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Abstract. Based on the equivalence relation for location based reach-
ability between continuous and integer semantics of closed timed au-
tomata, Beyer et al. have implemented the verifier Rabbit, with the uni-
form representation of reachable configurations. However, the growth
of maximal constant of clock variables will decline the performance of
Rabbit. The paper proposes an improved symbolic method, using bi-
nary decision diagrams (BDDs) to store the symbolic representation of
discretized states, for the verification of timed systems. Compared with
Rabbit, experiments demonstrate that besides the memory reduction,
our implementation is also less sensitive to the size of clock domain.
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1 Introduction

Formal verification is one of the effective methods to ensure the correctness
of real-time systems. Timed automata (TAs) [1] provide a formal framework for
the automatic analysis and verification of real-time systems, and in the past few
years several tools for the model checking of TAs have been developed and used,
including Uppaal [13], Kronos [8], Red [16], Rabbit [6] and FPTA [17], which
have implemented the computation for the set of all reachable configurations
by reachability analysis. However, the exploding increase of time consumption
for the computation and memory consumption for the representation of the
reachable configurations is still a main problem.

Within the model checking community, many works were based on symbolic
representations of the state space. The region equivalence of [1] is the precur-
sor of the symbolic methods in which the state space is covered using regions
with the same integer parts of clock values and the ordering of fractional parts.
Currently, most of real-time verifiers apply abstractions based on zones (the
constraint sets) in order to be coarser. Difference bound matrices (DBMs) [4]
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are a common data structure to describe zones. However, this structure cannot
unify the representation of configurations which consist of locations and clock
valuations.

Besides DBMs, clock difference diagrams (CDDs) [3] and their variants [16,
15] were used to combine the representation of locations and clock valuations
in zones. Their common disadvantage is that the lack of a unique canonical
representation may hinder the containment relation detection.

The work in [9] introduced the BDD representation of reachable configura-
tions based on the methods of time discretization [10]. The work in [2] proposed
that closed timed automata (CTAs), whose clock constraints only contain ≥,≤
relations, can just consider integer clock valuations for the reachability analysis.
Based on the observation in [2], the work in [5] implemented BDD-based reacha-
bility analysis, which formally defined the integer semantics of closed automata
and proved the equivalence between integer and continuous semantics for loca-
tion based reachability. All these BDD-based verifiers share the same problem
of BDD’s: they are sensitive to the size of clock domain.

Based on the work of [5], we introduce symbolic structures for the repre-
sentation of reachable configurations, in the integer semantics of closed timed
automata, which is similar to the work of [17]. To reduce the memory consump-
tion, BDD is applied to store the reachable symbolic sets. The combination not
only reduces the sensitivity to the scale of clock constants, but also unifies the
representation of locations and clock valuations.

The paper is organized as follows. In section 2, we briefly recall the definition
of TAs, CTAs and their semantics. In section 3, we present the new symbolic
data structures and the reachability analysis algorithm for the integer semantics.
In section 4, we demonstrate the performance of our prototype implementation.
Section 5 concludes and discusses future work.

2 Preliminaries

The section introduces the definition of TAs and their continuous and integer
semantics.

A timed automaton (TA), proposed by Alur and Dill [1], is a finite state
automaton extended with a finite set of real-valued clock variables.

Definition 1. (Syntax of Timed Automata).
Let X be a finite set of clocks, and C(X) be the clock constraint set over X,
given by the syntax:

φ ::= (x ∼ c) | φ1 ∧ φ2 | true

where x ∈ X, ∼∈ {<,≤, >,≥} and c ∈ N+ (N+ is the set of non-negative
integers).

A timed automaton over X is a tuple A = 〈L, l0, Σ, X, I, E〉, where

– L is a finite set of locations, and l0 ∈ L is the initial location,



– I is a mapping that labels each location l ∈ L with some constraint in
C(X),and I(l) is called the invariant of l,

– Σ is a finite set of synchronization labels, and
– E ⊆ L × C(X) × Σ × 2X × L is the set of transitions.

A transition (l, g, σ, Y, l′) ∈ E means that one can move from the location l
to l′ through a transition labelled with σ ∈ Σ. Moreover, g the guard must be
satisfied by the current clock values, and all the clocks in Y (Y ⊆ X) are reset
to 0.

Closed timed automata [2] restrict the clock constraints. The restricted con-
straints φ over X is:

φ ::= x ≤ c|x ≥ c|φ1 ∧ φ2,

where x ∈ X , and c ∈ N+.

2.1 Continuous Semantics of TA

In continuous semantics, clock variables have non-negative real valuations. A
clock valuation is a function µ : X 7→ R+, where R+ is the set of non-negative
reals. µX denotes the set of all clock valuations over X . For t ∈ R+, µ+t denotes
the clock valuation such that µ(x + t) = µ(x) + t, for all x ∈ X . For Y ⊆ X ,
µ[Y := 0] denotes the clock valuation such that µ[Y := 0](x) = 0, for all x ∈ Y
and otherwise µ[Y := 0](x) = µ(x). µ satisfies a constraint φ ∈ C(X), denoted
by µ |= φ, if φ evaluates to true under the assignment given by µ.

The continuous semantics of a timed automaton A = 〈L, l0, Σ, X, I, E〉 over
X is defined as a transition system 〈S, s0, Σ ∪ R+,→〉, where S = L × µX ;
s0 = (l0, µ0) is the initial state where µ0(x) = 0 for all x ∈ X ; and the transition
relation → comprises two kinds of moves:

– delay transition: (l, µ)
δ
−→ (l, µ+ δ), if δ ∈ R+ and µ |= I(l) and µ+ δ |= I(l);

– discrete transition: (l, µ)
σ
−→ (l′, µ[Y := 0]), if (l, g, σ, Y, l′) ∈ E and µ |= g

and µ[Y := 0] |= I(l′).

Let A be a TA. For a state sk = (l, µ) where l ∈ L, µ ∈ µX . If there is

a finite state sequence such that s0
α0−→ s1

α1−→ · · ·
αk−1

−−−→ sk, then sk is called
reachable and l the reachable location in the continuous semantics of A, where
αi ∈ Σ ∪ R+, 0 ≤ i < k.

2.2 Integer Semantics of TA

The differences between integer and continuous semantics are the definitions
of clock valuations and transition relations. In integer semantics, clock variables
have integer valuations. A clock valuation is a function ν : X 7→ N+, where N+

is the set of non-negative integers. νX denotes the set of all clock valuations over
X .

The integer semantics of a timed automaton [5] A = 〈L, l0, Σ, X, I, E〉 is
defined as a transition system 〈S, s0, Σ∪N+,→I〉, where S = L×νX , s0 = (l0, ν0)



is the initial state where ν0(x) = 0 for all x ∈ X , and the transition relation →I

comprises two kinds of moves:

– delay transition: (l, ν)
δ
−→ (l, ν ⊕ δ), if δ ∈ N+ and ν |= I(l), ν ⊕ δ |= I(l);

– discrete transition: (l, ν)
σ
−→ (l′, ν[Y := 0]), if (l, g, σ, Y, l′) ∈ E and ν |= g,

ν[Y := 0] |= I(l′).

where (ν ⊕ δ)(x) = min{ν(x) + δ, cA(x) + 1}, cA(x) is the maximal constant
compared with x in the clock constraints of A.

Let A be a TA. For a state sk = (l, ν) where l ∈ L, ν ∈ νX . If there is a

finite state sequence such that s0
α0−→ s1

α1−→ · · ·
αk−1

−−−→ sk, then sk is called
reachable and l the reachable location in the integer semantics of A, where
αi ∈ Σ ∪ N+, 0 ≤ i < k.

The work in [5] proved the equivalence relation for the set of reachable lo-
cations between integer and continuous semantics of CTAs, which formed the
basis of BDD-based reachability analysis.

3 Reachability Analysis for CTAs

In the integer semantics, the number of reachable configurations and the
time consumption grow greatly with the increasing size of clock domain. Though
BDD can reduce the memory consumption by data sharing, dealing with such
enormous reachable sets will slow down the verification process.

Based on the symbolic representation for integer clock valuations in [17],
we apply the symbolic method to record the reachable configurations of CTAs
during the verification process. Meanwhile, we use BDD to record the symbolic
sets to increase the data sharing and reduce the memory consumption.

3.1 Delay Sequence

Reachability is one of the most common properties being checked by verifiers.
There are two kinds of search strategies for reachability analysis during state
space exploration: forward and backward search. Currently our tool uses the
forward search technique.

The forward analysis of the reachable configurations starts from the initial
state (l0, v0). Whenever allowed by the invariant of l0, time delays can form the

sequence (l0, v0 ⊕ 0)
1
−→ (l0, v0 ⊕ 1)

1
−→ · · · , where v0 ⊕ i |= I(l0). For example,

given A = 〈L, l0, Σ, X, I, E〉, let l0 ∈ L be the initial location with the invariant

x ≤ 106, where x ∈ X . Then there may be a sequence: (l0, 0)
1
−→ (l0, 1)

1
−→ · · ·

1
−→

(l0, 106). Even with BDD representation for the set of states in this sequence, the
frequent operations with the increasing number of reachable configurations are
burdensome. To relieve this problem, here we introduce a symbolic representation
for this kind of sequence.



Definition 2. (Symbolic Representation of Delay Sequence).
Given location l and clock valuation v, let < l, v > denote the set of states
{(l, v′)|v′ = v ⊕ i, where i ≥ 0, and v′ |= I(l)}. Based on the maximal constant
abstraction, for every x ∈ X, all the clock valuations greater than cA(x)+1 are
treated as cA(x) + 1. Therefore, though time can progress infinitely, the number
of states in the delay sequence is finite.

Therefore, a delay sequence (DS) generated by delay transitions from the state
s = (l, v) can be denoted by < l, v >. And the number of states in < l, v > can
be determined by I(l) and clock valuation v.

Let A = 〈L, l0, Σ, X, I, E〉 be a timed automaton. For a state s = (l, v) and a
transition e = (l, g, σ, Y, l′) ∈ E, where l ∈ L and v ∈ νX , post(s, e) denotes the
set of states {< l′, v′ > |if ∃i ∈ N+ such that v ⊕ i |= I(l)∧ g, v′ = v ⊕ i[Y := 0]
and v′ |= I(l′)}.

Given the symbolic representation of DS, the symbolic semantics can be
defined as follows.

Definition 3. (Symbolic Semantics).
Let A = 〈L, l0, Σ, X, I, E〉 be a timed automaton. The symbolic semantics of A
is based on the transition system 〈S, s0, 〉, where S = L × νX , s0 =< l0, v0 >,
and  is defined by the following rule:
< l, v > < l′, v′ >, if there exist a transition (l, g, σ, Y, l′) ∈ E and an i ∈ N+,
such that v ⊕ i |= I(l) ∧ g, v′ = v ⊕ i[Y := 0] and v′ |= I(l′).

Given a time automaton A = 〈L, l0, Σ, X, I, E〉, and a state (l, v). l is reach-
able in the integer semantics of A, iff it is reachable in the symbolic semantics
〈S, s0, 〉.

x<=6 y<=5
x<=10

y>=3
x:=0 y:=0

x>=4 y:=0
l1l0

Fig. 1. A simple example

Example 1. The simple timed automaton in Figure 1 is to illustrate the ap-
plication of DS during the reachability analysis. Every state is denoted by
(li, (v(x), v(y))), where (v(x), v(y)) are two clock valuations of the timed au-
tomaton.

One of the runs in the example is: (l0, (0, 0))
1
−→ (l0, (1, 1))

1
−→ (l0, (2, 2))

1
−→

(l0, (3, 3))
1
−→ (l0, (4, 4)) → (l1, (4, 0))

1
−→ (l1, (5, 1)) · · · . We list the unfolded

state space in Figure 2. The state sequence generated from (l0, (0, 0)) by delay
transitions can be represented by < l0, (0, 0) >, and the sequence generated from
(l1, (4, 0)) by delay transitions can be represented by < l1, (4, 0) >. Therefore,
with DS representation, the size of state space can be reduced. Figure 3 shows
the reduced state space.
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Fig. 2. Unfolded state space of the example
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Fig. 3. State space represented by DS

3.2 Series of Delay Sequences

In a delay sequence, when some states satisfy the guard of a transition, the
corresponding discrete transition can be taken, leading to the new states. From
these new states, the execution of delay or discrete transitions will be contin-
ued. For instance, in the example of Figure 1, some states in delay sequence
< l0, (0, 0) > can trigger the discrete transition from l0 to l1. Then the corre-
sponding successor states are (l1, (4, 0)), (l1, (5, 0)), (l1, (6, 0)). After the discrete
transition, only valuations of reset clocks are different from their precursors.
If we ignore the reset clocks, we will find that other clock valuations in these
successors still obey the rule of “⊕” operation.

Then given a state generated by the discrete transition, we can compute all
other new successors from the states in the same delay sequence. Let vr be the
clock valuation after a discrete transition, where Y is the reset clock set. The
clock valuaton of the ith state from vr is vir = vr ⊛ i, where (vr ⊛ i)(x) =
{

vr(x) + i x /∈ Y
0 x ∈ Y

.



Based on this observation, we can define a coarser data structure, which
comprises more than one DS.

Definition 4. (Series of Delay Sequences).
Let ((l, v), k, Y ) be the symbolic representation for the set of states {< l, v′ >
|v′ = v ⊛ i, 0 ≤ i < k}. We call this representation the series of delay sequence
(SDS). Let s0 = (l, v) be the so-called start state, then the SDS is denoted by
(s0, k, Y ). (s0, k, Y ) is denoted by (s0, 1, ∅) if Y = ∅.

Then in Example 1, delay sequences < l1, (4, 0) >, < l1, (5, 0) >, <
l1, (6, 0) > computed from < l0, (0, 0) > by the discrete transition can be repre-
sented by ((l1, (4, 0)), 3, {y}). The state space is further reduced.

3.3 Reachability Analysis

During the forward search of the reachable configurations in integer seman-
tics, we use DS to compute the successors and record the set of visited states.
Given a DS t, the process for successor computation from t is: the delay sequence
from t can trigger the discrete transition e when some states in the sequence sat-
isfy its guard. Then the set of new configurations is computed. In other words,
if t is not in P the set of visited configurations, then by the discrete transition e,
the delay sequence from t can generate the set of configurations T = post(s, e).
And the new successors will be added to the waiting list W for the computation
loop. The verification will stop when W is empty or the property is satisfied.

Because the structure of a DS is similar to that of a discrete state, to save the
memory consumption during the verification process, we use BDD to represent
the set of reachable DSs. The generalized algorithm for reachable analysis is as
follows:

1: Reachability()
2: W = {< l0, v0 >};
3: while W 6= ∅ do
4: get s =< l, v > from W ;
5: if s ∈ P then
6: continue
7: end if
8: for all e ∈ {(l, g, σ, Y, l′)} do
9: T = post(s, e);

10: if ∃t ∈ T, t |= φ then
11: return true
12: end if
13: if T * W then
14: W = W ∪ T
15: end if
16: P = P ∪ {s};
17: end for
18: end while



19: return false

3.4 The Application of SDS

Because the result of post(s, e) is a set of interrelated DSs, we can use SDS
to represent the set of DSs. Then W can be organized as the list of SDSs to
reduce the occupied memory during the verification process. Meanwhile, time
consumption for computing new reachable configurations from DSs in the same
SDS can be saved for their interrelation.

To explain how to compute successors for a SDS, we firstly show the corre-
sponding computation for a DS. Then we discuss the relation between two SDSs
with the same locations. Finally we present the SDS-based reachability analysis
algorithm.

3.4.1 Successor Computation for DS Given a timed automaton A =
〈L, l0, Σ, X, I, E〉, a state (l, v) and e = (l, g, σ, Z, l′) ∈ E, where l ∈ L and
v ∈ νX . To compute the successors, we need to consider the constraints involv-
ing I(l) and g. That is, to trigger the discrete transition, the states should satisfy
the constraint I(l) ∧ g.

For convenience, given a clock valuation v ∈ νX , let θv
X = max{ cA(x) −

v(x)|x ∈ X}. Given a constraint φ, we define

– Xφ is the set of all clock variables occuring in φ.

– φl =
∧

{x ≤ c|x ≤ c is in φ}.
– φg =

∧

{x ≥ c|x ≥ c is in φ}.
– cφ is the maximal constant occuring in φ.
– cφ(x) be the maximal constant compared with x in φ.

In the following computation, for constraint ϕ = I(l) ∧ g, let

m = max{{cϕg
(x) − v(x)|x ∈ Xϕg

}, 0} (1)

n = min{{cϕl
(x) − v(x)|x ∈ Xϕl

}, θv
X} (2)

Then in the delay sequence < l, v >, set of states {(l, v ⊕ j)|j ∈ [m, n]} can
take the discrete transition e = (l, g, σ, Z, l′).

Example 2. For the timed automaton in Figure 1, given the initial state (l0, (0, 0))
and the discrete transition from l0 to l1. Firstly, θv

X = 10 and ϕ = x ≥ 4∧x ≤ 6.
According to the definition, we get that ϕl = x ≤ 6, cϕl

(x) = 6, ϕg = x ≥ 4, and
cϕg

(x) = 4. Then m = 4 and n = 6, the set {(l0, (4, 4)), (l0, (5, 5)), (l0, (6, 6))}
in < l0, (0, 0) > can take the discrete transition from l0 to l1.

Therefore, to get successors from a DS, we have to consider the computation
and judgement between clock valuations and constraints.



3.4.2 Successor Computation for SDS If all successors of DSs in a SDS
can be computed according to the successors of one DS, the effort can be saved
by avoiding the repeated computation between clock valuations and constraints.

Given a SDS d = ((l, v), k, Y ) and e = (l, g, σ, Z, l′), we have observed that
v(x) ⊕ i = v(x) ⊛ i for all x ∈ X − Y . So some states in the ith delay sequence
< l, v ⊛ i > and the delay sequence < l, v > may have same valuations except
for the clocks in Y .

With this observation, we discuss the corresponding process for computing
new configurations. We firstly determine the set of states that can trigger the
discrete transition for the start state (l, v).

For the constraint ϕ and SDS d, let

a1 = max{{cϕg
(x) − v(x)|x ∈ Y ∩ Xϕg

}, 0} (3)

b1 = min{{cϕl
(x) − v(x)|x ∈ Y ∩ Xϕl

}, θv
Y } (4)

a2 = max{{cϕg
(x) − v(x)|x ∈ (X − Y ) ∩ Xϕg

}, 0} (5)

b2 = min{{cϕl
(x) − v(x)|x ∈ (X − Y ) ∩ Xϕl

}, θv
(X−Y )} (6)

Then m = max{a1, a2}, and

n =















max{b1, b2} if Xϕl
= ∅

b2 if (Xϕl
∩ Y ) = ∅

b1 if (Xϕl
∩ X − Y ) = ∅

min{b1, b2} if (Xϕl
∩ Y ) 6= ∅ ∧ (Xϕl

∩ X − Y ) 6= ∅

.

Set of states {(l, v⊕ j)|j ∈ [m, n]} in the delay sequence < l, v > can trigger the
discrete transition e = (l, g, σ, Z, l′).

Example 3. Now we use SDS ((l1, (4, 0)), 3, {y}) and the transition from l1 to l0
in Figure 1 as the example. For the start state (l1, (4, 0)) and guard y ≥ 3 in the
transition, we get that ϕ = x ≤ 10∧ y ≤ 5∧ y ≥ 3. According to the Equation 3
∼ 6, a1 = 3, b1 = 5, a2 = 0, and b2 = 6 respectively. Because Xϕl

= {x, y} and
Y = {y}, neither Xϕl

∩ Y nor Xϕl
∩ X − Y is empty. Therefore m = 3, n = 5,

the set of states {(l1, (4, 0) ⊕ j)|j ∈ [3, 5]} in the delay sequence < l1, (4, 0) >
can take the discrete transition.

After the computation for the successors of the start state in SDS, we can get
the set of successors from other DSs in the same SDS according to the feature
of SDS.

For the delay sequence of < l, v⊛ i > where 0 ≤ i < k, m = max{a1, a2 − i},
and

n =















max{b1, b2} if Xϕl
= ∅

max{b2 − i, 0} if (Xϕl
∩ Y ) = ∅

b1 if (Xϕl
∩ X − Y ) = ∅

min{b1, max{b2 − i, 0}} if (Xϕl
∩ Y ) 6= ∅ ∧ (Xϕl

∩ X − Y ) 6= ∅

,

states that can trigger the discrete transition e are the set {(l, (v ⊛ i) ⊕ j)|j ∈
[m, n]}.



Example 4. For SDS ((l1, (4, 0)), 3, {y}), we have obtained that a1 = 3, b1 =
5, a2 = 0, and b2 = 6. Then

1. For the delay sequence < l1, (4, 0)⊛1 >, set of states {(l1, (5, 0)⊕j)|j ∈ [3, 5]}
can trigger the discrete transition.

2. For the delay sequence < l1, (4, 0)⊛2 >, set of states {(l1, (6, 0)⊕j)|j ∈ [3, 4]}
can trigger the discrete transition.

3.4.3 SDS-based Reachability Analysis The following is the reachability
analysis algorithm by the application of SDS.

1: ReachabilitySDS
2: SDS d′;
3: stack of SDS W ;
4: W.push((l0, v0), 1, ∅);
5: while W 6= ∅ do
6: get d = (s0, k, Y ) from W ;
7: for all e = (l, g, σ, Y ′, l′) enabled at d do
8: SuccessorN(a1, b1, a2, b2, d, e);
9: for i = 0; i < k; i + + do

10: si = s0 ⊛ i;
11: if si ∈ P then
12: continue
13: end if
14: distance = getdistance(i, ϕ, a1, b1, a2, b2);
15: if distance < 0 then
16: break
17: end if
18: s′ = (l′, (si.v ⊕ max{a1, a2 − i})[Y ′ := 0]);
19: d′ = (s′, distance + 1, Y ′);
20: if ∃s ∈ d′, s |= φ then
21: return true
22: end if
23: if d′ /∈ W then
24: W.push(d′)
25: end if
26: P = P ∪ {si};
27: end for
28: end for
29: end while
30: return false

Line 8 SuccessorN computes the related ranges for the start state according to
the certain discrete transition. Line 9-27 compute all the successors of d, and
Line 13 getdistance is to get the number of states in every DS which is capable
of taking the discrete transition (the number of successors for every DS). Then
Line 18, 19 generate a new set of DSs.



3.5 Inclusion Relation of SDS

When we get a new set of reachable configurations, we need to judge its
relation with those SDSs in W to avoid the repeated computation and ensure
the termination of checking. The relation between the new set d′ and d ∈ W is:

– equivalence, if their start states, the number of DSs, and the set of reset
clocks are equal, which is a special case of inclusion. Or

– intersection, if two sets of reset clocks are equal, and there exists 0 ≤ i <
k, 0 ≤ j < k′, such that all the valuations of s0 ⊛ i and s′0 ⊛ j are the same
state. Or

– irrelevance, neither with equivalence nor intersection relation.

The algorithm for judging SDS relations is as follows. The idea of the al-
gorithm is: firstly we should judge whether the differences between two clock
valuations are the same. If some clock differences are different from others, there
is no equivalence or intersection relation. If all clock valuations except for reset
ones have the same difference, two SDSs may intersect, or one is a subset of the
other.

1: SDSRelation(d, d′)
2: select an x which x /∈ Y ∧ s0(x) < cA(x) ∧ s′0(x) < cA(x);
3: diff=s0(x) − s′0(x);
4: for all x ∈ X − Y do
5: if s0(x) − s′0(x) 6= diff then
6: return irrelevance
7: end if
8: end for
9: if diff ≤ 0 ∧ diff + k ≥ k′ then

10: return d ⊇ d′

11: else
12: if diff ≥ 0 ∧ diff + k ≤ k′ then
13: return d ⊆ d′

14: end if
15: end if
16: return intersection

4 Experiments

Based on the symbolic data structure, we have implemented a prototype to
support the verification of real-time systems with multi-processes, synchroniza-
tions, and broadcasts. The tool is available at http://lcs.ios.ac.cn/∼ligy/tools/.
We compare the experiment results with those of Rabbit. All experiments were
performed on a 2.6GHz Pentium 4 with 512MB of memory. And experiments
were limited to 30 minutes of CPU time.
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We use Fischer’s mutual exclusive protocol(f) [12] (see Figure 4), CSMA/CD
protocol(c) [7] (see Figure 5) and two industrial case studies (Gear Controller [14],
and an Audio/Video Protocol [11]) as the examples. In the following tables, we
list the time consumption(t) in seconds and the number of reachable configura-
tions (state for Rabbit, and DS for our implementation). BDD is the number of
nodes in the BDD representation for the whole reachable configuration when the
verification finishes, which is in direct proportion to the memory consumption.
“-” indicates that the result is unavailable.

To compare the sensitivity of tools to clock constants, we demonstrate ex-
periment results for different valuations of a and b in Fischer’s mutual exclusive
protocol, λ and σ in CSMA/CD protocol. Here the complete state space was
generated.

As we know, the greater the maximal constant, the more the number of
reachable configurations will be. Table 1 and 2 list results of Rabbit and our
prototype under different valuations for two protocols. Comparing results in two
tables, the number of reachable configurations in Rabbit and the prototype in-
creases rapidly, as well as the time consumption. However, w.r.t. the finial num-
ber of BDD nodes and the number of reachable configurations, the increase of
our prototype are quite less than that of Rabbit. For both Fischer’s protocol and
CSMA/CD protocol, our prototype scales better with the growth of constants.

For the industrial examples, the complete state space of Gear Controller was
explored in 177.22 seconds with 64872 BDD nodes recording all the reachable
configurations; and the complete state space of Audio/Video protocol was un-



Table 1. Rabbit’s results for Fischer’s (f) and CSMA/CD (c)

a=2,b=4 a=4,b=8 a=8,b=16 a=16,b=32
No.

t state BDD t state BDD t state BDD t state BDD

f2 0 193 133 0 467 216 0 1399 374 0 4799 684
f3 0 1893 605 0 7095 1318 0 36939 3385 0 234867 9998
f4 0 17577 1956 0 102291 5531 1 922479 19741 4 1.08322e+07 85485
f5 0 158449 4720 0 1.43358e+06 16218 3 2.2305e+07 75043 29 4.8236e+08 450942
f6 1 1.40518e+06 8751 2 1.97584e+07 34284 8 5.2812e+08 191567 - - -
f7 0 1.23492e+07 13821 2 2.69305e+08 58725 22 1.23136e+10 371250 - - -
f8 1 1.07952e+08 19897 5 3.63936e+09 88780 - - - - - -
f9 1 9.40233e+08 26960 10 4.88237e+10 124248 - - - - - -
f10 2 8.16454e+09 35014 17 6.50652e+11 165133 - - - - - -

λ = 4, σ = 1 λ = 8, σ = 2 λ = 16, σ = 4 λ = 32, σ = 8

c2 0 157 213 0 358 459 0 982 994 1 3118 2195
c3 0 1446 620 0 4609 1614 2 19569 4308 2 105025 12579
c4 2 11225 1237 1 49645 3636 2 325631 11369 10 2.9609e+06 44015
c5 1 84140 2035 1 502835 7792 8 5.02002e+06 32181 - - -
c6 0 594174 2851 3 4.75103e+06 13836 19 7.22529e+07 70441 - - -
c7 1 4.01893e+06 3667 5 4.27544e+07 20989 - - - - - -
c8 2 2.63267e+07 4483 9 3.71571e+08 28482 - - - - - -

Table 2. Our results for Fischer’s (f) and CSMA/CD (c)

a=2,b=4 a=4,b=8 a=8,b=16 a=16,b=32
No.

t DS BDD t DS BDD t DS BDD t DS BDD

f2 0.05 22 62 0.05 22 72 0.05 22 82 0.05 22 92
f3 0.08 107 151 0.16 119 181 0.09 143 211 0.16 191 241
f4 0.14 476 273 0.19 588 333 0.33 812 393 0.80 1260 453
f5 0.44 1970 416 0.78 2620 512 1.95 3920 608 5.97 6520 704
f6 1.97 7679 583 4.13 10717 721 11.63 16793 859 38.59 28945 997
f7 9.95 28551 772 22.13 41123 958 63.48 66267 1144 222.56 116555 1330
f8 43.75 102382 987 102.95 150610 1227 313.00 247066 1467 1063.27 439978 1707
f9 190.83 357176 1222 466.16 533102 1522 1398.83 884954 1822 - - -
f10 932.52 1220153 1481 - 1839819 1847 - 3079151 2213 - - -

λ = 4, σ = 1 λ = 8, σ = 2 λ = 16, σ = 4 λ = 32, σ = 8

c2 0.08 31 86 0.08 46 106 0.09 78 149 0.09 142 226
c3 0.16 202 180 0.17 387 311 0.23 885 551 0.47 2385 2141
c4 0.34 1038 344 0.61 2123 787 2.25 5507 1965 18.06 16643 5730
c5 1.70 4479 619 3.84 9814 1578 31.59 28672 4381 659.59 101732 14177
c6 8.67 17786 910 28.66 41580 2441 455.17 139100 7046 - 634740 23636
c7 37.45 67046 1202 183.61 166701 3308 - - - - - -
c8 179.45 243741 1494 1243.05 641407 4175 - - - - - -



folded in 917.67 seconds with 2351 BDD nodes. However, Rabbit failed in the
limited memory. The performance of our prototype is dramatic compared with
Rabbit.

Therefore, our tool’s sensitivity to constant valuations is lower than that of
Rabbit. The reason is that BDD representation for DS is coarser than that for
explicit states in integer semantics.

5 Conclusions and Further Work

In this paper we propose a new symbolic structure for the discrete states in
the integer semantics of closed timed automata for the reachability analysis. Con-
cluded from the experiment results, our structure is better than the pure BDD
representation for explicit configurations w.r.t. the influence of the magnitude
of clock constants. And the memory consumption is greatly reduced, benefited
from the data sharing ability of BDD.

However, the prototype does not use BDD to represent the transition rela-
tions yet, which results in the transformation from DS to BDD frequently. The
transformation and judgement between DS and BDD waste lots of time. So our
time consumption is higher than that of Rabbit. For further work, we need to
investigate the combination of BDD representation for transition relations and
our symbolic data structure to improve the performance of our prototype.
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