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Abstract. The provision of network Quality-of-Service (network QoS)
is a major challenge in the development of future communication sys-
tems. Before designing and implementing these systems, the network
QoS requirements are to be specified. Existing approaches to the spe-
cification of network QoS requirements are mainly focused on specific
domains or individual system layers. In this paper, we present a holistic,
comprehensive formalization of network QoS requirements, across layers.
QoS requirements are specified on each layer by defining QoS domain,
consisting of QoS performance, reliability, and guarantee, and QoS scal-
ability, with utility and cost functions. Furthermore, we derive preorders
on multi-dimensional QoS domains, and present criteria to reduce these
domains, leading to a manageable subset of QoS values that is sufficient
for system design and implementation. The relationship between lay-
ers is formalized by two kinds of QoS mappings. QoS domain mappings
associate QoS domains of two abstraction levels. QoS scalability map-
pings associate utility and cost functions of two abstraction levels. We
illustrate our approach by examples from the case study Wireless Video

Transmission.

1 Introduction

One of the major challenges in communication networks is the provision of net-
work quality of service (network QoS). By network QoS, we refer to the degree of
well-definedness and controllability of the behaviour of a communication system
with respect to quantitative parameters [1]. The need for network QoS arises
from the fact that, for state-of-the-art distributed applications, it is essential
that they offer their functionality with specified performance, reliability, and
guarantee. In addition, communication systems and applications have to adapt
to varying traffic and channel quality. The realization of such adaptive behaviour
can in fact be seen as one of the key challenges in the development of commu-
nication systems supporting network quality of service. It requires a cross-layer
approach with suitable abstractions and mappings between resource views of
different layers.

Our current work aims at establishing a holistic engineering approach for
communication systems, including network QoS provision. In this context, we
are investigating techniques for the formal specification of QoS requirements on



different system levels. Existing techniques are mainly focused on specific do-
mains or system layers. In this paper, we present a formalization of network
QoS requirements across layers. The formal relationship between layers is estab-
lished by QoS domain mappings. To formalize scalability, we define utility and
cost functions on each layer, which are used to derive preorders on QoS domains.
Utility and cost functions of different layers are related by QoS scalability map-
pings. To achieve consistency between these functions of different layers, QoS
scalability mappings are derived from QoS domain mappings.

The remaining part of the paper is organized as follows: In Section 2, we
survey related work. In Section 3, we present our formalization and specification
of network QoS requirements. Section 4 describes the different abstraction levels
in communication systems supporting QoS and the mappings between these
levels. Section 5 illustrates the approach by a case study. Last, Section 6 presents
conclusions and future work.

2 Related Work

To cope with various requirements of system designs, user preferences, middle-
ware, hardware, networks, operating systems, and applications, several QoS spec-
ification techniques have been proposed (see [2] for a classification):

– QML (Quality Modelling Language) [3] is focused on the specification of
application layer QoS requirements. QoS requirements of lower layers, QoS
scaling, and QoS mappings are not addressed.

– CQML [4] adopts some of the fundamental concepts of QML, and also ad-
dresses dynamic QoS scaling. As QML, it is focused on the application layer.

– QDL (Quality Description Language) has been proposed as a part of the QuO
(Quality Objects) framework [5] that supports QoS on the CORBA object
layer. With QDL, it is possible to specify QoS requirements on application
layer and on resource layer, and to define QoS scaling.

– The Quality Assurance Language (QuAL) is part of QoSME [6]. With QuAL,
QoS requirements are specified in a process-oriented way. The Quality-of-
Service Architecture (QoS-A) [7] uses a parameter-based specification ap-
proach.

– In [8], an approach for specifying and mapping QoS in distributed multimedia
systems is presented. Based on the specification, fuzzy-control is used for QoS
scaling.

– Formal QoS mappings have not been studied thoroughly so far. Some partial
results can be found in [9] and [10].

In summary, it can be stated that previous formal treatments of QoS ad-
dress only some aspects of QoS requirement specification, focusing, for instance,
on a subset of abstraction layers, or leaving out QoS mappings. Our work com-
prises the aforementioned issues and therefore provides a holistic, comprehensive
formalization of network QoS requirements, across layers.



3 Formalization of Network Quality of Service

The need for formalization of network quality of service arises from the fact that
a precise description of network QoS between service user and service provider
is needed to police, control, and maintain the data flow a user emits to the com-
munication system. Further on, the mechanisms realizing these functionalities
require a precise QoS description. These mechanisms are typically integrated
across layers; therefore, more than one viewpoint on the network QoS require-
ments is needed. To rigorously relate these viewpoints, formal QoS mappings
are to be defined. In this section, we start to formalize network QoS by defining
QoS domain, QoS scalability and QoS specification. The formal definition of QoS
mappings will be addressed in Sect. 4.

3.1 QoS Domain

The QoS domain captures the QoS characteristics of a class of data flows, i.e.
performance, reliability, and guarantee:

Definition 1 (QoS Domain). The QoS domain Q is defined as Q = P×R×G,
where P is the performance domain, R is the reliability domain, and G is the
guarantee domain. q = (p, r, g) denotes an element of Q, called QoS value.

QoS performance describes efficiency aspects characterizing the required amount
of resources and the timeliness of the service (e.g., peak and average throughput,
delay, jitter, burst characteristics). The relevant aspects are included in the QoS
performance domain P , which we formalize as follows:

Definition 2 (QoS Performance). A QoS performance domain P is defined
as P = P1 × . . .×Pn =

∏n
i=1 Pi, where P1, . . . , Pn are performance subdomains.

QoS reliability describes the safety-of-operation aspects characterizing the fault
behaviour (e.g., loss rate and distribution, corruption rate and distribution, error
burstiness). It can significantly impact the overall throughput and functionality
on lower system layers, since it requires redundancy (e.g., retransmission, forward
error control). The relevant aspects are included in the QoS reliability domain
R:

Definition 3 (QoS Reliability). The QoS reliability domain R is defined as
R = Loss × Period × Burstiness × Corruption, with Loss = N0, Period = R+,
Burstiness = R+, and Corruption = {r ∈ R | 0 ≤ r < 100}.

Reliability addresses loss corresponding to a layer-specific data unit (e.g. picture
frames or lower system layer PDUs), the period in which data loss occurs, and
the burstiness, i.e. the duration of a successional appearance of data loss. As a
fourth parameter, the permitted corruption rate for a layer specific data unit in
percent is given.

QoS guarantee describes the degree of commitment characterizing the bind-
ing character of the service. Four degrees of commitment are distinguished. Best-
effort denotes the minimal degree, meaning that no guarantees are given. Deter-
ministic refers to the highest degree, meaning that hard guarantees are provided.



Statistical expresses that guarantees are given with a specified probability. Fi-
nally, enhanced best-effort denotes better-than-best-effort guarantees: in periods
of sufficient resources, statistical or deterministic guarantees are provided; oth-
erwise, a priority-based best-effort scheme is used. QoS guarantee is formalized
by the QoS guarantee domain:

Definition 4 (QoS Guarantee). The domain of QoS guarantee G is defined
as G = DoC × Stat × Prio, where Stat = {p ∈ R | 0 < p ≤ 1}, Prio = N, and
DoC = {bestEffort , enhancedBestEffort , statistical , deterministic}.

The guarantee consists of a degree of commitment DoC, a corresponding value
Stat in case of statistical guarantees, and a priority. The priority determines the
relative importance between two or more QoS requirements (traffic contracts).

3.2 QoS Scalability

Varying communication resources require adaptive mechanisms to avoid network
overload, and to scale the application service. The QoS scalability S describes
the control aspects characterizing the scope for a dynamic adaptation of the QoS
aspects of a data flow (described by a QoS domain) to a certain granted network
quality of service:

Definition 5 (QoS Scalability). Let Q be a QoS domain. The domain of QoS
scalability S is defined as S = Util × Cost × Up × Down, where Util = {u | u :
Q → [0, 1]}, Cost = {c | c : Q → R+}, and Up,Down ∈ {x ∈ R+ | 0 ≤ x ≤ 1}.

The elements of Util and Cost are called utility functions and cost functions,
respectively. A utility function determines the usefulness of QoS values q ∈ Q.
This information is crucial for upscaling and downscaling, and has to be pro-
vided on all system layers. The utility of QoS values depends on the application
scenario, but not necessarily on the amount of needed resources. The latter is
expressed by the cost function, which can be tailored to the actual resource situ-
ation, associating higher costs with scarcer resources. In other words, given two
QoS values q and q′ with u(q) > u(q′), it is possible that c(q) < c(q′), i.e., q
consumes less resources than q′. We will have to take this into account when
defining QoS scalability mappings (see Sect. 4.3). Related to the utility func-
tion, two values up ∈ Up and down ∈ Down are used to define thresholds for
up- and downscaling, i.e. a scaling is only performed, if the benefit for the user
increases/decreases more than up/down percent.

According to [8], the utility function u can be defined using functions on P ,
R and G:

uP : P → [0, 1], uR : R → [0, 1], uG : G → [0, 1] (1)

A possible definition u for a QoS value q = (p, r, g) is:

u(q) = min{uP (p) · wP , uR(r) · wR, uG(g) · wG} (2)

This definition emphasizes that usually, a minimum benefit of each of the QoS
value constituents is required. Other definitions can be given by introducing



weights wP , wR, and wG, reflecting the relative importance of performance,
reliability, and guarantee, respectively, in the current application scenario, with
u(q) being the sum of the weighted constituents of q. In both cases, the result
of (2) has to be normalized into the interval [0, 1] (see Definition 5).

The utility function u (the cost function c) induces an equivalence relation
∼u (∼c) and a preorder .u (.c) on the QoS domain Q:

∼u=DF {(q1, q2) ∈ Q × Q | u(q1) = u(q2)} (3)

.u=DF {(q1, q2) ∈ Q × Q | u(q1) ≤ u(q2)} (4)

In certain scenarios, several QoS values may have the same usefulness according
to the utility function u. For instance, a user may not be able to distinguish
between 25 and 26 picture frames per second, and therefore assigns the same
utility value to both QoS values. For this reason, .u is a preorder on Q in
general. Based on ∼u (∼c), we define u-equivalence (c-equivalence) classes of Q:

[x]u = {q ∈ Q | q ∼u x} (5)

These definitions form the basis for consistency criteria of QoS mappings intro-
duced in Sect. 4.

Apart from defining the utility of QoS values, the actual costs are required
in order to provide the scope for dynamic adaptation. For instance, it is possible
that for QoS values q, q′, and q′′, u(q) > u(q′) > u(q′′), while the costs in terms
of resources are c(q′) > c(q) > c(q′′). Assume that q′′ is currently provided, and
the resource situation improves. In this case, it is certainly better to directly
scale to q, omitting q′. This means that although q′ has a utility in-between
q and q′′, it should not be used. This observation can be exploited such that
for a given utility, the QoS value with minimum cost is selected. For each u-
equivalence class, we keep one representative value with minimum cost (Step
1). Next, we observe that in general, while the utility increases, the cost may
decrease. Therefore, some u-equivalence classes become obsolete, as it would be
better to skip some QoS values to get even better utility for less cost (Step 2).
These ideas are formalized in the following definitions.

To formalize Step 1 (keeping one representative per u-equivalence class with
minimum cost), we define the reduced QoS domain Qu by selecting the best
element of each u-equivalence class of Q regarding c. Let m be the cardinality
of Q/∼u, the quotient set of Q w.r.t. ∼u, and let [x]iu denote the ith element of
Q/∼u regarding .u (ith u-equivalence class). Then,

Qu = {q1, . . . , qm} ∩ Q
′

, qi = q ∈ [x]iu | ∀y ∈ [x]iu . q .c y, 1 ≤ i ≤ m (6)

Qu contains elements in the specified subset Q
′

of a QoS domain Q (see Sect.
3.3, (8)) and is totally ordered by .u.

To formalize Step 2 (discarding of QoS values with higher cost, but less
utility), we define the derived QoS domain Qu,c as follows:

Qu,c = {q ∈ Qu | ∀y ∈ Qu . c(q) > c(y) ⇒ u(q) > u(y)} (7)



3.3 Specification of Network QoS Requirements

A QoS requirements specification captures the concrete QoS requirements on
one system layer by defining the set of valid QoS domain values and a QoS
scalability value. The specification is used to configure, manage and maintain
QoS mechanisms located on each system layer.

Definition 6 (QoS Requirements Specification). Let Q be a QoS domain
and S be a QoS scalability domain. A QoS requirements specification qosReq is
defined as a triple (qmin , qopt , s), where qmin , qopt ∈ Q and s ∈ S.

The QoS values qmin and qopt specify the set Q
′

⊆ Q of valid QoS domain values.

To obtain Q
′

from qmin and qopt , the preorder .u induced by the utility function
(see (4)) is applied:

Q
′

= {q ∈ Q | qmin .u q .u qopt} (8)

4 QoS Mappings

So far, we have introduced the formalization and specification of network QoS
requirements. Such requirements can be specified from different viewpoints, on
different levels of abstraction. To relate QoS requirements of different levels, QoS
mappings are needed. The reason for that is that QoS management tasks are typ-
ically embedded in the communications system, prevalent across layers, hiding
complex tasks from the application. This leads to simple QoS specifications on
higher system layers, whereas on lower system layers, the complexity increases.

In this section, we will start by identifying several levels of abstraction, and
will then formally define mappings between QoS domains and QoS scalability.

4.1 QoS Abstraction Levels

To implement network QoS requirements, QoS mechanisms on several system
layers are needed, each with its own viewpoint describing the data flow traversing
the (communication) system. We call these different viewpoints QoS Abstraction
Levels:

1. User Level: From the user’s point of view, the application is characterized
in terms of scenarios, e.g., surveillance or panorama.

2. Application Level: From the user scenarios, the system developer derives
the network QoS requirements of the application level. QoS parameters are
application-specific, e.g., picture frame rate, or JPEG quality.

3. Communication Level: QoS parameters of the communication level charac-
terize the data flow in terms of, e.g., transmission units, transmission periods,
transmission delay, delay jitter. On this level, the QoS requirements are still
platform-independent.
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Fig. 1. Abstraction Levels and QoS Mappings

4. Resource Level: On resource level, the QoS requirements are specified in
terms of concrete hardware parameters, e.g., bandwidth, energy, cpu cycles,
memory. This specification is platform-specific.

The abstraction levels are shown in Fig. 1 (left), and associated with a specific
system layer (middle). Network QoS requirements are specified on all abstrac-
tion layers, expressing the particular viewpoint. To implement the requirements,
these viewpoints have to be related. For instance, QoS performance of the video
application – stated in terms of resolution, JPEG quality, and picture frames
per second – must be related to QoS performance of the communication level
– stated in terms of number of data frames per picture frame and period. We
introduce two kinds of QoS mappings to formalize this relationship, the QoS
domain mapping, and the QoS scalability mapping.

4.2 QoS Domain Mapping

To relate QoS requirements of different abstraction levels, QoS mappings are
needed. In this section, we introduce QoS domain mappings between a higher
layer QoS domain Qh and a lower layer domain Ql. This is illustrated in Fig. 1
(right).

Definition 7 (QoS Domain Mapping). Let Qh, Ql be QoS domains on dif-
ferent system layers. A QoS domain mapping dm : Qh → Ql is a function from
a (higher layer) QoS domain Qh to a (lower layer) QoS domain Ql. The domain
mapping dm may be defined using auxiliary functions as follows:

dmP : Qh → Pl (performance mapping)

dmR : Qh → Rl (reliability mapping)

dmG : Qh → Gl (guarantee mapping)



In general, QoS mappings are neither injective nor surjective. This means
that two different QoS values q1, q2 ∈ Qh could be mapped to the same ql ∈
Ql, and that the values of dm do not span the whole codomain Ql. For these
reasons, the mapping of the scalability requirements specification, especially the
utility function, is nontrivial. In the following, we elaborate on the three auxiliary
functions.

QoS Performance Mapping. The QoS performance mapping dmP translates
the performance parameters into each other. The performance parameters are
system layer and hardware dependent, i.e. parameters like the maximum transfer
unit (MTU), the path MTU, or the frame format have to be considered.

Definition 8 (QoS Performance Mapping). Let Ph, Pl be performance do-
mains on different system layers. A QoS performance mapping dmP : Ph → Pl

is a function translating performance values ph ∈ Ph into new values pl ∈ Pl =
Pl1 × · · · ×Pln . To define dmP , auxiliary functions dmPi

(ph) = pli , ∀ i ≤ ln can
be used.

QoS Reliabiliy Mapping. Higher layer transmission units (e.g., picture frames)
can be larger than lower layer units and therefore have to be fragmented and
reassembled. This, however, complicates the definition of the QoS reliability
mapping (see [11]). To illustrate this, consider the example in Fig. 2. On appli-
cation layer, the variable-size picture frames are fragmented into maximum-size
middleware packets. On middleware layer, we assume a loss ratio of 30%. The
loss can be caused by packet loss, corrupted, dropped, or late-delivered PDUs.
Further, we assume that a loss of even one lower layer packet results in the loss
of the entire picture frame. In Figure 2.a, the loss ratio results in a picture frame
loss of 33%. If the loss is uniformly distributed (as shown in Fig. 2.b), the same
ratio leads to a loss on application layer of 100%.

(a) loss burst

(b) uniformly distributed loss

app. layer

mw. layer

app. layer

mw. layer

resulting loss (app)lost pdu (mw)

Fig. 2. Upper layer PDUs vs. lower layer PDUs



Notice that a simple description of the lower layer loss or corruption probabil-
ity is not sufficient for deriving the expected upper layer reliability parameters.
Moreover, uniformly distributed losses may be more adverse than bursty losses.
To define the QoS reliability mapping, a segmentation model of the user data is
needed. In our case study, this model would introduce probability distributions
of picture frame sizes and resulting probability mass functions of the number
of needed middleware packets. Further, an error models characterizing the loss
and/or corruption process is needed. This error model strongly depends on the
chosen base technology. The definition of segmentation and error model are out
of the scope of this paper. A treatment of these aspects can be found in [11].

QoS Guarantee Mapping. The function dmG maps the guarantees specified
on one system layer to corresponding guarantees on another. Ideally the guar-
antees should stay the same during a mapping process. But in exceptional cases,
e.g., if the underlying base technology does not support required degree of com-
mitment, an upgrade is permitted. For example, a mapping from statistical to
deterministic guarantees is always feasible, whereas a mapping vice versa could
result in a violation of the traffic contract.

4.3 QoS Scalability Mapping

QoS scalability describes the control aspects characterizing the scope for dynamic
adaptation of QoS parameters. To apply scaling on different levels of abstraction,
a QoS scalability mapping is needed. For consistency, this mapping has to ensure
that the utility of QoS values of different abstraction levels that are related by
the QoS domain mapping dm is the same. To enforce this consistency condition,
we will now define a scalability mapping such that, given a utility function
uh, yields the corresponding utility function ul. Next, we will introduce a cost
function that associates costs with QoS values. Based on this cost function, we
will finally arrive at a reduced set of QoS values characterizing the actual scope
for dynamic adaptation.

In the following definition, let Q∗

l = {ql ∈ Ql | ∃ qh ∈ Qh . dm(qh) = ql}
denote the set of mapped QoS values, and let [qh]dm = {x ∈ Qh | x ∼dm qh},
∼dm= {(qh, q

′

h) ∈ Qh × Qh | dm(qh) = dm(q
′

h)}, denote the equivalence classes
containing those QoS values qh that are mapped to the same ql.

Definition 9 (QoS Scalability Mapping). Let Sh, Sl be scalability domains
on different system layers. A QoS scalability mapping is a set of four mapping
functions smUtil , smCost , smUp and smDown , translating the different scalability
domains into each other (see Fig. 3):

smUtil : Utilh → Util l; ∀uh ∈ Utilh . ∀ql ∈ Q∗

l . ul(ql) =DF uh(qh) |

qh ∈ Qh ∧ dm(qh) = ql ∧ ∀x ∈ [qh]dm . uh(qh) ≥ uh(x)

smCost : Cost l → Costh; ∀cl ∈ Cost l .∀qh ∈ Qh . ch(qh) =DF cl(dm(qh))

smUp : Downh → Upl;∀x ∈ Uph . smUp(x) =DF x



smDown : Downh → Down l;∀x ∈ Downh . smDown(x) =DF x

higher layer: Sh = Utilh × Costh × Up
h

× Downh



ysmUtil

x

smCost



ysmUp



ysmDown

lower layer: Sl = Util l × Cost l × Up
l
× Downl

Fig. 3. Scalability mapping

Some explanations are in order. Let qh, q
′

h ∈ Qh, uh(qh) > uh(q
′

h), dm(qh) =

dm(q
′

h). In other words, although the utility of qh is higher than that of q
′

h, they
consume the same amount of resources ql = dm(qh). In this case, the utility of
ql is chosen as ul(ql) =DF uh(qh), i.e. the better value. This means, that when
the resources ql are available, they are exploited as best as possible. This idea
is generalized in the definition of the mapping function smUtil, where to each
value of ql ∈ Q∗

l , the maximum utility of all corresponding values qh ∈ Qh is
assigned. Note that costs are mapped from lower to higher system layer and
that the thresholds for upscaling and downscaling remain unmodified by the
QoS scalability mapping.

With the QoS mappings dm, sm and the reduced QoS domain (see (7)), it
is possible to define a scaling function to be used in system design and imple-
mentation. A scaling function scalu,cl

: Ql → Qu,ch ∪ {0} maps a lower layer
QoS values describing the currently granted network QoS to a higher layer cost-
optimal QoS value. The function selects the best possible, i.e. the optimum QoS
value q ∈ Qu,ch regarding the utility function u in compliance with the currently
granted QoS resources qgranted ∈ Ql, if such an element exists, otherwise 0. For
this reason, the cost function cl has to be mapped to a corresponding higher
layer cost function ch in order to properly reduce Q. The scaling function is
defined as follows:

scalu,cl
(qgranted ) = maxu{q ∈ Qu,smCost (cl) | cl(dm(q)) ≤ cl(qgranted )} (9)

whereas the maximum operator max f for a given set X defines x as an f -maximal
element of X iff x ∈ X and ∀y ∈ X : (f(x) ≤ f(y) ⇒ x = y), short maxf{X}.
The maximum of an empty set is defined as zero, i.e. maxf∅ = 0.

5 Case Study Wireless Video Transmission

We illustrate the formalization of network QoS by the application Wireless Video
Transmission, which is used in our remotely controlled airship [12]. The quality of
video transmission as perceived by the user depends on picture frame resolution,
JPEG compression rate, and picture frame rate. On communication layer, this



translates to the number of messages per picture frame, message rate and delay,
and finally to channel bandwidth and delay.

In this application (see Fig. 4), we distinguish two usage scenarios, surveillance

for movement detection and panorama for landscape recording. Given the QoS
domain Qvideo , the network QoS requirements qosReqsur and qosReqpan are de-
fined by triples, consisting of optimal and minimal QoS values, and a QoS scala-
bility value. From these triples, the subsets surveillance and panorama of Qvideo

are determined, applying the preorder .u induced by the utility function.

qmin

qopt

Q
′

panoramaQ
′

surveillance .us

QVideo

.us

Fig. 4. QoS Requirements Specification

5.1 QoS Domain

A QoS domain Q is specified by defining concrete subdomains performance P ,
reliability R, and guarantee G. As an example, we define subdomains for the
QoS domain Qvideo , and concrete QoS requirement specifications qosReqsur and
qosReqpan .

The quality of video transmission depends on picture frame resolution, JPEG
compression rate, and picture frame rate. Further QoS parameters are transmis-
sion delay and delay jitter, which we omit in the following. For our case study,
the concrete domains on application layer are P1 = Resolution, P2 = Quality,
P3 = FrameRate, yielding Pvideo .

Pvideo = Resolution × Quality × FrameRate

Resolution = {(320, 240), (480, 360), (640, 480)}

Quality = {25, 50, 75}

FrameRate = {f ∈ N | 1 ≤ f ≤ 25} (10)

Typical element of Pvideo is p = ( (resx, resy), qual , fps ). An appropriate speci-
fication of the required performance for surveillance purposes is given by

pminSur = ((320, 240), 25, 10), poptSur = ((640, 480), 75, 20) . (11)

The reliability specification identifies concrete values for loss, period, bursti-
ness, and corruption (see Definition 3). For the video transmission, we define



rminSur = roptSur = (3, 1, 2, 0), specifying a permitted data loss of three picture
frames per one second, loss bursts of up to two picture frames, and a corruption
rate of zero percent.

A guarantee specification is given by gminSur = goptSur = (enhancedBestEffort ,
0.8, 8). If due to the current resource situation only priority best-effort guaran-
tees can be provided, the priority of 8 enables the wireless video transmission
to gain privilege over other applications with lower priorities (< 8). If adequate
statistical guarantees are offered, a minimum of 80 percent is required.

5.2 QoS Scalability

To specify QoS scalability, concrete utility functions uP , uR, uG, cost function
c, and two thresholds up and down are to be defined. Due to limitations of
space, we omit the specification of cost functions, which in principle are similar
in style to the utility functions. For the video transmission, we start by defining
auxiliary functions for each performance subdomain, normalizing the utility of
each parameter to a value in [0, 1]:

ures : Resolution → [0, 1], ures(res) = resx−160
480

uqual : Quality → [0, 1], uqual(qual) = qual
75

ufps : FrameRate → [0, 1], ufps(fps) = fps
25 (12)

Next, we define weights reflecting the relative importance of each subdomain
corresponding to the current application scenario. For instance, picture frame
rate is the decisive video parameter in case of surveillance, while resolution and
quality are of particular importance in the panorama scenario. With the weights
ωres = 0.1, ωqual = 0.1, ωfps = 0.8 for surveillance and υres = 0.4, υqual = 0.4,
υfps = 0.2 for panorama, we obtain the following performance utility functions:

uPsur
: Pvideo → [0, 1], uPsur

= 0.1 · ures + 0.1 · uqual + 0.8 · ufps

uPpan
: Pvideo → [0, 1], uPpan

= 0.4 · ures + 0.4 · uqual + 0.2 · ufps (13)

Since rmin = ropt and gmin = gopt in both QoS requirement specifications, the
utility subfunctions operating on R and G can be defined as follows:

uG(x) =

{

0 if x < gmin

1 otherwise
, uR(x) =

{

0 if l
p > lmin

pmin
∨ b > bmin ∨ c > cmin

1 otherwise

(14)
uG implies an order on the guarantee domain that can be intuitively given by
arranging the values (1) according to their degree of commitment (bestEffort

to deterministic), then (2) according to the statistical component and last (3)
according to their priority. The parameters l, p, b, and c in the definition of uR

refer to loss, period, burstiness, and corruption, respectively.
Inserting into (2) yields the following utility functions on Qvideo :

usur (q) = min{uPsur
(p), uR(r), uG(g)}, upan(q) = min{uPpan

(p), uR(r), uG(g)}
(15)



In both cases, downscaling should be performed if the benefit decreases by
10 percent and upscaling should only be done if the benefit increases by 20
resp. 10 percent, leading to the following complete specification of the scalability
requirements:

ssur = (usur , csur , 0.2, 0.1), span = (upan , cpan , 0.1, 0.1) (16)

Based on the utility functions, the QoS values are divided into equivalence
classes. Table 1 lists some uPsur

-equivalence classes of Pvideo . In order to minimize
the overall number of classes, the utility has been rounded to two decimal places,
resulting in a reduction from 125 to 44 classes.

Table 1. uPsur -equivalence classes of PVideo

utility uPsur -equivalence class

0.1 ((320,240),25,1)
0.13 ((480,360),25,1) ((320,240),25,2) ((320,240),50,1)
. . . . . .

0.39 ((320,240),25,10) ((640,480),75,6) . . . ((480,360),25,9) ((480,360),50,8)

0.42 ((640,480),25,9) ((480,360),25,10) . . . ((320,240),25,11) ((480,360),75,8)
. . . . . .

0.84 ((640,480),25,22) ((640,480),75,20) . . . ((480,360),25,23) ((320,240),75,22)
. . . . . .

1.0 ((640,480),75,25)

In Figure 5, the QoS domain is reduced, applying Steps 1 and 2 as defined
in Sect. 3.2. The utility function usur partitions Qvideo into 45 usur -equivalence
classes (rounded to two decimal places). Since the result of uR resp. uG could be
0, the overall number of equivalence classes increases by one (cf. uPsur

-equivalence
classes). If all values of the QoS domain Q are arranged along the x-axis, re-
specting the preorder .u, then the resulting graph is a monotonically increasing
step function. In addition, a cost function c is depicted in Fig. 5, describing
the needed resources on lower system layer. Note that the costs basically in-
crease with the utility, however, within a given usur -equivalence class, different
costs may be associated with QoS values having the same utility. The reduced
domain Qu is formed by selecting the cost-optimal QoS values out of each usur -
equivalence class (see Table 2) and intersecting this selection with Q

′

, leading
to Qu = {qu

16, . . . , q
u
39}. Step 2 (cf. (7)) induces a further reduction of the overall

number of QoS values, since for example qu
37 can be omitted due to the higher

cost but less utility compared to qu
38. This leads to Qu,c with a total number of

16 QoS values.
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Table 2. Cost-optimal QoS values

utility QoS value cost

0.0 qu

1 ( ((320, 240), 25, 1), rminSur , < gminSur ) 7000
0.1 qu

2 ( ((320, 240), 25, 1), roptSur , goptSur ) 7000
0.13 qu

3 ( ((320, 240), 50, 1), roptSur , goptSur ) 11000
. . . . . . . . . . . .

0.39 qmin = qu

16 ( ((320, 240), 25, 10), roptSur , goptSur ) 70000

0.42 qu

17 ( ((320, 240), 25, 11), roptSur , goptSur ) 77000
. . . . . . . . . . . .

0.81 qu

37 ( ((320, 240), 75, 21), roptSur , goptSur ) 315000
0.83 qu

38 ( ((320, 240), 25, 24), roptSur , goptSur ) 168000
0.84 qopt ∼ qu

39 ( ((320, 240), 50, 23), roptSur , goptSur ) 253000
. . . . . . . . . . . .

1.0 qu

45 ( ((640, 480), 75, 25), roptSur , goptSur ) 1125000



5.3 QoS Mapping

The QoS performance mapping from the application layer performance domain
Pvideo to an underlying middleware layer with Pmw = #Frames × Period is
formally defined as follows:

dmP : Pvideo → Pmw

dmP ((resx, resy), fps, quality) = (#frames, period), with

dmP1
((resx, resy), fps , quality) = #frames =

⌈
(160·quality+3000)·(resx−160)/160

payload bytes per frame

⌉

dmP2
((resx, resy), fps , quality) = period = 1

fps

On application layer, QoS performance is defined by resolution, picture frames
per second, and quality. On middleware layer, we have the number of data frames
required for the transmission of one picture frame, and the period between two
picture frames, i.e. a burst of data frames.

The QoS reliability mapping is to be based on segmentation and error models,
which are outside the scope of this paper, and therefore omitted. For the QoS
guarantee mapping, we assume that the guarantees specified on higher levels
are supported by the base technology, so that the guarantees can be maintained
across layers.

The QoS scalability mapping is universally defined in Definition 9, indepen-
dent from application, system, and hardware. Therefore, no specific mapping is
needed.

6 Conclusion and Future Work

In this paper, we have presented a holistic, comprehensive formalization of net-
work QoS requirements, across layers. QoS requirements are specified on each
layer by defining a multi-dimensional QoS domain and QoS scalability. Based on
these definitions, we have derived preorders on multi-dimensional QoS domains,
and have presented criteria to reduce these domains to manageable subsets,
sufficient as a starting point for system design and implementation. To formally
relate layers, we have introduced two kinds of QoS mappings, called QoS domain
mappings and QoS scalability mappings.

All formalizations so far are based on mathematics. For better usability, we
intend to define a formal QoS requirement specification language, with intuitive
keywords and structuring capabilities. This language should be powerful enough
to host the concepts and criteria we have introduced in this paper. Also, the
language should be supported by tools that can, for instance, construct QoS
mappings as far as they have been defined in this work.

Another step is to specify designs that satisfy given QoS requirement spec-
ifications. In particular, there is need for defining a network QoS system archi-
tecture, with QoS functionalities such as QoS provision, QoS control, and QoS
management on each abstraction layer. We expect that this requires extensions
to existing design languages such as UML or SDL. Finally, implementations are



to be generated from design models. In our group, we have a complete develop-
ment process and tool chain for model-driven development. It is a challenging
task to extend them to QoS-aware system development.
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