Timed Mobile Ambients for Network Protocols

Bogdan Aman? and Gabriel Ciobanu'-?

L «A 1.Cuza” University, Faculty of Computer Science
Blvd. Carol I no.11, 700506 Iasi, Romania
2 Romanian, Academy, Institute of Computer Science
Blvd. Carol I no.8, 700505 Iasi, Romania
baman@iit.tuiasi.ro, gabriel@info.uaic.ro

Abstract. Ambient calculus is a calculus for mobile computing able
to express local communications inside hierarchical domains. So far the
timing properties have not been considered in the framework of mobile
ambients. We add timers to capabilities and ambients, and provide an
operational semantics of the new calculus. Certain results are related to
the passage of time, and some new behavioural equivalences over timed
mobile ambients are defined. Timeout for network communication (TTL)
can be naturally modelled by the time constraints over capabilities and
ambients. The new formalism can be used to describe network protocols;
Simple Network Management Protocol (SNMP) may implement its own
strategy for timeout and retransmission in TCP/IP.

1 Introduction

Ambient calculus is a formalism for describing distributed and mobile compu-
tation introduced in [6]. In contrast with other formalisms for mobile processes
such as the m-calculus [19] whose computational model is based on the notion
of communication, the ambient calculus is based on the notion of movement. An
ambient represents a unit of movement. Ambient mobility is controlled by the
capabilities in, out, and open. Capabilities are similar to prefixes in CCS [18]
and m-calculus. Several variants of the ambient calculus have been proposed by
adding and/or removing features of the original calculus [5, 15, 17].

The definition of mobile ambients is related in [6] to the network communica-
tion. Ambient calculus can model communication protocols. Timing properties
are important in network communication. For instance, a Time to Live (TTL)
value is used to indicate the timeout for a communication unit before it should
be discarded. Servers do not apply a single fixed timeout for all communication
units. Simple Network Management Protocol (SNMP) could implement its own
strategy for timeout and retransmission in TCP/IP communication protocol.
TTL and retransmission in TCP/IP protocol provide a good motivation to add
timers to ambients. So far the timing properties have not been considered in
the framework of mobile ambients. In this paper we associate timers not only to
ambients, but also to capabilities. The resulting formalism is called timed mobile
ambients (tMA), and represents a conservative extension of the ambient calculus.

We use a clock just for the sake of uniformity; all the clocks work in the same
way. In fact, working with located processes and a migration primitive go, we use

2 Bogdan Aman and Gabriel Ciobanu

only local clocks, and the change from one local clock to another one is possible
by the migration primitive go. This is sound because we use relative time given
by timers, and not an absolute time.

The structure of the paper is as follows. Section 2 introduces the pure mo-
bile ambients followed by the description of the timed mobile ambients (tMA).
The passage of time is given by a discrete time progress function. We provide
an operational semantics of the new calculus given by a reduction relation. In
Section 3 we use tMA to describe the Transmission Control Protocol (TCP).
In Section 4 we introduce and study some behavioural equivalences over timed
mobile ambients. Other results are related to the passage of time. Conclusion
and references end the paper.

2 Mobile Ambients with Time Constraints

We provide a short description of the pure mobile ambients, an algebraic for-
malism which studies the distributed concurrent systems; more information can
be found in [6]. The following table describes the syntax of mobile ambients.

Table 1: Mobile Ambients Syntax

n,m,p ambient names P,Q == processes
C = capabilities 0 inactivity
nn can enter n C.P movement
out n can exit n n[P] ambient
open n can open n PlQ composition
(vn)P restriction
P replication

Process 0 is an inactive process (it does nothing). A movement C.P is pro-
vided by the capability C, followed by the execution of P. An ambient n[P]
represents a bounded place labelled by n in which a process P is executed. P | Q
is a parallel composition of processes P and Q. (vn)P creates a new unique name
n within the scope of P. xP denotes the unbounded replication of a process P,
producing as many parallel replicas of P as needed.

The semantic of the ambient calculus is given by two relations: structural
congruence and reduction. The structural congruence P = () relates different
syntactic representations of the same process; it is used to define the reduction
relation. The reduction relation P — () describes the system evolution. We
denote by —* the reflexive and transitive closure of —.

The structural congruence is defined as the least relation over processes sat-
isfying the axioms from the table below:

Table 2: Structural congruence
(PIQ)[R=P|(QF)

PlQ=Q|P, *P=P|*P
(vn)(vm)P = (vm)(vn)P if n #m
(wn)(P|Q)=P|(vn)Q if n ¢ fnAmb(P)

ym[P] = m[(vn)P] if n #m
pP=P, P|O=P
(vn)0=0; x0=0

implies Q = P

@ = R implies P=R
implies (vn)P = (vn)Q
implies P R=Q|R
implies *P = xQ
i
i

mplies n[P] = n[Q)]
mplies C.P = C.Q

TWTYUT
LT T e
QOLDLLL O

Timed Mobile Ambients for Network Protocols 3

The rules from the left side of the table describe the commutativity/ associa-
tivity of composition, unfolding recursion, changing the restriction scope. The
rules from the right side describe how structural congruence is propagated across
processes. The set of free names for a process is defined as follows:

0 if P=0
fnAmb(R) U {n} if P = cap n.R, with cap € {in, out, open}
) fnAmb(R) U {n} if P =nlR]
FrAmb(P) = 3t Amb(R) U fnAmb(Q) if P =R | Q
fnAmb(R) — {n} if P=(vn)R
fnAmb(R) if P==xR

The reduction relation is defined as the least relation over processes satisfying
the following set of axioms and rules:

Table 3: Reduction Rules

(In) nlin m. P Q]| m[R] — m[n[P| Q]| R]
(Out) m[nfout m. P| Q]| R] — n[P|Q]|m[R]
(Open) open n. P|n[Q] — P|Q

(Res) P — @ implies (vn)P — (vn)Q
(Amb) P — @ implies n[P] — n[Q]

(Par) P — @ implies PIR— Q|R
(Struct) P=h }];, : g’, Q=0Q

The first three rules are the reductions for in, out, open. The next three rules
propagate reductions across scopes, ambient nesting and parallel composition.
The final rule allows the use of structural congruence during reduction.

We ignore the communications inside ambients and use pure mobile ambients
to express the time and space constraints. We can also easily introduce channels
and study the aspects related to them, with no difference in expressing the
network protocols.

In order to identify an entity, TCP/IP protocols use the IP address, which
uniquely identifies the connection of a host to the Internet. However, people
prefer to use names instead of numeric addresses. A system that can map a
name to an address or an address to a name is the domain name system, which
is represented hierarchically in what follows:

Figure 1. Domain Name System(DNS)

The information contained in DNS must be stored. One way to do this is to
divide the whole space into many domains based on the first level.

4 Bogdan Aman and Gabriel Ciobanu

Inspired from the domain name system, we also consider a distribution of
parallel locations between which the ambients can migrate, each location be-
ing the place where the nested ambients interact. In our model the root node,
represented in the above picture, disappears and its function is supplied by the
execution of the migration primitive go. Thus we get a more realistic description
of the distributed computation and mobility. A natural example motivating an
extension from timed distributed m-calculus to timed mobile ambients is pre-
sented in [7].

The syntax of the timed mobile ambients is defined in Table 4.

Table 4: Syntaz of tMA

a,b,... names PQ:= processes

C n= capabilities 0 inactivity
nn can enter an ambient n C4'.(P,Q) movement
out n can exit an ambient n (n?[P)*,Q) ambient
open n can open an ambient n PlQ composition
go k migration (vn)P restriction

M, N:= located processes * P replication
1[P]] location

(vk)M restriction
M| N composition

We use m, n for ambient names; k, l for physical locations; a, p for ambient tags
- a stands for active ambients, while p stands for passive ambients - we use p to
stand for both ambient tags.

In timed Mobile Ambients (tMA) capabilities and ambients are used as tem-
poral resources; if nothing happens in a predefined interval of time, the waiting
process goes to another state. Since the expiration of a timer offers an alterna-
tive, we shall not use the choice operator as in other process calculi. The timer
At of each temporal resource indicates that the resource is available only for a
determined period of time t. We add timers to both ambients and capabilities. A
process can be executed only if it is inside a location. When an ambient migrates
between locations, all the processes running inside suspend their execution until
the ambient reaches its destination.

We write n*[P]* to denote an ambient having the timer At and the tag .
The tag p is a neutral tag that indicates if an ambient is active or passive. The
novelty comes from the fact that an ambient can disappear. If ¢ > 0 the ambient
behaves exactly as in untimed mobile ambients. Since the timer At can expire
(t = 0) we use a pair (n?*[P]*,Q) to denote a timed ambient, where Q is a
safety process. If nothing happens in ¢ units of time, the ambient n is dissolved,
the process P running inside the ambient is reduced to 0, and the process
is executed. If Q = 0 we can simply write n?*[P]* instead of (n“![P]*,Q).
Similarly, for movement, we use a pair of processes. The process open“tn.(P, Q)
evolves to P whenever, in the period of time At, the process becomes sibling to
an ambient n; otherwise it evolves to Q.

When we describe initially the ambients, we consider that all ambients are
active, and we associate the tag a to them. From Table 4 it can be seen that we
consider only ambients to be placed at some locations.

Timed Mobile Ambients for Network Protocols 5

2.1 Semantics

The main feature of tMA is given by the explicit use of time. The passage of time
is described by two discrete time progress functions: @ o defined over the set £ of
located processes, and ¢ 5 defined over the set P of timed processes. The possible
actions are performed at every tick of a universal clock. The function ¢ 4, inspired
from [3], affects the ambients, and the capabilities which are not consumed. The
consumed capabilities and ambients disappear together with their timers. If a
capability or ambient has the timer equal to co, thus simulating the behaviour of
an untimed capability or ambient, we use the equality co—1 = co when applying
the function ¢ 4. This function modifies a process accordingly with the passage
of time. Another property of the time progress function ¢, is that the passive
ambients can become active in the next unit of time in order to participate in
other reductions.

For the process C4*.(P, Q) the timer of P is activated only after the con-
sumption of capability C4* (in at most ¢ units of time). Reduction rules (Table
6) show how the time function @A is used.

Definition 1. (Global time progress function) We define A : L — L, by:

{@A(Ml) | Da(Ms2) if M = M; | M»

DA(M) = ¢ (Vk)PA(N) if M = (vk)N

Upa(P)]] if M = I[[P]]

where the function ¢ : P — P has the following definition:
CAtY (R, Q) if P=C*.(R,Q),t>0
Q if P=C?. (R,Q),t=0
da(R) | 04(Q) if P=R|Q

¢a(P) =< (vn)pa(R) if P=(vn)R

(n2Vpa(R)*, Q) if P=(n[R*,Q), t>0
Q if P=(n*[R]*,Q), t =0
P if P=xR orP=0

Processes are grouped into equivalence classes by the following equivalence
relation, =, called structural congruence. This relation provides a way of rear-
ranging expressions so that interacting parts can be brought together.

Table 5: Structural Congruence in tMA

(S-Sym) PZQ implies QEP (S-Refl) PEP

(S-Trans) PZR, REZQ implies PZQ (S-Par Assoc) (P|Q)|R=ZP|(Q|R)
(S-Res) PZQ implies (vn)P=Z(vn)Q (S-Repl Par) «PZP| x P
(S-Par) PZQ implies R| PER|Q (S-Zero Par) P|0=P

(S-Par Com) P|QEQ|P (S-Zero Res) (vn)0=0

(S-Repl) PZ(Q implies *PZ * Q (S-Zero Repl) x0=0

(S-Amb) PZQ and RER' implies (n“[P]*, R)Z(n“t[Q]", R

(S-Loc) PZQ implies k[[P]]|Zk[[Q]]

(S-Par Loc) k[P | Q)ZHP] | K[Q]

(S-Cap) PZQ and RER' implies C4t. (P, R)5C**.(Q, R))

(S-Res Res) (vn)(vm)PZ(vm)(vn)P if n #m

(S-Res Par) (vn)(P|Q)ZP| (vn)Q if n ¢ fnAmb(P)

(S-Res Par Loc)(vk)(M | N)EM | (vk)N if k ¢ fnLoc(M)

(S-Res Amb) (vn)(m?[P]*, Q)= (mAt[(vn)P]*,Q) if m#n and n ¢ fnAmb(Q)

6 Bogdan Aman and Gabriel Ciobanu

The set of free names for a located process is defined as follow:

fnLoc(P)U{k} if M = K[[P]]
fnLoc(M) = < fnLoc(Ni) U fnLoc(N2) if M = Ny | Na , where
fnLoc(N) — {k} if M = (vk)N
0 if P=0
fnLoc(P) = { fnLoc(R) U {k} if P = go*'k.(R.R)

fnLoc(R)U fnLoc(Q) otherwise

We denote by £+ the fact that none of the rules from the following Table,
except the rule (R-TimePass) can be applied. The behaviour of processes is
given by the following reduction rules:

Table 6: Reduction rules

=1
[(n (g0 k(P P)]*, Q)] —> K[[(n™*[P]7, Q)]]

(R-Migrate)

(R-In) (2 [in*'m.(P, P) [Q]*, §") | (™" [R]*, ") -
(m*" ([P Q)7 S') | R, S”)
(R—Out) (mAt [(nAt” [O’U,tAtm-(P7 P/) |Q]a, SH) | R}‘u7 Sl) SN
m*"[P1QI, ") | (m*"[R]", ")
(R-Open) open“tm. (P, P")| (mm [Q",8") --» P|Q
P->Q P->Q
(ReAmb) —atpp) = Q)) PR QIR
P__')Q7P/__-)Q, P_)Q
(R-Par2) P ‘ P s Q | Q/ (R-Res) (l/TL)P N (I/TL)Q
M'EM, M --» N, NEN' P
(R-Struct) ’M’ — N; (R-Loc) 1P --» ZC[Q[QH
(R-LocParl) i |]\]§ i:]\J\/{: v (R-LocPar2) Aﬁ/[_{;\]]\{;]}/f:TNA’]/
M —-s M’ . M-#»
(R-LocRes) WM — (R M (R-TimePass) - gA(M)

In the rules (R-In), (R-Out), (R-Open) ambient m can be passive or
active, while in the rules (R-Migrate), (R-In), (R-Out) ambient n is active.
The difference between passive and active ambients is that the passive ambients
can be used in several reductions in a unit of time, while the active ambients
can be used in at most one reduction in a unit of time, by consuming their
capabilities. In the rules (R-In), (R-Out) the active ambient n becomes passive,
forcing it to consume only one capability in one unit of time. The ambients which
are tagged as passive, become active again by applying the global time-stepping
function (R-TimePass). We use the tag u in these rules because it does not
matter whether or not the ambient is passive or active.

In the rules (R-Migrate) if the physical location k does not exist then it
is created. Rule (R-Migrate) simulates the movement of an active ambient n
from location [to location k in order to interact with some ambient located at

Timed Mobile Ambients for Network Protocols 7

k; notice that the ambient tag changes to p, meaning that the ambient becomes
passive.

In timed mobile ambients, if a process evolves by one of the rules (R-In),
(R-Out), (R-Open), (R-Migrate), while another one does not perform any
reduction, then rule (R-Parl) should be applied. If more than one process
evolve in parallel by applying one of the rules (R-In), (R-Out), (R-Open),
(R-Migrate), then the rule (R-Par2) should be applied. We use the rule (R-
Par2) to compose processes that are active, and the rule (R-Parl) to compose
processes that are active and passive. An example for the usage of the rule

R-Parl) is given by:
() g Yy mAtl [Q}‘u | 0p€nAt2m — Q

mAR[QIF | open?t2m | in?tt — Q | inAtst

A similar argument can be used for arguing in case of the rules (R-LocParl)
and (R-LocPar2). The rule (R-LocRes) propagate reductions across location
scopes. In Section 3 illustrate how some of the rules from Table 6 are working.

We can say that a system described with tMA satisfies the properties [13]:

e Time Determinism: at each time only one reduction rule can be applied.

A possible problem could appear only if we apply (R-TimePass) when we

can apply another rule. However this is not possible because (R-TimePass)

is applied only if the process does not evolve (/+).
e Maximal Progress: a process cannot delay if it can evolve.
e Time Continuity: to go from a process P at time ¢, to a process Py at time

t + At, we must go through all the intermediate time steps of the interval

[t,t + At].

3 Transmission Control Protocol

Transmission Control Protocol (TCP) is a connection-oriented protocol. Using
TCP applications on networked hosts can establish connections to one another,
over which they can exchange data. The protocol is reliable and delivers the
data from sender to receiver in the order it has been sent. TCP distinguishes
data from multiple connections made by concurrent applications running on the
same host.

TCP needs to establish a connection before sending data. To establish a
connection, TCP uses a three-way handshake. In order for a client to connect
to a server, the server must first open a port for the connection: this is called a
passive open. A client can initiate an active open, only after the passive open is
established. TCP connections have three phases:

1. the active open is performed by sending a synchronization packet (SYN flag
set) to the server;

2. the server replies with a packet (SYN and ACK flag set);

3. the client sends a packet (ACK flag set) back to the server.

After all these steps are performed, both the client and the server have re-
ceived an acknowledgement of the connection and the data transfer can begin.

The connection termination phase uses, at most, a four-way handshake. This
is caused by TCP’s half closed. Since a TCP connection is full-duplex (data can

8 Bogdan Aman and Gabriel Ciobanu

flow in each direction independently of the other direction), each direction must
be shut down independently. When an endpoint wishes to stop its half of the
connection, it transmits a FIN packet, which the other end acknowledges with an
ACK. The receipt of a FIN only means that there can be no more data flowing
in that direction. A TCP can still send data after receiving a FIN. Therefore,
a connection termination requires a pair of FIN and ACK segments from each
TCP endpoint.

It is also possible to terminate the connection by a 3-way handshake, when
a process sends a FIN and the other host replies with a FIN & ACK (merely
combines 2 steps into one) and first host replies with an ACK. This is perhaps
the most common method.

way-andshaka)

—— Unusual event

—— Client-reciever path
—p Sender server path

SYNISYN®ACK (step 2 of the ray -Aan

SYNSYN+-ACK [simultanecus open)

Data exchange occur
SYNHACKIACK

CLOBEFIN

FINFACH

CLOSEFIN

""" T Retive clage T T Hassive| close
b FINACH v
FIN WAIT 1 CLOSING : i CLOSE WAIT
FINACKIACK i
ACKE ACHE ' CLOSEFIN

{Go back to start)

Figure 2. TCP State Diagram

Every implementation must choose a value for its mazimum segment lifetime.
It is the maximum amount of time any segment can exist in the network before
being discarded; this justifies why we have added timers to ambients. We know
this time limit is bounded, since TCP segments are transmitted as IP datagrams,
and the IP datagram has the TTL field that limits its lifetime. (RFC 793 specifies
the MSL as 2 minutes. Common implementation values, however, are 30 seconds,
1 minute, or 2 minutes. [21])

In what follows, we represent TCP in tMA, when only a client and a server
are involved. For simplicity, we do not add the safety process to the capabilities
which we know for sure that they are going to be consumed, and for the ambients
which have the timer oco.

Timed Mobile Ambients for Network Protocols 9

Table 7: Transmission Control Protocol represented in tMA

system := l1[[client™[send | send_ack]*1]] | l2[[server™[receive]*?]]
send =
SY N4 [out?*2 client.go 12.in "3 server]s
send_ack =
open?1SY NACK. (ACK 4% [out®* client.got12.in 7 server|*, send | send_ack)

receive =
open®5 SY N. (SY N AC K2 [out*"10 server.go®*l1.in“"11 client]"s | receive)

We write send, send_ack and receive processes to simulate the three-way
handshake for establishing the connection. The transmission of data and the end
of the connection could be represented in a similar way.

The client tries to connect to the server by sending an ambient SY N. If
s = a, then the capability out?*2client can be executed immediately such that
we do not use a safety process. This is realized by applying a rule (R-Out)

client>®[(SY N4 [out?2client.go?tly. ..]2, ..) | .. .]"
—— client™[...]J" | (SY N4t [goAty. .. P, ...)

If the timer Aty representing the units of time the client is willing to wait for
the SYNACK ambient expires, then the client sends another SY N ambient.
If t4 = 0 then the rule (R-TimePass) is applied and the safety process is
launched:

open?°SY N ACK.(AC K4t [out?ts client.in“'" server]#+, send | send_ack)
--» send | send_ack

At this moment the process of establishing the connection could begin again.
Suppose that before the timer At expires the ambient SY N with p3 = a migrates
to location Iy by applying a (R-Migrate) rule:

L[[SY N4t [goAtly.in?t server]?]] --» lo[[SY NA4 [inAts server]P]]
Then by applying the rule (R-In) for u3 = a we obtain:
SY N4 [inAt server : 14]%]] | la[[server™[.. .JF2 -+ server™[SY N4t [| |1z

Here the ambient SY N is dissolved and a new SY N AC K ambient is created.
This is realized by applying a rule (R-Open):
SY NAL[1 | open?ts SY N.(SY NACKAt[. . J#s,..)) ——» SYNACKA?[. . |

If the timer Aty expires the client still waits for the timer Aty to expire in
order to send another ambient SY N. If the SY N ambient reaches the server
ambient and an ambient SY NACK is received from the server, then the client
sends an ambient ACK . Once the server receives with success the ambient SY N
it tries to sends an ambient SY NACK to confirm that is agrees with the con-
nection.

4 Timed Mobile Ambients Behaviour

In this section we provide some bisimulation relations with respect to the passage
of time and locations inspired from domain name system. In process algebra two

10 Bogdan Aman and Gabriel Ciobanu

terms are said to be equivalent if they have the same behaviour in all possible
contexts.

One of the most important scenario in which the services of ARP can be
used is the following one: the sender is a router that has received a datagram
destined for a host on another network. It checks its routing table and finds the
IP address of the next router. The IP address of the next router becomes the
logical address that must be mapped to a physical address.

The routing table consists of all the names of the routers from the first level,
which in our cases are represented by top ambients. Also, DNS requires that
each server keep a TTL counter for each mapping it caches. This two cases are
treated in the following two subsections.

4.1 Location Bisimulation

Instead of comparing the behaviour of two ambients in all possible contexts, we
compare the two ambients with respect to an observer placed at a given location
k. That is, two ambients are equivalent with respect to an observer placed at a
location k if they have the same observable behaviour at location k. We consider
that an observer placed at the physical location k can only observe the top
ambients from the physical location k.

Definition 2. i) A k-barb predicate |,ar over ambients is defined inductively
by the following system of rules:

- K[[P]] Inak M |nak M |par and 1 # k
E[(n? P, R)]] lnar k[P | Q] lnar M| N l,ak (WM |nak

#1) A k-barbed bisimulation R over ambients is a symmetric binary relation
over processes which for all (M, N) € R implies

1. if M |pak, then N |par for any barb |nak;
2. if M --» M’, then N --» N’ and (M',N') € R.

Two processes are k-barbed bisimilar over ambients with respect to a location k,
denoted M ~y, N, if and only if (M, N) € R for some k-barbed bisimulation over
ambients R.

Instead of considering observers placed at given physical locations, we say
that two ambients are similar if they contain the same top ambients. A global
observer has a global view of the system, while a local observer has a local view
of the system.

Definition 3. i) A global barb predicate |,, over ambients is defined inductively
by the following system of rules:
F[(n2 P R L k[P QI Ln MIN | (WM |n

1) A global barbed bisimulation R over ambients is a symmetric binary re-
lation over processes which for all (M, N) € R implies

Timed Mobile Ambients for Network Protocols 11

1. if M |,, then N |, for any barb |,;
2. if M --» M’, then N --» N’ and (M',N') € R.

Two processes are global barbed bisimilar over ambients, denoted M ~ N, if and
only if (M,N) € R for some global barbed bisimulation over ambients R.

The following proposition states that if two ambients are equivalent with
respect to observers placed at all locations, then they are equivalent with respect
to a global observer. The reverse of the proposition it is not true because in
M ~ N there is no mention of any locations, so two ambients placed at different
locations can contain the same top ambients, but they can contain different top
ambients with respect to observers placed at all the possible locations.

Proposition 1. If M ~; N for all the locations k, then M ~ N.

Proof (Sketch). From the definition of ~y it results that the processes perform
the same reductions and contain the same top ambients related to an observer
placed at physical location k. By considering observers placed at all the possible
locations k, the processes execute the same reductions and contain the same top
ambients after every reduction. Because they perform the same reductions related
to every location k, it means that they have the same movement through space
and time. From the definition of ~ it results that M ~ N.

In both local and global bisimulations, the observer is restricted to observe
only top ambients. In a similar way we can replace the power to observe ambients
with the power to observe capabilities. Having locations, ambients and capabil-
ities, it is rather natural to strengthen the observing power of the observer by
combining these observation possibilities.

4.2 Timed Location Bisimulation

Since we also deal with timed features, we may consider the observer able to
check the value of different timers. We consider that an observer placed at the
physical location k can only observe the top ambients together with their timers
placed at the physical location k.

Definition 4. i) A timed k-barb predicate |! o, over ambients is defined induc-
tively by the following system of rules:
- E([P]] ok M |han M |jap and L #k
K[[P R)] Lhar KIPTQ] lhar MIN L WM |ap,
1) A timed k-barbed bisimulation R over ambients is a symmetric binary
relation over processes which for all (M, N) € R implies

1. if M |t o, then N |t o, for any barb |! o, ;
2. if M --» M', then N --» N' and (M',N’) € R.

Two processes are timed k-barbed bisimilar over ambients related to location k,

denoted M &Z N, if and only if (M, N) € R for some timed k-barbed bisimulation
over ambients R.

12 Bogdan Aman and Gabriel Ciobanu

Instead of considering observers placed at given physical locations, we may
say that two ambients are similar if they contain the same top ambients with
the same timers.

Definition 5. i) A timed global barb predicate |t over ambients is defined in-
ductively by the following system of rules:
~ E([P]] 15, M, M, andl#k

2P R, KIPTQI L, MIN wh)M |,
1) A timed global barbed bisimulation R over ambients is a symmetric binary
relation over processes which for all (M, N) € R implies
1. if M |t then N | for any barb |!;
2. if M --» M', then N --» N' and (M’',N’) € R.

ot
Two processes are timed global barbed bisimilar over ambients, denoted M ~ N,
if and only if (M,N) € R for some timed global barbed bisimulation over ambi-
ents R.

The following proposition is similar to Proposition 1, the main difference
being the fact that the observers work also with the timers of the ambients.

Proposition 2. If M &Z N for all the locations k, then M <IN,
Proof (Sketch). The same reasoning as at Proposition 1.

Proposition 3. The timed barbed bisimulation over ambients is strictly finer
than the barbed bisimulation over ambients:

ot .
1. VM,N, if M ~, N then M ~j N
. t
2. dM, N such that M ~, N and M 4, N.

Proof. It is easy to see that M |, implies M |,ak. If the observer can ob-
serve the same top ambients and ambient timers at location k, then the observer
can observe just the top ambients at location k while ignoring the timers of the
ambients. For the second part we give a counterezample.

Counterexample: let us consider the processes M, N defined as follows:

M = k[[n?"[P]*]] and N = k[[n?*2[P]*2]] with t, # to

It holds that M |,ar and N |nakr, and thus M ~j, Q. Following the definition
of timed barbed bisimulation over ambients, it holds that M lfj@k and N l:f@k,

b
and since t1 # to we have M £, N.

Similar results can be obtained between various bisimulations by considering
observers with power of observing any combination of ambients, capabilities,
timers over ambients and capabilities, located or not.

Ezample 1. Let us consider the following two mobile ambients: M = k[[n?4]]* |
out 3. (m [P, Q)]] and N = k{[n*[(mA7 out1n. P}, Q)]

We have that M li@k and also NV li@k. After one reduction step we obtain:
M - M', with M' = k[[n?*]]* | (m?°[P]*,Q)]] and N --» N’, with N’ =
E[[n?4[* | (mAS[P]*,Q)]]. We observe that M’ = N’ so M’ &; N’, from where
it results that M &Z N.

Timed Mobile Ambients for Network Protocols 13

4.3 Properties Related to the Passage of Time

We denote by M "5 N the fact that process P evolves to process () after
applying the rule (R-TimePass) for ¢ > 0 times. We denote by 2 the relation
which respects all the rules of Table 5 except the rule (S-Repl Par).

We claim that the passage of ti%ne cannot cause a nondeterministic behaviour.
Proposition 4. If M = N, M --» M’ and N --+ N’ then M' = N’.

Proof. The proof proceeds by structural induction, by studying all the cases from
Table 5 except the rule (S-Repl Par).

The following example motivates why we have removed the rule (S-Repl
Par). Let P = in®°n. Then we have k[[*P]]Zk[[P | * P]]. By applying the time-
progress function @5, we obtain @A (k[[P | * P]]) = k[[in?*n | * P]] Zk[[*P]] =
& (k[[+P]).

We say that a process M simulates another process N if whenever N reduces,
M may mimic this reduction and evolves into a new state which continues to
be in the same simulation relation with the new state of N. Bisimilarity of
two processes is defined by requiring that the simulation relation is symmetric,
that is, each process can mimic any event of the other while remaining in the
bisimulation relation with the new state of the former process. Since we have a
clock, it is possible to define a bisimulation in tMA which requires processes to
match their time passages.

Definition 6. A binary relation R over processes is a strong simulation if when-

ever (M,N) € R, if M L5 M then there exists N’ such that N -*» N’ and
(M',N") € R. A binary relation R is said to be a strong bisimulation if both R
and its converse are strong simulations. We say that M and N are strongly bisim-

ilar, written M ~y; N, if there exists a strong bisimulation R such that MRN .
Proposition 5. If M ~; N, then M ~y; N for any k € IN*.

Proposition 6. If M ~; N and M ~y N, then M ~, 1 N where by [t, '] we
have denoted the least common multiple.

Proposition 7. ~; is an equivalence relation.

Proof. To demonstrate that ~; is an equivalence relation we must show that:
M~y M

if M ~y N then N ~; M

if M ~; N and N ~; Ny then M ~; Ny

Obvious.

It results from the definition.

To demonstrate that M ~; Ny we must show that if M N M’ then there
exist N1 such that Ny 5 N{ with M' ~; N{. M ~; N implies that if
M -55 MY then there exists N’ such that N -%» N’ and M’ ~¢ N'. Similarly,
N ~; Ny implies that if N s N’ then there exists Ni such that Ny 5 Ny
and N' ~; Ni. It results that if M L5 M then there exists Ni such that

Ny L N7, and by induction and using the symmetry expressed by 2 we have
that M’ ~; N{. From Definition 6, it results that M ~; Ny.

o = o~

14 Bogdan Aman and Gabriel Ciobanu

Definition 7. A process context C is a process containing a hole, represented
by []. The elementary process contexts are given by the following syntax:
Cu=[]| (wn)C | PIC|C|P | (n™[C]*,Q), (n?[P]*, C)
Let C(P) be the process obtained by filling the hole in C with a copy of
P; we note that certain names free in P may become bound. We say that an
equivalence relation is a congruence if it is preserved by all elementary contexts,
namely the ones from the above definition.

Proposition 8. ~; is a congruence.

Proof. We know that ~; is an equivalence relation (Proposition 7), and we should
prove that if k[[P]] ~¢ k[[Q]] then the following relations hold:

[
Pl ~ E[[(vn)Q]]

1. k[[(vn)

2. K[[P| R]] ~ K[[Q] R]]

3. K[[R| P]] ~ K[[R] Q]

4 Kl[(n2 [P, R)|] ~ K[[(n2]Q), R)]]
5. K[[(n* R, P)]] ~¢ K[[(n™'[R]*, Q)]

We consider only the second relationship; the others are similar. We prove that
R =A{(k[[P|R]], k[[Q | R]]) | K[[P]] ~ K[[Q]]}
is a strong bisz'mulation, Let E[[P | R]| -5 UL We must find V' such that
E[[Q]| R 5V and (U, V) € R. We have that U = Ek[[P' | R']] and V =

KIQ' | R, where k[[P]] -5» K[[P']], k[[Q]] -%» k[[Q']] and K[[R]] - K[[R']].
From k[[P]] ~¢ k[[Q]] we have that k[[P']] ~; k[[Q']], which means that (U, V) € R.

Definition 8. A binary relation R over processes is a weak timed simulation if
whenever (M,N) € R, if M L5 M’ then there ewists N' and t/ >t such that

N -5 N’ and (M',N") € R. We say that M can simulate in time N, written
M > N, if there exists a weak timed simulation R such that M'RN .

Proposition 9. M ~; N iff M >; N and M >; M.

Proof (Sketch).
If M ~; N then it is obvious that exists t' =t such that M1>; N and N1>; M.
If M >; N and N >; M it results that there exists t' in both cases such that
t =t', which implies that M ~; N.

5 Conclusion

Process algebra is the general study of distributed concurrent systems in an
algebraic framework. In the past few years, some successful models have been
formulated within this framework: ACP [4], CCS [18], CSP [16], distributed -
calculus [14], MA [6]. None of these approaches is able to naturally describe
properties of timing. Process algebra with timing features are presented in [1,9-
12,20]. We have extended the pure mobile ambients by adding time constraints
to capabilities and ambients. Two formalisms called timed 7w-calculus and timed

Timed Mobile Ambients for Network Protocols 15

distributed 7-calculus are presented in [2], respectively [8]; it also uses a relative
time given by timers, and a clock whose tick decreases the timers. Timers are
used to restrict the interaction between components, and both types and timers
are used to control the resource availability. In timed distributed w-calculus
the notion of space is flat. A more realistic account of physical distribution is
obtained using a hierarchical representation of space, and this is given in timed
mobile ambients. Thus we get a more realistic description of the distributed
computation and mobility. A natural example motivating an extension from
timed distributed 7-calculus to timed mobile ambients is presented in [7].

The formalism defined in this paper does not follow any of the other pro-
cess algebra mentioned above. It is well motivated by the existence of timers
in TCP/IP communication protocols; the timers fit very well to the description
of messages as mobile ambients. Another motivation for our work is given by
the Real-time Transport Protocol (or RTP) which defines a standardized packet
format for delivering audio and video over the Internet. RTP can carry any data
with real-time characteristics, such as interactive audio and video. It goes along
with the RTCP and it is built on top of the User Datagram Protocol (UDP).
Applications using RTP are less sensitive to packet loss, but typically very sen-
sitive to delays, so UDP is a better choice than TCP for such applications. The
protocols themselves do not provide mechanisms to ensure timely delivery. They
also do not give any Quality of Service (QoS) guarantees. These things have to
be provided by some other mechanism.

Starting from such motivations, we extend with time restrictions a formalism
designed for mobility in order to study various aspects related to time. The
formalism used is the basic ambient calculus, which means that we have not taken
into account the primitives for communication. The novelty comes from the fact
that the ambients can also expire, simulating in this way the maximum amount of
time any package can exist in a network before being discarded. We have provided
an operational semantics by a structural equivalence and a reduction relation.
The structural relation introduced in this paper is different from the structural
congruence for mobile ambients because it does not allow sibling ambients to
commute their position. The reduction relation is intuitive, and we have shown
in Section 4 how some of the reduction rules are used, namely (R-In), (R-Out),
(R-Open), (R-Migrate) and (R-TimePass). To describe thes passage of time
we have given a discrete time progress function. We have introduced and studied
some behavioural equivalences over timed mobile ambients. After introducing the
aspects of time and locations over mobile ambients, we have established some
bisimulations between processes by defining different barbs.

References

1. L. Aceto, D. Murphy. Timing and Causality in Process Algebra. Acta Informatica
vol.33(4), 317-350, 1996.

2. M. Berger. Basic Theory of Reduction Congruence for Two Timed Asynchronous
pi-Calculi. CONCUR, Lecture Notes in Computer Science vol.3170, Springer, 115-
130, 2004.

16

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

Bogdan Aman and Gabriel Ciobanu

M. Berger. Towards Abstractions for Distributed Systems PhD thesis, Imperial
College, Department of Computing, 2002.

J.A. Bergstra, J.W. Klop. Process Theory based on Bisimulation Semantics. Linear
Time, Branching Time and Partial Orders and Models For Concurrency, Lecture
Notes in Computer Science vol.354, Springer, 50-122, 1989.

M. Bugliesi, G. Castagna, S. Crafa. Boxed Ambients. Theoretical Aspects of Com-
puter Software, Lecture Notes in Computer Science vol.2215, Springer, 38-63, 2001.
L. Cardelli, A. Gordon. Mobile Ambients. Theoretical Computer Science vol.240(1),
170-213, 2000.

G. Ciobanu. Interaction in time and space. Proceedings of Foundations of Inter-
active Computation, 45-61, to appear in Electronic Notes in Theoretical Computer
Science, 2007.

. G. Ciobanu, C. Prisacariu. Timers for Distributed Systems. International Work-

shop on Quantitative Aspects of Programming Languages, Electronic Notes in The-
oretical Computer Science vol.164(3), 81-99, 2006.

R. Cleveland, A. Zwarico. A theory of testing for real-time. Logic in Computer
Science, 110-119, 1991.

F. Corradini. On performance Congruences for Process Algebras. Information and
Computation vol.145(2), 191-230, 1998.

F. Corradini. Absolute versus relative time in process algebras. Information and
Computation vol.156(1), 122-172, 2000.

R. Gorrieri, M. Roccetti, E. Stancampiano. A Theory of Processes with Durational
Actions. Theoretical Computer Science vol.140(1), 73-94, 1995.

M. Hennessy, T. Regan. A process algebra for timed systems. Information and
Computation, vol.117, 221-239, 1995.

M. Hennessy, J. Riely. Resource access control in systems of mobile agents. TIn-
formation and Computation, vol.173(1), 82-120, 2002.

D. Hirschkoff, D. Teller, P. Zimmer. Using ambients to control resources. Inter-
national Conference on Concurrency Theory, Lecture Notes in Computer Science
vol.2421, Springer, 288-303, 2002.

C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall International,
1985.

F. Levi, D. Sangiorgi. Controlling interference in ambients. Principles of Program-
ming Languages, 352-364, 2000.

R. Milner. Communication and Concurrency. Prentice Hall International, 1989.
R. Milner. Communicating and mobile systems: the m-calculus. Cambridge Uni-
versity Press, 1999.

F. Moller, C. Tofts. A temporal Calculus of Communicating Systems. International
Conference on Concurrency Theory, Lecture Notes in Computer Science vol.527,
Springer, 401-415, 1991.

W.R. Stevens. TCP/IP Illustrated, Volume 1 - The Protocols Addison-Wesley,
1993.

