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Abstract. Model programs are a useful formalism for software testing de-
sign analysis. They are used in industrial tools, such asBg#orer, as a com-
pact, expressive and precise way to specify complex beh&@iwe of the chal-
lenges with model programs has been the difficulty to sepa@itract modeling
from scenario modeling. It has not been clear how to septirage concerns in a
clean way. In this paper we introduce composition of modegpms, motivate
why it is useful to be able to compose model programs, and edraposition of
model programs formally means.

1 Introduction

Model programs are a useful formalism for software testing @esign analysis. They
are used in industrial tools like SpecExplorer [1] as a carhpxpressive and precise
way to specify complex behavior. Model programs are unwantoitransition systems
that can be used in model-based testing, for runtime cordoomchecking of a system
under test, and for design validation [4, 15-17].

In practice we have observed two distinct uses of model progr The first use
is as asoftware contracthat encodes the expected behavior of the system under test.
Here, the model program acts as an oracle that predictswsys&kavior in each possible
context. The unwinding of such a contract model is typicaifjnite, since for many
systems, such as those that allocate new objects at rurttiere, are infinitely many
possible states.

The second use is to define theenariogo be tested or analyzed. Here, the purpose
of the model program is to produce (when unwound) statesranditions of interest
for a particular test or type of analysis. For example, onghtwant to direct a test
to consider only certain interleavings of actions instefdlbpossible interleavings.
Another example would be a model that specifies a finite setmiftidata to be used as
system inputs.

Current practice tends to combine these two roles withimglsimodel program,
even though it is recognized that cleanly separating theseezns would be much
better engineering practice. In addition, we have obsethaiths contract models grow,
it would be helpful if they could be divided into submodelsnofinageable size. Up to
now we have lacked the formal machinery to accomplish this.

* The work in this paper was done at Microsoft Research.



Atissue is the separation of design aspects into distinatated model programs.
If model programs are related exclusively by common actajels, then the desired
system behavior is the intersection of possible tracesdohaspect. In classical au-
tomata theory, the technique of achieving intersectiomaafés is product composition.
We extend this technique here to defpaallel compositiorof model programs.

Not all composition is parallel; sometimes it is useful tinthin terms of phases
of system operation. A typical example occurs when theranignialization phase,
followed by an operational phase with many possible bemayiollowed by a shut-
down phase. We define tlserial compositiorof model programs, which is analogous
to serial composition of finite automata for language cosmation.

The main contribution of the paper is the formalization @& gfarallel composition
of model programs in a way that builds on the classical thebiyl' Ss [12]. Our goal
is thereforenot to define yet another notion of composition but to show howcibra-
position of model programs can be defined in a way that presahe underlying LTS
semantics.

It is important to note here that the composition of modelgpams issyntactic
It is effectively a program transformation that is most ietting when it is formally
grounded in an existing semantics and has useful algebrafwepies. This fills an
important semantic gap and makes compositional modeling m@ctical in tools like
Spec Explorer.

Achieving this goal required us to “rethink” the way acticare treated. Spec Ex-
plorer uses a mixture of a Mealy view and an LTS view that cauaseomplication in
the definition of conformance. In this paper we adopt a comisid TS-based view of
action traces. This enables a direct application of the &tMS based teory of testing
using ioco [3] when the direction (input or output) of actaa specified. A key aspect
of the composition of model programs is that actions areasgmted by terms that may
include variables and values, and the notion of an actiomvalary is defined using
only the function symbol part of the action. When actionssmechonized, values are
shared throughnificationand may transfer data from one model program to another.

Model program composition is the cornerstone of fdodelframework that pro-
vides a modeling library for model programs written in C#. bidé| is in the process of
becoming an open source project and is the software suppdhd forthcoming text-
book [11] that discusses the use of model programs as agabetodeling technique.
While this paper provides the foundations of model programposition, the textbook
shows practical techniques and applications, with an esiplen composition as a
method of layering system behavior into independent featur

The techniques for parallel and serial composition of mgaeframs, as we will
see below, have characteristics that make them appealingédin the domain of soft-
ware testing and design validation. We begin with an exandfien in sections 3 and 4
we give a formalization.

1.1 Example

Consider three model programs; , M, and M3 that specify, respectively, a GUI-based
application, a dialog box used in that application and agesbario. The state spaces of
the model programs are disjoint but their action signathee® nonempty intersections.



In the presentation that follows we unwind control statermitdata state to produce
control graphs in the spirit of Extended Finite State Maebki(EFSMs) [13]. Figures 1-
3 showM;, M5 and M3 using this view.

The model program of the GUI-based application is showndufé 1. It has three
control statesp;, p2 and ps. Control statep; is both the initial state (indicated by
the incoming arrow) and an accepting state (indicated bydtheble circle). The arcs
between control states are labeled by guarded update alled actions. These actions
contain enabling conditions (prefixed by requires) and tgslan curly braces. The
actions include parameters which are substituted by greahes during unwinding.

~-@

CloseDocumer)

SelectFontFinish(y) . SelectFoniStart(x)

OpenDocumerf)
{SystemFont= Font(“Times”, 12); }

{SystemFont= y; } requires z == SystemFont

Fig. 1. Application modelM ;.

The data state af/; contains one state variableystemFont

Runs of a model program begin in the initial control state and in an accepting
control state. Every step of the run must satisfy the engloamdition of the action that
produced it.

Note that this model program useslarst viewinstead of avlealy viewfor the action
that sets the system font. In an LTS view, inputs and outpppiear as separate transi-
tions, possibly breaking a single logical action into twetpsSelectFoniStarttakes an
input, namely the current system font given by the data stat@bleSystemFontThe
parameter oelectFonfFinish denotes the output. Since tBelectFontFinish action
has no enabling condition, any font value could be selected.

Model programM; that describes a font-choosing dialog box is shown in Figure
The action signature oM, consists ofSelectFoniStart SelectFonf-inish, OK,
Cance| SetFontNamend SetFontSizeNotice that this vocabulary has two actions in

common withM7, the application model, as well as four actions that are nated.

Once started, the dialog box allows the user to set the featsid the font name in
any order and as many times as desired. Depending on whbthaesér presse3K or
Canceleither the newly selected font or the prior font is includedhie exit label.

Model programM3 gives a scenario of interest for testing. It is shown as Egur

The scenario model shows two use cases for the font dialogreTére only two
possible traces for this machine.

As is typical with scenario modeld/3; contains no updates to data state. We also
useSetFontSizg0) as a shorthand fdBetFontSize:) requires x == 10. We use the



SelectFoniStart(x)
requires ValidFont(z);
{ (DialogFont, SavedFont := (z, z); }

SelectFonfFinish(y)

requires y == DialogFont, SelectFonfFinish(y)

requires y == SavedFont

SetFontSizex) SetFontNamgy)
{DialogFont.Size= z; } {DialogFont.Name= y; }

Fig. 2. Font chooser dialog modal/s.

SelectFoniStart(_)

SetFontSizgl 0)

SetFontNam@SansSerif’)

Cance(

_

12086,,.6:70,76)

OK()

SelectFonfinish(_)

Fig. 3. Scenario modelM3 showing two ways to use the font dialog.

underscore symbol (") to indicate an unconstrained parameter that is not usazyn
precondition or update.

Figure 4 shows the parallel composition/df, Ms andM3. The diagram omits the
state update rules for brevity.

Under parallel composition, model programs will synchrersteps for shared ac-
tions and interleave actions not found in their common digiea The control states of
the composed model program are a subset of the cross prddhet control states of
the component models.

The enabling conditions of the transitions are the conjonaif the enabling condi-
tions of the component models. The data updates are the afiloe data updates of the
component programs. There can be no conflicting updatesibethe data signatures
must be disjoint.

An accepting state under parallel composition occurs wher @emponent control
states are accepting states. This accounts for the fadhin&int may only be selected



(p2,q1,71)

SelectFoniStartFont(“Times”, 12))

(p3, 42,72))

SetFontSizgl0)

(p3, 42,73))

SetFontNam@SansSerif’)

(p3,q2,74)
OK() Cancel()
((Pa-, g3, T5>) ((P% g4, Ts))
SelectFonfFinish(Font(“SansSerif’; 10)) }/SelectFonJFlmsh Font(“Times”, 12))

(p2,q1,76)
OpenDocumeit) CIoseDocumer@

(p1,91,76)

Fig. 4. Parallel compositiod/, of the application model/;, the font chooser dialog modé¥s,
and the scenario modél/;. Update rules associated with labels are not shown.

exactly one time in the composed model program- the scenawitel M3 does not
loop, and its initial state is not an accepting state.

2 Basic definitions

Let X be a fixed signature of function symbols. Some function syiminoY’, denoted

by X dynamic may change their interpretation and are cadiade variablesThe remain-
ing set of symbols, denoted By, have a fixed interpretation with respect to a given
background theory. B is identified with its models that are callsthtes|t is assumed
that all states share the same universef values. Without loss of generality one may
identify a state with a particular interpretation (valusigament) to all the state vari-
ables. Note thalogic variablesare distinct from state variables. Logic variables are
needed below to be able to construct nonground action terms.

Example 1.Consider the application modél; in Figure 1.SystemFonis a nullary
state variable herd! is fixed and includes at least strings, integers, and fontanA
can be constructed using the static binary funciont M, has a single nullary state
variableSystemFont

Termsare defined inductively over’ and a set of logic variables disjoint froii.
An equationis an atomic formula; == ¢, wheret; andi, are terms and=="is the
formal equality symbol. Formulas are built up inductivelgrh atomic formulas using



logical connectives and quantifiet#\ term or a formulac may contain free logic vari-
ablesFV(e); e is groundor closedif FV(e) is empty. Asubstitutionis a finite (possibly
empty) map from logic variables to terms. Given a substitufi and an expressiof
ef denotes the replacement ofin e by 6(z) for eachz in FV(e). We say that) is
grounding fore if ef is ground. Given a closed formufaand a state, S = ¢ is used
to denote thak satisfiesp, or ¢ holdsor is truein S.* A closed formula ionsistent
if it is true in some state. We write® for the interpretation of a ground tertrin S.
When am-ary function symbol is self-interpretingor afree constructoit means that
flt, .. t0)% = g(ug,...,un)? if and only if f andg are the same function symbol
(and thusn = m) andt? = w7 for all 4.

Example 2.Consider the signature @f; again and let = Font(x, y); ¢ is a term with
FV(t) = {x,y}. The substitutiord = {z — “Times”,y — 10} is grounding fort
andt6 is the ground ternfont(“Times”, 10) denoting the corresponding font, where
Fontis a free constructor. Le§ be a state where the value $ystemFonis the Times
font of size 12. Thert = —SystemFont== Font(“Times”, 10) becausdontis self-
interpreting and 0 # 12.

A locationis a pair(f, (v1, .. .,v,)) wheref is ann-ary function symbol inodynamic
and(vy,...,v,) is asequence of values. Aipdates an ordered pair denoted by~ v,
wherel is a location and a value. A setU of updates isonsistentf there are no two
distinct updateg — v; andl — vy in U. Given a states and a consistent sét of
updates,S W U is the state where, for alf € X %M of arity n > 0 and values
ViyeooyUn,y

SwU _ w, if <f,(’01,...,1)n)>'—>w€U;
Fr o o) = {fs(vl,...,vn), otherwise.

In other words S @ U is the state after applying the updatéso S.

For the purposes of this paper it is enough to assume thattaté s/ariables are
nullary, in which case the notions of locations and statéalgles can be unified.

A program P over X’ when applied to (or executed in) a stéteproduces a set of
updates. Ofter also depends on formal parametéi(P) = x4, ..., z, for some
n > 0. Thus,P denotes a functiofiP] : Statex V" — UpdateSetlt is convenient
to extend the notion of expressions to include programsaovile can talk about free
variables in programs and apply substitutions to them. Gasgrounding substitution
¢ for P and a data stats, we write[P0](S) or [P] (S, 0) for [P](S,z16°, ..., 2,0%).

Example 3.Returning toM; in Figure 1, we have that the transition frgm to ps is

associated with the assignment (i.e. a basic prog&ys)emFont= y, say P, with a

single formal parametey. Given a substitutiod = {y — t} wheret is ground, and
any stateS, [P6](S) = {SystemFont> ¢51.

3 In general we may also have relation symbols, or Booleantioms, in > and form atomic
formulas other than equations.
4 We have in mind standard Tarski semantics for first orderclogi



We also use the notion oflabeled transition systemr LTS (S, Sy, £,7) that has
a nonempty sef of states a nonempty subsefy, C S of initial states a nonempty
set L of labelsand a transition relatiol C S x £ x S. Here states and labels are
abstract elements but in our use of LTSs the notion of LTS®stand first-order states
as introduced above will coincide. AIn is a transition sequendgé;, L;, Si+1)i<k, Of
some (possibly infinite) length, and itk > 0 thenS, € Sy; if & is finite and nonzero
then Sy is called theend-stateof the run. AnS-run for a given initial stateS is a
nonempty run as above whefg = S. An S-trace of an S-run as above is the label
sequencél;);< of lengthk. Intuitively, a trace is the sequence of labels of a run; the
states are not part of a tracefifite run or trace has finite length.

3 Model programs

A guarded progranfoverX) is a pair[p]/ P wherey is a formula andP is a program.
Let G be a guarded prograjg]/ P. Intuitively, G denotes the restriction ¢#] to those

def

states and input parameters wherbolds. LetFV(G) = FV(y) U FV(P).

Definition 1. X2 denotes a fixed subset of the free constructorS$HC calledac-
tion symbolsAn action termis a termf (¢4, . .., t,,) wheref is ann-ary action symbol
for somen > 0, and each; is either a distinct logic variable or a ground term over
ystatic__ ypaction Gjyen " C $3tonwe write A(I7) for the set of all action terms with
action symbols if". By anactionwe mean the interpretation of a ground action term.

Notice that the interpretation of a ground action term isshme in all data states.
Notice also that there is essentially no difference betwaepallary action symbol and
the corresponding action (term).

Example 4.ConsiderM; in Figure 1. There are two nullary action symb@tose-
Documentand OpenDocumentand two unary action symbolSelectFoniStart and
SelectFonfFinish. Font is a free constructor, it is not an action symbol. The terms
SelectFoniStart Font(“Times”, 10)) andSelectFoniStartx) are action terms; the terms
SelectFoniStart SystemFontandSelectFoniStart Font(“Times”, y)) on the other hand
arenotaction terms, because in the forn&ystemFonis not in 252 and in the latter
the action parameté&ont(“Times”, y) is not a logic variable and not a ground term.

Definition 2. A model program with explicit control graph/ has the following com-
ponents.

1. AsignatureX’.

2. Anagction signaturel” C yaction,

3. Afinite nonempty sef) of control points

4. Aninitial control point¢™ € Q.

5. A set ofaccepting control point§° C Q.

6. A finite control graphs C @ x A(I") x Q. The elements of are calledcontrol
transitions

7. Afamily R = {r,},e; of guarded programswhere, for allp = (g, a,p) € 4,

FV(r,) € FV(a); r, is calledthe guarded program fop.



8. A closed formula,®"" over X called anentry condition

The guard of the guarded program for a control transitios denoted byp, and the
program is denoted b¥,. We denotel/ by the tuple(X, I, Q, ¢"™, Q2 §, R, x°").

By amodel progranin this paper we mean a model program with explicit contrafd.
A model program can be thought of as a control-flow graph wiedggs are anno-
tated by action terms and program segments similar to an EESM
We use the special prograskipthat produces no updates.

Example 5.The model programi/; in Figure 1 has the following components. The
signature is described in Example 1. The action sighatudessribed in Example 4.
The control points are:, p2 andps, wherep; is both the initial control point and the
only accepting control point. There are four control tréinais in M. The guard of a
control transition is indicated with threquireskeyword or omitted itrue. The program
of a control transition is written within braces or omittédkip. This is the Spec# [16]
syntax of model programs.

A stateof M as above is a paiiS, ¢) whereS is aX-state and € Q. S is called the
data componentf S or adata statewhereag is called thecontrol componenof .S or
acontrol state® An initial state is a state whose control component is an initial cbntro
point and whose data component satisfies the entry cond&immcceptingstate is a
state whose control component is an accepting control point

Definition 3. Thelabeled transition system underlyidd LTS M) has the actions of
M as its labels. The (initial) states bTS M) are the (initial) states fak/. There is a
transition(({S, ¢), b, (S, ¢')) in LTS M), if there is a control transitiop = (¢, a,¢’) in
M and a substitutioi such that:

— b=ab”,

-5 ': <Pp9'
— [P,0](S) is consistent and’ = S [P,0](S).

A transition of LTS M) is called astepof M. Given a states and an actiom, we write
4(S, a) for the set of all stateX such tha{S, a, X) is a transition oLTS M ). Given a
stateS and a finite sequende; ), of actions, we let

8(S, (ai)ick) = | J{0(X, ak—1) : X € 6(S. (ai)ick-1)},
5(S.()) = {S}.

Thus, §(S, «) is the set of all end-states of afi-runs whose trace is. An action
sequence is anacceptingS-trace ifd (.S, «) contains an accepting state.

5 In general, the control graph of a model program may itsel lsentrol program and the set
of generated control states may be infinite. We do not use#risralization in this paper.

® Formally, letpc be a fixed nullary function symbol not i and letX’ = X U {pc}. Then
(S, q) stands for a'-state wher@c'®? = gand f¢*? = f%forall f € X.



Definition 4. Let M be a model program with initial control stajg. An S-run of M
is an(S, qo)-run of LTS M). An S-traceof M is an(sS, go)-trace ofLTS M). The set
of all S-traces ofM is denoted bylracegS, M). An S-trace« of M is accepting if it
is finite andd((S, ¢o), @) contains an accepting state.

Example 6.The example shows how traces can depend on the data compbetatés.
A possible accepting trace 8f; from any initial state is:

OpenDocument

SelectFontStart{ Font(“Times”, 12)),
SelectFontFinish(Font(“SansSerif’ 10)),
SelectFontStart{Font(“SansSerif’ 10)),
SelectFonfrinish(Font(“Times”, 10)),
CloseDocument

The argument t&electFoniStartis the current system font recorded in the data state
of M. When font selection finishes the new font is recorded in th&esi.e., in the
action SelectFoniStartfont), the font argument acts like an input argument and in
SelectFonfFinish(font) the font argument acts like an output argument of a font se-
lection procedure.

4 Composition of model programs

The main operator underlying parallel composition of mgaelgrams is the product
of two model programs. We will also use the following actiggnature extension op-
eration over model programs.

Definition 5. Let M be a model program as above with action signaftreet I’ be

a set of action symbols. We write/+" for the model program whose action signa-
ture is extended witd” and M 1" has the following additional extensions for each
action symbolf € I'" — I', leta; denote a fixed action terrfi(_, ..., _) where each
occurrence of stands for a fresh logic variable,

— for all control stateg, ¢ is extended with the control transitiofy, ar, ¢),
— for each new control transitiof, as, q), 7(q.q,,q) = [tru€l/skip

The intuition is that for each new action symbol any corresjiog action is enabled
in every state and produces a self-loop in that state. Thidsis easily seen in the
LTS semantics o/ 1. This construct is used mainly to interleave actions thaat
shared between two model programs being composed in a grodhtice that an action
does not belong to a model program (or the underlying LTSgifunction symbol is
not in the action signature of the model program.

Example 7.ConsiderM; in Figure 1 and letl; be the action signature of the font
chooser dialog modéll, in Figure 2. The only action symbols th&f; andMs have in
common areSelectFoniStartand SelectFontFinish. Thus M, ™2 has for example the
new control transitiongp;, SetFontSize ), p;) for 1 < ¢ < 3 that are enabled in all
states.



4.1 Product composition

We first define the product of two model programs that sharesdéinee signature and
the same action signature. We then define parallel compnsgifimodel programs by
using signature extension and product composition.

Due to the restricted form of action terms, two action tetms&nda, unify if and
only if they have the same action symbol of some awity 0, and for alli, 1 < i < n,
thes'th argument ofe; and thei'th argument ofa, either denote the same value or at
least one of them is a logic variable.df andas unify there is trivially a most general
unifier = mguay, az), i.e., any action that is both an instancezgfand an instance
of as is an instance od16 (or ax6).

We assume that logic variables used in two model programsliatiact so that
we do not need to worry about variable renaming. Given twadggprograms; =
[p1]/ Py andrs = [p2]/ P> we writer; || ro for the guarded prografp; Ags]/ Py || Pa,
where the parallel compositioR; || P» produces the union of the updates/@fand
By, ie. [P || P2](S,0) = [Pi](S,0) U [P:](S,0).

Definition 6. Let M; = (2, I, Q;, ™, Q3 6;, {ri} pes,, 05 "), fori = 1,2, be two
model programs. Theroductof M; and Ms, denoted byM; x M,, is the model
program

(25 Fa Ql X Q27 <qi1nit7 qi2nit>’ QTCC X Qgccv 5v {TP}P€5)7 (p(lentry A (pgntw)’

whereé and{r,},cs are constructed as follows. For all = (¢1,a1,p1) € 61 and
p2 = (g2, a2, p2) € 62 such thah = mguay, as) exists,

- p=((q1,q2),a16, (p1,p2)) € 6, and
=1 =7p0 || 7p,0.

If M, and M, are model programs with different action signatufgsand I, then
My x My = M2 x M,

One can show that the product operator is commutative amtiasise as far as trace
semantics of the final model program is concerned. This iseeaglicit in the follow-
ing statement.

Proposition 1. Let My, M, and M3 be model programs with the same signature and
action signature, and lef be a data state. Then Tradés M x Ms) = Tracesg.S, Ma x
M) and Trace$§S, My x (M x M3)) = TracessS, (M; x M) x Ms).

Example 8.The model progrand/, in Figure 4 shows the produdtl; x My x Ms.

Let I'; denote the action signature 8f;. In this casel, = I3 but I has the addi-
tional actions for opening and closing a document, and doesnlude the action for
changing the font name/size and & and Cancelactions. If we first construct the
productMsy x Ms, we get a specializatiof,3 of the font chooser dialog modéf,
where we first set the font size to beé and then set the font name to be SansSerif. The
productM; x Mass, i.e. My, corresponds intuitively to a hierarchical refinemeniff
with a particular use of the font dialog model as describedfy. The actions that are



specific to the font selection model are considered as gefid in}/;, and conversely,
closing and opening of a document are considered as sgi&lod//>3. The final prod-
uct My is thereforer“F2 X M;;Fl. As an example of a guarded update program of
M, consider the control transition

p = ({p2,q1, 1), SelectFoniStar{ Font(“Times”, 12)), (ps, ¢2,72))

If we follow the definitions exactly and do not simplify therfoulas and the programs
then the guard associated wiilis

reguires Font(“Times”, 12) == SystemFont
A true
A ValidFon{Font(“Times”, 12)),

and the program associated wijtlis

skip || ((DialogFont SavedFont:= (Font(“Times”, 12), Font(“Times”, 12)) || skip) .

4.2 Parallel composition

When the product composition is used in an unrestricted erahe end result is a new
model program, which from the point of view of trace semanitiight be unrelated to
the original model programs. Essentially, this problemupsdf two model programs
can read each others state variables.

Let SVe) denote the set of alitate variableshat occur ine, wheree is either
an expression, a program or a model program. Giveyy sstate.S and a signature
Xy C Xy, we write S|, for thereductof S to Xs. An ASM program is “honest” about
its state dependencies in the sense that state variabtes¢haot explicitly mentioned
in the program do not influence its behavior and cannot be tedd@.g. there is no
implicit stack and the programs cannot change the contatg)stFormally, we use the
following fact:

Lemma 1. Let S be a data state oveF, let SVC ydynamic and let P be a program
such that SYP) C SV. Lety’ = ysttcy SV, Therf P](S) = [P](S1X").

Definition 7. Let M; and My be model programs with action signatuésand I,
respectivelyM; and M, arecomposable in parallef they have the same signature but
disjoint state variables, in which case th&rallel compositiorof M; and M», denoted
by M; || Ma, is defined as the produst; x M.

The following theorem shows that parallel composition ofd@loprograms cor-
responds to parallel composition of the underlying LTSscHScomposition has the
desired language-theoretic property that the traces geaby the composite model
program are the intersection of the traces produced indkpely by the composed
model programs.

Theorem 1. Let M, and M, be model programs that are composable in parallel and
have the same action signature. Then

TracegsS, M, || M2) = TracegS, M) N TracegS, Ma).



Proof. Let M; = (X, T, Qi, g™, Q2 6;, {r’ }pes,, ;). for i = 1,2, be two model
programs such th&M M;) N SMMs) = 0. LetS be a data state. Létl = M7 x M>.
We only show thaTracesS, M; x My) C TracesS, M) N TracegS, Ms). The other
direction is similar by using the same definitions in the agf@odirection. Consider a
trace(a; )i« € TracesS, My x Ms). There is a correspondirfyrun

((Si,(qi>pi)); @i, (Siv1, (Qit1,Pit1)))i<k

where(qo, po) is the initial control state of the product model program &he: Sy.
Fix an arbitrary step in the run. The following holds by Definition 3: there is a amht
transitionp; = ({gi, pi), ti, {gi+1,pi+1)) in M and a substitutiofl such that

- a; = tlﬂsi,

- Si E 9,6, and

— [P,,0](S;) is consistent and; .1 = S; & [P, 0](S;).

By Defininition 6, there are control transitiong = (q;,t!, ¢;i+1) in M; andp? =
(pi, 2, pir1) in My such that

— o = mgut},t?) exists and; = t}o,

= Pp, = Pp10 N 20, and

—Ppi:P10||Pza

Let Y, = ¥ —SM M) andXy = ¥ —SMM,). SinceSM M, ) andS\(Ms) are disjoint
and the guards idZ; may only contain state variables froBM2Z;), it follows that

SilZ1 E <pp109 andS 1Y E <pp209 Also, since[ P, 0](S;) = Uy UUs is consistent,
so arel/; andUs, wherel; = [P, 109]]( ;) andUs = [P,200[(S;). By using Lemma 1
and the disjointness @M M) andS\/(Mg) we know thatU1 [P,100](S;1X1) and
Uy = [Pp00](S;[X2). By usingS;y1 = S; WUy U Uy, we get thatSzH X =
Si[21 v U; andSiH [ Yo = S;[ X W Us.

Sincei was chosen freely, we can construct the run

((Sil X1, qi), aiy (Sit11 21, Git1))i<k

for M, and then expand all states in the runfan such a way that the first state$s
We know also thas = ™" becauses = " A 5", It follows that (a;);<x €
TracegS, M;). Symmetrical argument applies id,. O

Example 9.Consider My, Ms, M5 from above. The state variables of eath are
clearly disjoint; M, has the single state variab8/stemFontiM, has the state vari-
ablesDialogFontandSavedFontand M3 has no state variables. Thidg, is a parallel
composition ofM;2, M, andM; ", wherel'; and I are as in Example 8.

4.3 Serial composition

In scenario control it is often useful to compose two modebpams serially (i.e. in a
sequence). Intuitively, a serial composition of two modelggams)/; and Ms means
that the control flow may transition from an accepting conpaint of M to the ini-
tial control point of M5. Serial composition is therefore not well-defined for model
programs that share control points. Note that, unlike thalfeh case, state variable
signatures need not be disjoint in serial composition.



Definition 8. Two model programd/; and M, areserially composablé they have
the same action signature and disjoint sets of control point

The formal definition of serial composition uses a new nyllaction symbol-
for the transition fromM; to M,. The 7 transition corresponds to an internal control
transition from any accepting control point 8f; to the initial control point ofMy
whose guard is the entry condition bfs.

Definition 9. Let M; = (£, 1, Qy, g™, Q3 5;, {ri} pes,, 0 "), fori = 1,2, be two
serially composable model programs andddie a fresh action symbol not iA. M;
followed byM> usingr, denoted byl ;. Mo, is the model program

(EATIUNQ1U Q2™ Q3701 Usa U {(a:7, ") 1 0 € QT {rp}pes, 1)
)

wherer, = rl,if p € 8157, =12, if p € 6231, = [p5""] /skip, otherwise.

Itis easy to see that aft+trace of My ;- M; has the fornur 3 wherea is an accept-
ing S-trace of M and 3 is an.S’-trace of M, for someS’ e SMl (S, ). Elimination
of 7 can be done at the expense of introducing nondeterminismpaallel compo-
sition of two model programs;-actions in each one are always considered as distinct
actions and are interleaved. One could also introdues a special action that is al-
ways interleaved in a parallel composition as is done fongla in the definition of
LTSs [14].

5 Conclusions and related work

There is a tradeoff between how much of the global state shmeiencoded as control
state and how much should be encoded as data state. In parg@calstate machines,
states are completely encoded as data states, and thereepamate notion of control
state [2,9]. Model programs defined in [16] adopt this viewhiM/this view is more
concise and sufficient for many purposes it forces one todmtite control state as data
state, and this may not be natural from the point of view ofticarilow as understood
in traditional programming. Not having the distinctionwetn control and data state
makes also the definition of certain forms of compositiorthsas serial composition,
harder to formalize because data states are shared wherdes states are disjoint in
serial composition.

The approach that we have taken is similar to extended fitate snachines (EF-
SMs) where a finite part of the state is separated as conatel $t general, the control
part does not need to be finite in model programs, but may pocate the local stack
of a program. Model programs are similar to parameterize8NE$-[13], except that
EFSMs are a generalization of Mealy machines, whereas npodgtams do not distin-
guish a priori between inputs and outputs and incorporatedtion of accepting states
like classical automata. The distinction between input$ autputs becomes relevant
for defining conformance, but is not relevant for the comjmsioperators discussed
in this paper that are used for scenario control and for cangoaspects of a system
model.



An important change from our prior approach of using modegpams as a mixed
Mealy and LTS view, taken in SpecExplorer, is the introductf intermediate control
states between the input part and the output part of an adtiasther words, the un-
derlying semantics is given by an LTS. This separation is aked with FSM based
approaches where it is sometimes more convenient to fotenatamposition using
IOTSs [6]. One of the key reasons for us to separate the ifiartsthe outputs as sep-
arate actions, rather than using a Mealy view, was to be alilaxte a simple definition
of conformance relation that allows output nondeterminigmen dealing with reactive
systems. This is important for using ioco [3] or refinemerintérface automata [5] for
formalizing the confomance relation.

Further differences from EFSMs are that accepting statesadel programs are
used for serial composition and for defining validity of acand labels are not ab-
stract elements but structured terms that allow sharingtofrary data values through
unification. The trace semantics of model programs is bas¢keounwinding of model
programs as labeled transition systems [14] where stagescansidered to be abstract
points.

The separation of control state from data state, while atigwommunication with
terms that can incorporate data values, is important in tbdeatbased testing appli-
cations of model programs, e.g. for scenario control andaligation of model pro-
grams. The definitions of parallel and serial compositiomoflel programs are related
to similar operations on classical automata (see e.g. [T0gre is a large body of
work using FSMs and variations of LTSs that use the clasgiaadllel composition of
automata where shared actions are synchronized and otiwersare interleaved asyn-
chronously. It is important therefore that the semantiasoofiposed model programs is
based on the same notion of composition.

Model programs are also related to symbolic transitionesystthat have an ex-
plicit notion of data and data-dependent control flow [7].débprogram composition
as defined in this paper is independent of the mechanism ddretjpn used. Various
approaches, including explicit state exploration as welegploration with symbolic
labels and states, may be applied. For exangitéon machine$8] rely on symbolic
techniques. The main difference compared to compositicecctbn machines is that
composition of model programs is syntactic, whereas coitipp®f action machines
is defined in the style of natural semantics using inferemtesrand symbolic com-
putation that incorporates the notion of computable apprations of subsumption
checking between symbolic states. The computable appediins reflect the power
of the underlying decision procedures that are being used.

More about model-based testing applications and furthewatmn for the compo-
sition of model programs can be found in [4, 8,17, 16]. The tmesent work related
to model programs where composition is discussed from aipshperspective is the
forthcoming textbook [11].
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