that follows we unwind control state butnot data state to produce
control graphs in the spirit of Extended Finite State Machines (EFSMs) [13]. Figures 1-
3 showM1, M2 andM3 using this view.

The model program of the GUI-based application is shown in Figure 1. It has three
control states,p1, p2 and p3. Control statep1 is both the initial state (indicated by
the incoming arrow) and an accepting state (indicated by thedouble circle). The arcs
between control states are labeled by guarded update rules called actions. These actions
contain enabling conditions (prefixed by requires) and updates in curly braces. The
actions include parameters which are substituted by groundvalues during unwinding.

p1

p2

p3

OpenDocument()
{SystemFont:= Font(“Times”, 12); }CloseDocument()

SelectFontFinish(y)
{SystemFont:= y; }

SelectFontStart(x)
requires x == SystemFont;

Fig. 1. Application modelM1.

The data state ofM1 contains one state variable,SystemFont.
Runs of a model program begin in the initial control state andend in an accepting

control state. Every step of the run must satisfy the enabling condition of the action that
produced it.

Note that this model program uses anLTS viewinstead of aMealy viewfor the action
that sets the system font. In an LTS view, inputs and outputs appear as separate transi-
tions, possibly breaking a single logical action into two parts.SelectFontStart takes an
input, namely the current system font given by the data statevariableSystemFont. The
parameter ofSelectFontFinish denotes the output. Since theSelectFontFinish action
has no enabling condition, any font value could be selected.

Model programM2 that describes a font-choosing dialog box is shown in Figure2.
The action signature ofM2 consists ofSelectFontStart, SelectFontFinish, OK,

Cancel, SetFontNameandSetFontSize. Notice that this vocabulary has two actions in
common withM1, the application model, as well as four actions that are not shared.

Once started, the dialog box allows the user to set the font size and the font name in
any order and as many times as desired. Depending on whether the user pressesOK or
Canceleither the newly selected font or the prior font is included in the exit label.

Model programM3 gives a scenario of interest for testing. It is shown as Figure 3.
The scenario model shows two use cases for the font dialog. There are only two

possible traces for this machine.
As is typical with scenario models,M3 contains no updates to data state. We also

useSetFontSize(10) as a shorthand forSetFontSize(x) requires x == 10. We use the

q1

q2

q3 q4

SelectFontStart(x)
requires ValidFont(x);
{(DialogFont, SavedFont) := (x, x); }

OK()

SelectFontFinish(y)
requires y == DialogFont;

Cancel()

SelectFontFinish(y)
requires y == SavedFont;

SetFontName(y)
{DialogFont.Name:= y; }

SetFontSize(z)
{DialogFont.Size:= z; }

Fig. 2. Font chooser dialog modelM2.

r1

r2

r3

r4

r5

r6

SelectFontStart()

SetFontSize(10)

SetFontName(“SansSerif”)

OK()Cancel()

SelectFontFinish()

Fig. 3. Scenario modelM3 showing two ways to use the font dialog.

underscore symbol (“”) to indicate an unconstrained parameter that is not used inany
precondition or update.

Figure 4 shows the parallel composition ofM1, M2 andM3. The diagram omits the
state update rules for brevity.

Under parallel composition, model programs will synchronize steps for shared ac-
tions and interleave actions not found in their common signature. The control states of
the composed model program are a subset of the cross product of the control states of
the component models.

The enabling conditions of the transitions are the conjunction of the enabling condi-
tions of the component models. The data updates are the unionof the data updates of the
component programs. There can be no conflicting updates because the data signatures
must be disjoint.

An accepting state under parallel composition occurs when all of component control
states are accepting states. This accounts for the fact thatthe font may only be selected

〈p1, q1, r1〉

〈p2, q1, r1〉

〈p3, q2, r2〉

〈p3, q2, r3〉

〈p3, q2, r4〉

〈p3, q3, r5〉 〈p3, q4, r5〉

〈p2, q1, r6〉

〈p1, q1, r6〉

OpenDocument()CloseDocument()

SelectFontStart(Font(“Times”, 12))

SetFontSize(10)

SetFontName(“SansSerif”)

OK() Cancel()

SelectFontFinish(Font(“SansSerif”, 10)) SelectFontFinish(Font(“Times”, 12))

CloseDocument()OpenDocument()

Fig. 4.Parallel compositionM4 of the application modelM1, the font chooser dialog modelM2,
and the scenario modelM3. Update rules associated with labels are not shown.

exactly one time in the composed model program– the scenariomodelM3 does not
loop, and its initial state is not an accepting state.

2 Basic definitions

Let Σ be a fixed signature of function symbols. Some function symbols in Σ, denoted
by Σdynamic, may change their interpretation and are calledstate variables. The remain-
ing set of symbols, denoted byΣstatic, have a fixed interpretation with respect to a given
background theoryB.B is identified with its models that are calledstates. It is assumed
that all states share the same universeV of values. Without loss of generality one may
identify a state with a particular interpretation (value assignment) to all the state vari-
ables. Note thatlogic variablesare distinct from state variables. Logic variables are
needed below to be able to construct nonground action terms.

Example 1.Consider the application modelM1 in Figure 1.SystemFontis a nullary
state variable here.V is fixed and includes at least strings, integers, and fonts. Afont
can be constructed using the static binary functionFont. M1 has a single nullary state
variableSystemFont.

Termsare defined inductively overΣ and a set of logic variables disjoint fromΣ.
An equationis an atomic formulat1 == t2 wheret1 andt2 are terms and ‘==’ is the
formal equality symbol. Formulas are built up inductively from atomic formulas using

logical connectives and quantifiers.3 A term or a formulae may contain free logic vari-
ablesFV(e); e is groundor closedif FV(e) is empty. Asubstitutionis a finite (possibly
empty) map from logic variables to terms. Given a substitution θ and an expressione,
eθ denotes the replacement ofx in e by θ(x) for eachx in FV(e). We say thatθ is
grounding fore if eθ is ground. Given a closed formulaϕ and a stateS, S |= ϕ is used
to denote thatS satisfiesϕ, or ϕ holdsor is true in S.4 A closed formula isconsistent
if it is true in some state. We writetS for the interpretation of a ground termt in S.
When ann-ary function symbolf is self-interpretingor afree constructorit means that
f(t1, . . . , tn)S = g(u1, . . . , um)S if and only if f andg are the same function symbol
(and thusn = m) andtSi = uS

i for all i.

Example 2.Consider the signature ofM1 again and lett = Font(x, y); t is a term with
FV(t) = {x, y}. The substitutionθ = {x 7→ “Times”, y 7→ 10} is grounding fort
andtθ is the ground termFont(“Times”, 10) denoting the corresponding font, where
Font is a free constructor. LetS be a state where the value ofSystemFontis the Times
font of size 12. ThenS |= ¬SystemFont== Font(“Times”, 10) becauseFont is self-
interpreting and10 6= 12.

A locationis a pair〈f, (v1, . . . , vn)〉wheref is ann-ary function symbol inΣdynamic

and(v1, . . . , vn) is a sequence of values. Anupdateis an ordered pair denoted byl 7→ v,
wherel is a location andv a value. A setU of updates isconsistentif there are no two
distinct updatesl 7→ v1 and l 7→ v2 in U . Given a stateS and a consistent setU of
updates,S] U is the state where, for allf ∈ Σdynamic of arity n ≥ 0 and values
v1, . . . , vn,

fS]U (v1, . . . , vn) =

{
w, if 〈f, (v1, . . . , vn)〉 7→ w ∈ U ;
fS(v1, . . . , vn), otherwise.

In other words,S] U is the state after applying the updatesU to S.
For the purposes of this paper it is enough to assume that all state variables are

nullary, in which case the notions of locations and state variables can be unified.
A programP overΣ when applied to (or executed in) a stateS, produces a set of

updates. OftenP also depends on formal parametersFV(P) = x1, . . . , xn for some
n ≥ 0. Thus,P denotes a function[[P]] : State× Vn → UpdateSet. It is convenient
to extend the notion of expressions to include programs so that we can talk about free
variables in programs and apply substitutions to them. Given a grounding substitution
θ for P and a data stateS, we write[[Pθ]](S) or [[P]](S, θ) for [[P]](S, x1θ

S , . . . , xnθS).

Example 3.Returning toM1 in Figure 1, we have that the transition fromp3 to p2 is
associated with the assignment (i.e. a basic program)SystemFont:= y, sayP , with a
single formal parametery. Given a substitutionθ = {y 7→ t} wheret is ground, and
any stateS, [[Pθ]](S) = {SystemFont7→ tS}.

3 In general we may also have relation symbols, or Boolean functions, inΣ and form atomic
formulas other than equations.

4 We have in mind standard Tarski semantics for first order logic.

We also use the notion of alabeled transition systemor LTS(S,S0,L, T) that has
a nonempty setS of states, a nonempty subsetS0 ⊆ S of initial states, a nonempty
setL of labelsand a transition relationT ⊆ S × L × S. Here states and labels are
abstract elements but in our use of LTSs the notion of LTS states and first-order states
as introduced above will coincide. Arun is a transition sequence(Si, Li, Si+1)i<k, of
some (possibly infinite) lengthk, and ifk > 0 thenS0 ∈ S0; if k is finite and nonzero
then Sk is called theend-stateof the run. AnS-run for a given initial stateS is a
nonempty run as above whereS0 = S. An S-traceof anS-run as above is the label
sequence(Li)i<k of lengthk. Intuitively, a trace is the sequence of labels of a run; the
states are not part of a trace. Afinite run or trace has finite length.

3 Model programs

A guarded program(overΣ) is a pair[ϕ]/P whereϕ is a formula andP is a program.
LetG be a guarded program[ϕ]/P . Intuitively,G denotes the restriction of[[P]] to those
states and input parameters whereϕ holds. LetFV(G)

def
= FV(ϕ) ∪ FV(P).

Definition 1. Σaction denotes a fixed subset of the free constructors ofΣstatic calledac-
tion symbols. An action termis a termf(t1, . . . , tn) wheref is ann-ary action symbol
for somen ≥ 0, and eachti is either a distinct logic variable or a ground term over
Σstatic− Σaction. GivenΓ ⊆ Σaction we writeA(Γ) for the set of all action terms with
action symbols inΓ . By anactionwe mean the interpretation of a ground action term.

Notice that the interpretation of a ground action term is thesame in all data states.
Notice also that there is essentially no difference betweena nullary action symbol and
the corresponding action (term).

Example 4.ConsiderM1 in Figure 1. There are two nullary action symbolsClose-
Documentand OpenDocument, and two unary action symbolsSelectFontStart and
SelectFontFinish. Font is a free constructor, it is not an action symbol. The terms
SelectFontStart(Font(“Times”, 10)) andSelectFontStart(x) are action terms; the terms
SelectFontStart(SystemFont) andSelectFontStart(Font(“Times”, y)) on the other hand
arenot action terms, because in the formerSystemFontis not inΣstatic and in the latter
the action parameterFont(“Times”, y) is not a logic variable and not a ground term.

Definition 2. A model program with explicit control graphM has the following com-
ponents.

1. A signatureΣ.
2. An action signatureΓ ⊆ Σaction.
3. A finite nonempty setQ of control points.
4. An initial control point qinit ∈ Q.
5. A set ofaccepting control pointsQacc⊆ Q.
6. A finite control graphδ ⊆ Q × A(Γ) × Q. The elements ofδ are calledcontrol

transitions.
7. A family R = {rρ}ρ∈δ of guarded programs, where, for allρ = (q, a, p) ∈ δ,

FV(rρ) ⊆ FV(a); rρ is calledthe guarded program forρ.

8. A closed formulaϕentry overΣ called anentry condition.

The guard of the guarded program for a control transitionρ is denoted byϕρ and the
program is denoted byPρ. We denoteM by the tuple(Σ, Γ, Q, qinit , Qacc, δ, R, ϕentry).

By amodel programin this paper we mean a model program with explicit control graph.
A model program can be thought of as a control-flow graph whoseedges are anno-

tated by action terms and program segments similar to an EFSM[13].5

We use the special programskipthat produces no updates.

Example 5.The model programM1 in Figure 1 has the following components. The
signature is described in Example 1. The action signature isdescribed in Example 4.
The control points arep1, p2 andp3, wherep1 is both the initial control point and the
only accepting control point. There are four control transitions inM1. The guard of a
control transition is indicated with therequireskeyword or omitted iftrue. The program
of a control transition is written within braces or omitted if skip. This is the Spec# [16]
syntax of model programs.

A stateof M as above is a pair〈S, q〉 whereS is aΣ-state andq ∈ Q. S is called the
data componentof S or adata state, whereasq is called thecontrol componentof S or
a control state.6 An initial state is a state whose control component is an initial control
point and whose data component satisfies the entry condition. An acceptingstate is a
state whose control component is an accepting control point.

Definition 3. The labeled transition system underlyingM LTS(M) has the actions of
M as its labels. The (initial) states ofLTS(M) are the (initial) states forM . There is a
transition(〈S, q〉, b, 〈S′, q′〉) in LTS(M), if there is a control transitionρ = (q, a, q′) in
M and a substitutionθ such that:

– b = aθS ,
– S |= ϕρθ,
– [[Pρθ]](S) is consistent andS′ = S] [[Pρθ]](S).

A transition ofLTS(M) is called astepof M . Given a stateS and an actiona, we write
δ(S, a) for the set of all statesX such that(S, a, X) is a transition ofLTS(M). Given a
stateS and a finite sequence(ai)i<k of actions, we let

δ̂(S, (ai)i<k) =
⋃

{δ(X, ak−1) : X ∈ δ̂(S, (ai)i<k−1)},

δ̂(S, ()) = {S}.

Thus, δ̂(S, α) is the set of all end-states of allS-runs whose trace isα. An action
sequenceα is anacceptingS-trace if δ̂(S, α) contains an accepting state.

5 In general, the control graph of a model program may itself bea control program and the set
of generated control states may be infinite. We do not use thisgeneralization in this paper.

6 Formally, letpc be a fixed nullary function symbol not inΣ and letΣ′
= Σ ∪ {pc}. Then

〈S, q〉 stands for aΣ′-state wherepc〈S,q〉
= q andf 〈S,q〉

= fS for all f ∈ Σ.

Definition 4. Let M be a model program with initial control stateq0. An S-run of M
is an〈S, q0〉-run of LTS(M). An S-traceof M is an〈S, q0〉-trace ofLTS(M). The set
of all S-traces ofM is denoted byTraces(S, M). An S-traceα of M is accepting if it
is finite andδ̂(〈S, q0〉, α) contains an accepting state.

Example 6.The example shows how traces can depend on the data componentof states.
A possible accepting trace ofM1 from any initial state is:

OpenDocument,

SelectFontStart(Font(“Times”, 12)),

SelectFontFinish(Font(“SansSerif”, 10)),

SelectFontStart(Font(“SansSerif”, 10)),

SelectFontFinish(Font(“Times”, 10)),

CloseDocument

The argument toSelectFontStart is the current system font recorded in the data state
of M1. When font selection finishes the new font is recorded in the state, i.e., in the
action SelectFontStart(font), the font argument acts like an input argument and in
SelectFontFinish(font) the font argument acts like an output argument of a font se-
lection procedure.

4 Composition of model programs

The main operator underlying parallel composition of modelprograms is the product
of two model programs. We will also use the following action signature extension op-
eration over model programs.

Definition 5. Let M be a model program as above with action signatureΓ . Let Γ ′ be
a set of action symbols. We writeM+Γ ′

for the model program whose action signa-
ture is extended withΓ ′ andM+Γ ′

has the following additional extensions for each
action symbolf ∈ Γ ′ − Γ , let af denote a fixed action termf(_, . . . ,_) where each
occurrence of_ stands for a fresh logic variable,

– for all control statesq, δ is extended with the control transition,(q, af , q),
– for each new control transition(q, af , q), r(q,af ,q) = [true]/skip.

The intuition is that for each new action symbol any corresponding action is enabled
in every state and produces a self-loop in that state. This isalso easily seen in the
LTS semantics ofM+Γ ′

. This construct is used mainly to interleave actions that are not
shared between two model programs being composed in a product. Notice that an action
does not belong to a model program (or the underlying LTS) if its function symbol is
not in the action signature of the model program.

Example 7.ConsiderM1 in Figure 1 and letΓ2 be the action signature of the font
chooser dialog modelM2 in Figure 2. The only action symbols thatM1 andM2 have in
common areSelectFontStart andSelectFontFinish. ThusM+Γ2

1 has for example the
new control transitions(pi, SetFontSize(_), pi) for 1 ≤ i ≤ 3 that are enabled in all
states.

4.1 Product composition

We first define the product of two model programs that share thesame signature and
the same action signature. We then define parallel composition of model programs by
using signature extension and product composition.

Due to the restricted form of action terms, two action termsa1 anda2 unify if and
only if they have the same action symbol of some arityn ≥ 0, and for alli, 1 ≤ i ≤ n,
the i’th argument ofa1 and thei’th argument ofa2 either denote the same value or at
least one of them is a logic variable. Ifa1 anda2 unify there is trivially a most general
unifier θ = mgu(a1, a2), i.e., any action that is both an instance ofa1 and an instance
of a2 is an instance ofa1θ (or a2θ).

We assume that logic variables used in two model programs aredistinct so that
we do not need to worry about variable renaming. Given two guarded programsr1 =
[ϕ1]/P1 andr2 = [ϕ2]/P2 we writer1 ‖ r2 for the guarded program[ϕ1∧ϕ2]/P1 ‖ P2,
where the parallel compositionP1 ‖ P2 produces the union of the updates ofP1 and
P2, i.e. [[P1 ‖ P2]](S, θ) = [[P1]](S, θ) ∪ [[P2]](S, θ).

Definition 6. Let Mi = (Σ, Γ, Qi, q
init
i , Qacc

i , δi, {ri
ρ}ρ∈δi

, ϕentry
i), for i = 1, 2, be two

model programs. Theproduct of M1 and M2, denoted byM1 × M2, is the model
program

(Σ, Γ, Q1 × Q2, 〈q
init
1 , qinit

2 〉, Qacc
1 × Qacc

2 , δ, {rρ}ρ∈δ), ϕ
entry
1 ∧ ϕentry

2),

whereδ and{rρ}ρ∈δ are constructed as follows. For allρ1 = (q1, a1, p1) ∈ δ1 and
ρ2 = (q2, a2, p2) ∈ δ2 such thatθ = mgu(a1, a2) exists,

– ρ = (〈q1, q2〉, a1θ, 〈p1, p2〉) ∈ δ, and
– rρ = rρ1

θ ‖ rρ2
θ.

If M1 andM2 are model programs with different action signaturesΓ1 andΓ2 then
M1 × M2

def
= M+Γ2

1 × M+Γ1

2 .

One can show that the product operator is commutative and associative as far as trace
semantics of the final model program is concerned. This is made explicit in the follow-
ing statement.

Proposition 1. Let M1, M2 andM3 be model programs with the same signature and
action signature, and letS be a data state. Then Traces(S, M1×M2) = Traces(S, M2×
M1) and Traces(S, M1 × (M2 × M3)) = Traces(S, (M1 × M2) × M3).

Example 8.The model programM4 in Figure 4 shows the productM1 × M2 × M3.
Let Γi denote the action signature ofMi. In this caseΓ2 = Γ3 but Γ1 has the addi-
tional actions for opening and closing a document, and does not include the action for
changing the font name/size and theOK andCancelactions. If we first construct the
productM2 × M3, we get a specializationM23 of the font chooser dialog modelM2

where we first set the font size to be10 and then set the font name to be SansSerif. The
productM1 × M23, i.e.M4, corresponds intuitively to a hierarchical refinement ofM1

with a particular use of the font dialog model as described byM23. The actions that are

specific to the font selection model are considered as self-loops inM1, and conversely,
closing and opening of a document are considered as self-loops inM23. The final prod-
uct M4 is thereforeM+Γ2

1 × M+Γ1

23 . As an example of a guarded update program of
M4 consider the control transition

ρ = (〈p2, q1, r1〉, SelectFontStart(Font(“Times”, 12)), 〈p3, q2, r2〉)

If we follow the definitions exactly and do not simplify the formulas and the programs
then the guard associated withρ is

requires Font(“Times”, 12) == SystemFont
∧ true
∧ ValidFont(Font(“Times”, 12)),

and the program associated withρ is

skip‖ ((DialogFont, SavedFont) := (Font(“Times”, 12), Font(“Times”, 12)) ‖ skip) .

4.2 Parallel composition

When the product composition is used in an unrestricted manner the end result is a new
model program, which from the point of view of trace semantics might be unrelated to
the original model programs. Essentially, this problem occurs if two model programs
can read each others state variables.

Let SV(e) denote the set of allstate variablesthat occur ine, wheree is either
an expression, a program or a model program. Given aΣ1-stateS and a signature
Σ2 ⊆ Σ1, we writeS�Σ2 for thereductof S to Σ2. An ASM program is “honest” about
its state dependencies in the sense that state variables that are not explicitly mentioned
in the program do not influence its behavior and cannot be updated (e.g. there is no
implicit stack and the programs cannot change the control state). Formally, we use the
following fact:

Lemma 1. Let S be a data state overΣ, let SV⊆ Σdynamic, and letP be a program
such that SV(P) ⊆ SV. LetΣ′ = Σstatic∪ SV. Then[[P]](S) = [[P]](S�Σ′).

Definition 7. Let M1 andM2 be model programs with action signaturesΓ1 andΓ2,
respectively.M1 andM2 arecomposable in parallelif they have the same signature but
disjoint state variables, in which case theparallel compositionof M1 andM2, denoted
by M1 ‖ M2, is defined as the productM1 × M2.

The following theorem shows that parallel composition of model programs cor-
responds to parallel composition of the underlying LTSs. Such composition has the
desired language-theoretic property that the traces produced by the composite model
program are the intersection of the traces produced independently by the composed
model programs.

Theorem 1. Let M1 andM2 be model programs that are composable in parallel and
have the same action signature. Then

Traces(S, M1 ‖ M2) = Traces(S, M1) ∩ Traces(S, M2).

Proof. Let Mi = (Σ, Γ, Qi, q
init
i , Qacc

i , δi, {ri
ρ}ρ∈δi

, ϕentry
i), for i = 1, 2, be two model

programs such thatSV(M1) ∩ SV(M2) = ∅. Let S be a data state. LetM = M1 ×M2.
We only show thatTraces(S, M1 ×M2) ⊆ Traces(S, M1) ∩ Traces(S, M2). The other
direction is similar by using the same definitions in the opposite direction. Consider a
trace(ai)i<k ∈ Traces(S, M1 × M2). There is a correspondingS-run

(〈Si, 〈qi, pi〉〉, ai, 〈Si+1, 〈qi+1, pi+1〉〉)i<k

where〈q0, p0〉 is the initial control state of the product model program andS = S0.
Fix an arbitrary stepi in the run. The following holds by Definition 3: there is a control
transitionρi = (〈qi, pi〉, ti, 〈qi+1, pi+1〉) in M and a substitutionθ such that

– ai = tiθ
Si ,

– Si |= ϕρi
θ, and

– [[Pρi
θ]](Si) is consistent andSi+1 = Si] [[Pρi

θ]](Si).

By Defininition 6, there are control transitionsρ1
i = (qi, t

1
i , qi+1) in M1 andρ2

i =
(pi, t

2
i , pi+1) in M2 such that

– σ = mgu(t1i , t
2
i) exists andti = t1i σ,

– ϕρi
= ϕρ1

i
σ ∧ ϕρ2

i
σ, and

– Pρi
= Pρ1

i
σ ‖ Pρ2

i
σ.

LetΣ1 = Σ−SV(M2) andΣ2 = Σ−SV(M1). SinceSV(M1) andSV(M2) are disjoint
and the guards inMj may only contain state variables fromSV(Mj), it follows that
Si�Σ1 |= ϕρ1

i
σθ andSi�Σ2 |= ϕρ2

i
σθ. Also, since[[Pρi

θ]](Si) = U1∪U2 is consistent,
so areU1 andU2, whereU1 = [[Pρ1

i
σθ]](Si) andU2 = [[Pρ2

i
σθ]](Si). By using Lemma 1

and the disjointness ofSV(M1) andSV(M2) we know thatU1 = [[Pρ1

i
σθ]](Si�Σ1) and

U2 = [[Pρ2

i
σθ]](Si�Σ2). By usingSi+1 = Si] U1 ∪ U2, we get thatSi+1�Σ1 =

Si�Σ1] U1 andSi+1�Σ2 = Si�Σ2] U2.
Sincei was chosen freely, we can construct the run

(〈Si�Σ1, qi〉, ai, 〈Si+1�Σ1, qi+1〉)i<k

for M1 and then expand all states in the run toΣ in such a way that the first state isS.
We know also thatS |= ϕ

entry
1 becauseS |= ϕ

entry
1 ∧ ϕ

entry
2 . It follows that(ai)i<k ∈

Traces(S, M1). Symmetrical argument applies toM2. ut

Example 9.ConsiderM1, M2, M3 from above. The state variables of eachMi are
clearly disjoint;M1 has the single state variableSystemFont, M2 has the state vari-
ablesDialogFontandSavedFont, andM3 has no state variables. ThusM4 is a parallel
composition ofM+Γ2

1 , M+Γ1

2 andM+Γ1

3 , whereΓ1 andΓ2 are as in Example 8.

4.3 Serial composition

In scenario control it is often useful to compose two model programs serially (i.e. in a
sequence). Intuitively, a serial composition of two model programsM1 andM2 means
that the control flow may transition from an accepting control point of M1 to the ini-
tial control point ofM2. Serial composition is therefore not well-defined for model
programs that share control points. Note that, unlike the parallel case, state variable
signatures need not be disjoint in serial composition.

Definition 8. Two model programsM1 andM2 areserially composableif they have
the same action signature and disjoint sets of control points.

The formal definition of serial composition uses a new nullary action symbolτ
for the transition fromM1 to M2. Theτ transition corresponds to an internal control
transition from any accepting control point ofM1 to the initial control point ofM2

whose guard is the entry condition ofM2.

Definition 9. Let Mi = (Σ, Γ, Qi, q
init
i , Qacc

i , δi, {r
i
ρ}ρ∈δi

, ϕ
entry
i), for i = 1, 2, be two

serially composable model programs and letτ be a fresh action symbol not inΓ . M1

followed byM2 usingτ , denoted byM1;τ M2, is the model program

(Σ, {τ} ∪ Γ, Q1 ∪ Q2, q
init
1 , Qacc

2 , δ1 ∪ δ2 ∪ {(q, τ, qinit
2) : q ∈ Qacc

1 }
︸ ︷︷ ︸

δ

, {rρ}ρ∈δ, ϕ
entry
1),

whererρ = r1
ρ, if ρ ∈ δ1; rρ = r2

ρ, if ρ ∈ δ2; rρ = [ϕentry
2]/skip, otherwise.

It is easy to see that anS-trace ofM1;τ M2 has the formατβ whereα is an accept-
ing S-trace ofM1 andβ is anS′-trace ofM2 for someS′ ∈ δ̂M1

(S, α). Elimination
of τ can be done at the expense of introducing nondeterminism. For parallel compo-
sition of two model programs,τ -actions in each one are always considered as distinct
actions and are interleaved. One could also introduceτ as a special action that is al-
ways interleaved in a parallel composition as is done for example in the definition of
LTSs [14].

5 Conclusions and related work

There is a tradeoff between how much of the global state should be encoded as control
state and how much should be encoded as data state. In pure abstract state machines,
states are completely encoded as data states, and there is noseparate notion of control
state [2, 9]. Model programs defined in [16] adopt this view. While this view is more
concise and sufficient for many purposes it forces one to encode the control state as data
state, and this may not be natural from the point of view of control flow as understood
in traditional programming. Not having the distinction between control and data state
makes also the definition of certain forms of composition, such as serial composition,
harder to formalize because data states are shared whereas control states are disjoint in
serial composition.

The approach that we have taken is similar to extended finite state machines (EF-
SMs) where a finite part of the state is separated as control state. In general, the control
part does not need to be finite in model programs, but may encorporate the local stack
of a program. Model programs are similar to parameterized EFSMs [13], except that
EFSMs are a generalization of Mealy machines, whereas modelprograms do not distin-
guish a priori between inputs and outputs and incorporate the notion of accepting states
like classical automata. The distinction between inputs and outputs becomes relevant
for defining conformance, but is not relevant for the composition operators discussed
in this paper that are used for scenario control and for composing aspects of a system
model.

An important change from our prior approach of using model programs as a mixed
Mealy and LTS view, taken in SpecExplorer, is the introduction of intermediate control
states between the input part and the output part of an action. In other words, the un-
derlying semantics is given by an LTS. This separation is also used with FSM based
approaches where it is sometimes more convenient to formulate composition using
IOTSs [6]. One of the key reasons for us to separate the inputsfrom the outputs as sep-
arate actions, rather than using a Mealy view, was to be able to have a simple definition
of conformance relation that allows output nondeterminismwhen dealing with reactive
systems. This is important for using ioco [3] or refinement ofinterface automata [5] for
formalizing the confomance relation.

Further differences from EFSMs are that accepting states inmodel programs are
used for serial composition and for defining validity of traces, and labels are not ab-
stract elements but structured terms that allow sharing of arbitrary data values through
unification. The trace semantics of model programs is based on the unwinding of model
programs as labeled transition systems [14] where states are considered to be abstract
points.

The separation of control state from data state, while allowing communication with
terms that can incorporate data values, is important in the model-based testing appli-
cations of model programs, e.g. for scenario control and visualization of model pro-
grams. The definitions of parallel and serial composition ofmodel programs are related
to similar operations on classical automata (see e.g. [10]). There is a large body of
work using FSMs and variations of LTSs that use the classicalparallel composition of
automata where shared actions are synchronized and other actions are interleaved asyn-
chronously. It is important therefore that the semantics ofcomposed model programs is
based on the same notion of composition.

Model programs are also related to symbolic transition systems that have an ex-
plicit notion of data and data-dependent control flow [7]. Model program composition
as defined in this paper is independent of the mechanism of exploration used. Various
approaches, including explicit state exploration as well as exploration with symbolic
labels and states, may be applied. For example,action machines[8] rely on symbolic
techniques. The main difference compared to composition ofaction machines is that
composition of model programs is syntactic, whereas composition of action machines
is defined in the style of natural semantics using inference rules and symbolic com-
putation that incorporates the notion of computable approximations of subsumption
checking between symbolic states. The computable approximations reflect the power
of the underlying decision procedures that are being used.

More about model-based testing applications and further motivation for the compo-
sition of model programs can be found in [4, 8, 17, 16]. The most recent work related
to model programs where composition is discussed from a practical perspective is the
forthcoming textbook [11].

References

1. Spec Explorer. URL:http://research.microsoft.com/specexplorer, released January 2005.
2. E. Börger and R. Stärk.Abstract State Machines: A Method for High-Level System Design

and Analysis. Springer, 2003.

3. E. Brinksma and J. Tretmans. Testing Transition Systems:An Annotated Bibliography. In
Summer School MOVEP’2k – Modelling and Verification of Parallel Processes, volume 2067
of LNCS, pages 187–193. Springer, 2001.

4. C. Campbell, W. Grieskamp, L. Nachmanson, W. Schulte, N. Tillmann, and M. Veanes.
Testing concurrent object-oriented systems with Spec Explorer (extended abstract). InFM
2005: Formal Methods, volume 3582 ofLNCS, pages 542–547. Springer, 2005.

5. L. de Alfaro. Game models for open systems. In N. Dershowitz, editor,Verification: Theory
and Practice: Essays Dedicated to Zohar Manna on the Occasion of His 64th Birthday,
volume 2772 ofLNCS, pages 269 – 289. Springer, 2004.

6. K. El-Fakih, A. Petrenko, and N. Yevtushenko. Fsm test translation through context. In
Proceedings of the 18th IFIP International Conference on Testing of Communicating Systems
(TestCom 2006), LNCS. Springer, 2006.

7. L. Frantzen, J. Tretmans, and T. Willemse. A symbolic framework for model-based testing.
In K. Havelund, M. Núñez, G. Rosu, and B. Wolff, editors,FATES/RV 2006, number 4262
in LNCS, pages 40–54. Springer, 2006.

8. W. Grieskamp, N. Kicillof, and N. Tillmann. Action machines: a framework for encoding
and composing partial behaviors.International Journal on Software and Knowledge Engi-
neering, 16(5):705–726, 2006.

9. Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In E. Börger, editor,Specification and
Validation Methods, pages 9–36. Oxford University Press, 1995.

10. J. E. Hopcroft and J. D. Ullman.Introduction to Automata Theory, Languages, and Compu-
tation. Addison-Wesley, 1979.

11. J. Jacky, M. Veanes, C. Campbell, and W. Schulte.Model-based Software Testing and Analy-
sis with C#. Cambridge University Press, 2007. Submitted to publisher.

12. R. Keller. Formal verification of parallel programs.Communications of the ACM, pages
371–384, July 1976.

13. D. Lee and M. Yannakakis. Principles and methods of testing finite state machines – a survey.
Proceedings of the IEEE, 84(8):1090–1123, August 1996.

14. N. Lynch and M. Tuttle. Hierarchical correctness proofsfor distributed algorithms. InPro-
ceedings of the sixth annual ACM Symposium on Principles of distributed computing, pages
137–151. ACM Press, 1987.

15. J. Tretmans and E. Brinksma. TorX: Automated model basedtesting. In1st European
Conference on Model Driven Software Engineering, pages 31–43, Nuremberg, Germany,
December 2003.

16. M. Veanes, C. Campbell, W. Grieskamp, L. Nachmanson, W. Schulte, and N. Tillmann.
Model-based testing of object-oriented reactive systems with Spec Explorer, 2005. Tech.
Rep. MSR-TR-2005-59, Microsoft Research. To appear as a book chapter inFormal Methods
and Testing.

17. M. Veanes, C. Campbell, W. Schulte, and N. Tillmann. Online testing with model programs.
In ESEC/FSE-13: Proceedings of the 10th European software engineering conference held
jointly with 13th ACM SIGSOFT international symposium on Foundations of software engi-
neering, pages 273–282. ACM, 2005.

