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Abstract. In distributed environments, the shared resources access con-
trol by mutual exclusion paradigm is a recurrent key problem. To cope with
the new constraints implied by recently developed large scale distributed
systems like grids, mutual exclusion algorithms become more and more
complex and thus much harder to prove and/or verify. In this article, we
propose the formal modeling and the verification of a new generic hier-
archical approach. This approach is based on the composition of classical
already proof checked distributed algorithms. It overcomes some limitations
of these classical algorithms by taking into account the network topology
latencies and have a high scalability where centralized ones don’t. We also
have formalized the properties of the mutual exclusion paradigm in order to
verify them against our solution. We prove that our compositional approach
preserves theses properties under the assumption that all used plain algo-
rithms assert them. This verification by formal method checkers was eased
by the efficient use of already proved mutual exclusion algorithms and the
reduction of state spaces by exploiting the symmetries.

keywords: distributed algorithm, composition, mutual exclusion, grid comput-
ing, colored Petri nets, model checking.

1 Introduction

By gathering geographically distributed resources, a Grid offers a single large-
scale environment suitable for the execution of computational intensive applica-
tions. A Grid usually comprises of a large number of nodes grouped into clusters.
Nodes within a cluster are often linked by local networks (LAN) while clusters are
linked by a wide area network (WAN). Therefore, Grids present a hierarchy of com-
munication delays: the cost of sending a message between nodes of different clusters
is much higher than that of sending the same message between nodes within the
same cluster.

Distributed or parallel applications that run on top of a Grid usually require that
their processes get exclusive access to some shared resources (critical section). Thus,
the performance of mutual exclusion algorithms is critical to Grid applications and
it is the focus of this paper. A mutual exclusion algorithm ensures that exactly one
process can execute the critical section at any given time (safety property) and that
all critical section (CS) requests will eventually be satisfied (liveness property). We
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choose not to discuss the necessity, advantages or drawbacks of distributed versions
of such algorithms. Readers can learn more informations about them in [7].

The contribution of this paper is two fold : the design of a generic hierarchical
mutual exclusion composition approach which easily allows the combination of
different inter-cluster and intra-cluster algorithms on the contrary to the previous
approach and the verification of its correctness.

The remainder of this paper is organized as follows. Section 3 presents our
composition approach and shows its advantages comparatively to existing works.
In section 4, we describe the Petri net (P.N.) modelization of our approach followed
by the expression of the properties we verify in section 5. Afterward, we present
results of these properties verification on our proposed approach in section 7. The
last section concludes our work and proposes interesting perspectives of research.

2 Related work

Several studies have proposed to adapt existing mutual exclusion algorithms to
a hierarchical scheme. In Mueller [15], the author presents an extension to Naimi-
Tréhel’s algorithm, introducing the concept of priority. A token request is associated
with a priority and the algorithm first satisfies the requests with higher priority.
Bertier et al. [2] adopt a similar strategy based on the Naimi-Tréhel’s algorithm
which treats intra-cluster requests before inter-cluster ones.

Finally, several authors have proposed hierarchical approaches for combining
different mutual exclusion algorithms. Housni et al. [8] and Chang et al. [3]’s mu-
tual exclusion algorithms gather nodes into groups. Both articles basically consider
hybrid approaches where the algorithm for intra-group requests is different from
the inter-group one. In Housni et al. [8], sites with the same priority are gath-
ered at the same group. Raymond’s tree-based token algorithm [18] is used inside a
group, while Ricart-Agrawala [19] diffusion-based algorithm is used between groups.
Chang et al.’s [3] hybrid algorithm applies diffusion-based algorithms at both lev-
els: Singhal’s algorithm [20] locally, and Maekawa’s algorithm [13] between groups.
The former uses a dynamic information structure while the latter is based on a
voting approach. Similarly, Omara et al. [17]’s solution is a hybrid of Maekawa’s
algorithm and Singhal’s modified algorithm which provides fairness. In Madhuram
et al. [12], the authors also present a two level algorithm where the centralized
approach is used at lower level and Ricard-Agrawala at the higher level. Erciyes [6]
proposes an approach close to ours based on a ring of clusters. Each node in the
ring represents a cluster of nodes. The author then adapts Ricart-Agrawal to this
architecture.

Our approach is close to these proposed solutions. However, we have found
a more generic approach to achieve the scalability we need for large scale grid
by finding a way to aggregate pre-existing algorithms and considering network
latencies heterogeneity. It enables us to fit better the grid architecture and the
application behavior. To do this, we have created glue code which coordinates two
instance levels of plain mutual exclusion algorithms by just inserting well placed
call traps in their inner code but without modifying their behavior. Practical results
show significantly better performances [21] over classical distributed algorithms but
no proof has been made to verify the correctness of the solution.
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3 Our Composition Algorithm - An Informal Approach

Our approach consists in having a hierarchy of token-based mutual exclusion
algorithms: a per cluster mutual exclusion algorithm that controls critical section
requests from processes within the same cluster and a second algorithm that con-
trols inter-cluster requests for the token. The former is called the intra algorithm
while the latter is called the inter algorithm. An intra algorithm of a cluster runs
independently from the other intra algorithms.

The application is composed of a set of processes which run on the nodes of the
Grid. We consider one process per node and call it an application process. When
an application process wants to access the shared resource, it calls the function
intra.CS Request(). It then executes its critical section. After executing it, the pro-
cess calls the function intra.CS Release() to release it. Both functions are provided
by the intra token algorithm.

Within each cluster there is a special node, the coordinator. The inter algorithm
runs on top of the coordinators allowing them to request the right of accessing the
shared resource on behalf of application nodes of their respective cluster. Coordi-
nators are in fact hybrid processes which participate in both the inter algorithm
with the other coordinators and the intra algorithm with their cluster’s application
processes. However, even if the intra algorithm sees a coordinator as an application
process, the coordinator does not take part in the application’s execution i.e., it
never requests access to the CS for itself in the intra and inter layers but act as a
mandatory proxy for each layer. As explained in the next sections, it forwards
incoming inter requests and outgoing intra requests.

3.1 Coordinator algorithm

The key feature of our approach is that the two hierarchical algorithms are
clearly separated since an application process gets access to the shared resource
just by executing the intra algorithm of its cluster. Another important advantage
is that the behavior of the chosen algorithms of both layers do not need to be
modified. Hence, it is very simple to have different compositions of algorithms.

An intra algorithm controls an intra token while the inter algorithm controls
an inter token. Thus, there is one intra token per cluster but a single inter token
of which only the coordinators are aware. Holding the intra token must be
sufficient and necessary for an application process to enter the CS since
the local intra algorithm ensures that no other local application node of the clus-
ter has the intra token. But, considering the hierarchical composition of
algorithms, our solution must then guarantee that no other application
process of the other clusters is also in critical section when holding an
intra token (per cluster safety property). In other words, the safety property of
the inter algorithm must ensure that at any time only one cluster has the right of
allowing its application processes to execute the CS. This property can be asserted
by the possession of the inter token by a coordinator.

Similarly to a classical mutual exclusion algorithm, the coordinator calls the
inter.CS Request() and the inter.CS Release() functions for respectively asking or
releasing the inter token. However, when a coordinator is in critical section, it means
that application processes of its cluster have the right of accessing the resource. The
inter token is held by the coordinator of this cluster which is then considered to be
in critical section by the other coordinators.
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Coordinator Algorithm ()1

intra.CS Request()2

/* Holds intra-token CS */3

while TRUE do4

if ¬ intra.PendingRequest() then5

state ← OUT6

Wait for intra.PendingRequest()7

state ← WAIT FOR IN8

inter.CS Request()9

/* Holds inter-token. CS */10

intra.CS Release()11

if ¬ inter.PendingRequest() then12

state ← IN13

Wait for inter.PendingRequest()14

state ← WAIT FOR OUT15

intra.CS Request()16

/* Holds intra-token CS */17

inter.CS Release()18

CS Request ()19

...20

mutexState ← REQ21

Wait for Token22

mutexState ← CS23

CS Release ()24

...25

mutexState ← NO REQ26

pendingRequest ()27

return

(

TRUE if ∃ pending request

FALSE otherwise28

Fig. 1. Coordinator Algorithm

Our composition solution does not require any change in the mutual exclusion
algorithm. Providing such “plug in” feature is done by just inserting callbacks in the
mutual exclusion implantation code. The algorithm themselves are not modified.

Only two trap callbacks are necessary: a new request trap and a no more request
trap. The former, as its named suggest, must be invoked at each new token request
processing while the latter must be invoked when there are no more pending request
in the algorithm. These callbacks need no parameters and must be inserted in
strategic code locations.

The guiding principle of our approach is described in the pseudo code of figure
1. Initially, every coordinator holds the intra token of its cluster and one cluster hold
the inter token. When an application process wants to enter the critical section, it
sends a request to its local intra algorithm by calling the intra.CS Request() func-
tion. The coordinator of the cluster, which is the current holder of the intra token,
will also receive such a request. However, before granting the intra token to the
requesting application process, the coordinator must first acquire the inter token
by calling the inter.CS Request() function [line 9] of the inter algorithm. There-
fore, upon receiving the inter token, the coordinator gives the intra token to the
requesting application process by calling the intraCS Release() function [line 11].

A coordinator which holds the inter token must also treat the inter token re-
quests received from the inter algorithm. However, it can only grant the inter token
to another coordinator if it holds its local intra token too. Having the latter ensures
it that no application processes within its cluster is in the critical section. Thus,
if the coordinator does not hold the intra token, it sends a request to its intra
algorithm asking for it by calling the intra.CS Request() function [line 16]. Upon
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obtaining the intra token, the coordinator can give the inter token to the requesting
coordinator by calling the inter.CS Release() function[line 18].

3.2 Coordinator automaton

In a classical mutual exclusion algorithm, a process can be in one of the three fol-
lowing states : requesting the critical section (REQ), not requesting it (NO REQ),
or in the critical section(CS), as shown in figure 2(a).

The behavior of a coordinator process can be summarized by a state automaton.
A coordinator process is in one of the above three states in regards to both layer
algorithms. Therefore, in the automaton of figure 2(b), Intra and Inter refer
to the coordinator state related to the intra algorithm and inter algorithm
instance respectively. Thus, a coordinator has new states in respect with the
global state of the composition, which can be one of the following: OUT , IN ,
WAIT FOR OUT , WAIT FOR IN . These new states are a tuple composed of
the states of each layer state.

NO_REQ REQ

C.S.

(a) Classical mutual exclusion
client automaton

IN

Inter :
NO_REQ

Intra :
CS

OUT

Inter :
REQ

Intra :
CS

WAIT_FOR_IN

Inter :
CS

Intra :
NO_REQ

IN

Inter :
CS

Intra :
REQ

WAIT_FOR_OUT

(b) Coordinator automaton

Fig. 2. Coordinator and mutual exclusion client Automata

To ease the reader comprehension, we have had line references to the ”Co-
ordinator algorithm” pseudo-code in brackets and inter or intra layers state
references of the automaton figure 2(b) in parenthesis. If the coordinator is in the
state OUT , no local application processes of its cluster has requested the CS. Thus,
it holds the intra token (Intra = CS)[line 2 or line 16] and does not hold the inter
token (Inter = NO REQ).

When the coordinator is in the state WAIT FOR IN , it means that there are
one or more pending intra requests [line 7]. It still holds the local intra token (Intra
= CS) but is waiting for the inter token (Inter = REQ)[line 9].

In the IN state, the coordinator holds the inter token (Inter = CS)[line 9] but
has granted the intra algorithm token (Intra = NO REQ)[line 11] to one of its
application processes.

Finally, when the coordinator is in the state WAIT FOR OUT , it still holds
the inter token (Inter= CS)[line 9] but it is requesting the intra token to the intra
algorithm (Intra = REQ)[line 16] in order to be able to satisfy an inter algorithm
pending request [line 14].

It is worth remarking that only one coordinator can be either in IN or in
WAIT FOR OUT state at any given time. All the other coordinators are either
in state OUT or in state WAIT FOR IN .
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4 Our Composition Algorithm - A Formal Model

High Level Petri Nets (H.L.P.N.) [9] formalism is an expressive model extend-
ing the representation of concurrency by Petri nets with a data management via
the coloured domains and functions. It is well fitted for the representation of large
distributed system like ours. Moreover, by use of Stochastic Well-Formed Petri
nets (S.W.N.) [4], a particular category of H.L.P.N., we can check efficiently be-
havioral properties on the built representation. Thus, we have naturally choose this
formalism over proof based methods. 1

To obtain a good modelling, we have adopted an incremental and compositional
methodology. We have isolated fundamental parts of our solution and defined Petri
nets interfaces to bind them together. During the whole process, we have kept
in mind the necessity to maintain the inherent symmetries of our approach. The
preservation of behavioral symmetries is the key point to achieve our verification
goals.

4.1 A basic Mutual Exclusion aware application modelization

mutexmutex

grantReq

grant

NO_REQ

REQ

CS

requestCS()

accessCS()

releaseCS()

x

x

x

x

x

x

x

x

x

Fig. 3. Basic Mutual Exclusion modelling in H.L.P.N.

Distributed applications which use mutual exclusion can be summarized by a
potentially infinite ordered succession of three specific states like those exposed in
the section 3.2 and on the automaton of figure 2(a): NO REQ, REQ and CS.
These three states are represented by the three places at the right of the figure 3.

1 It is worth noting that our models are described in the general framework of H.L.P.N.,
without taking into consideration the particular syntax of SWN. Actually, this simplifies
considerably the modelling process without loss of generality.



7

Initially, the place NO REQ contains a colored token per application process.
A process do some local work during an undefined time and does not require an
access to the exclusive resources. The need for a process to get the exclusive access
is expressed by the firing of transition requestCS(). The processes identified by the
colored token must then wait for the critical section (CS) granting authorization
by the mutual exclusion algorithm. Upon clearance, the process token is then able
to fire the transition AccessCS() and will mark the place CS. The process can now
execute its “critical section”. As soon as it has finished (after an undefined time),
it can get back to its local tasks by releasing the exclusive lock - i.e., by firing the
transition releaseCS(). Therefore the subnet composed of the places NO REQ,
REQ, CS and their adjacent transitions abstracts the behavior of our application
processes.

The exclusive access to the place CS and the management of the request queue
are ensured by a distributed mechanism: the mutual exclusion algorithm. This
mechanism interacts with the application on every transitions. For now, we have
no need to have a concret modelling of such an algorithm, hence we abstract it by
the use a clouded Petri net named “mutex” (see figure 3). At the border-side of the
cloud, two places can be seen. The place grantRequest, when marked by a token x

asserts the fact that the request for CS has been sent by the process x. The second
is the place grant which represents the mutual exclusion grant allowance for the
process identified by the color of the token.

This model is in accordance with the classical A.P.I. of the mutual exclusion
algorithms described in the pseudo-code of the figure 1: CS Request() [line 19]
and CS Release() [line 24]. An application process use these two functions after a
random elapsed time. This explains the temporisation of the corresponding transi-
tions (white filled ). On the contrary, the firing of the transition AccessCS()
depends on the return of the ”wait for token” synchronized blocking instruction
call of the figure 1 pseudo-code [line 22]. So, the sojourn time in the place REQ

is, deterministically, dependent of the availability of the grant token. This explains
the immediate character of transition AccessCS() (black filled ). As soon as
the authorization is granted (the place grant is marked by token x), the requesting
process x enters the CS.

4.2 Our composition algorithm Petri net

Using the previous section, the modelling of our composition algorithm is much
more simple. It can be seen as a synchronized use of two distinct instances of a
mutual exclusion service: one at the inter level and one at the intra level. The subnet
of the figure 4 models our composition approach. Since section 3 postulates the use
of the same intra algorithm for each cluster, we have chosen to fold all the intra
algorithm instances (i.e., of every cluster) in one unique clouded subnet named
“intra” at the right of the figure 4. To do so, the color token 〈i, c〉 identifies the
process i of the cluster c. Note that the process color 〈0, c〉 identify the coordinator.
The c color permits the isolation of each local instances.

The subnet of the figure 4, composed of places NO REQ, REQ and CS and its
adjacent transitions abstracts the behavior of all the application processes inside
each cluster. These are all the process 〈i, c〉 of each cluster c with (i 6= 0) as
explained later. From now on, we call it the “application subnet”. Its places and
transitions are not prefixed. Thus this subnet is nearly identical to the subnet of



8

InterInter

Inter.grantReq

Inter.grant
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pendingReq
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the figure 3 which illustrate the fact that the composition is nearly transparent
from the application process point of view like described in the section 3.

However, inside each cluster, the coordinator processes which are identified by
the color 〈0, c〉 behave differently. In order to ease the interpretation of the global
net, we unfold the application places of figure 3 for them. The places names will be
prefixed by the “intra” mention. From now on, we call the subnet the “intra sub-
net”. This subnet differs from figure 3 by its transitions. As explained in section 3,
the coordinator does not act on its own initiative but just ensures the correct-
ness of the solution (like uniqueness of the mutual exclusion grant token, . . . ).
The three transitions between the three places ”intra.NO REQ”, ”intra.REQ”
and ”intra.CS” are not temporized and controlled by our composition mechanism.
That is why we need them all immediate transitions.

Finally, we set the “inter subnet” as the net composed of the prefixed inter
places and its adjacent transitions. It defines the coordinator behavior with respect
to the inter algorithm. There are only one coordinator by cluster on the whole
grid so they only are identified by the color c in the inter subnet. And like the
intra subnet, and for same reasons the three transitions between the three places
”inter.NO REQ”, ”inter.REQ” and ”inter.CS” are immediate transitions.

Each coordinator has an intra behavior, based on the marking sequences of
token 〈0, c〉 the intra subnet and an inter behavior, based the marking sequences
of token 〈c〉 the inter subnet. This abstraction enlighten the main idea of our
solution, exposed via the automaton of figure 2(b): each state of the coordinator is
a combination of an inter and intra local states.

To synchronize this dual behavior, we first split the inter and intra subnets into
two main parts. The first concerns the inter.requestCS() and intra.requestCS()
immediate transitions which trigger the sending of a request in its counterpart
level. The second concerns the two immediate transitions called inter.releaseCS()
/ intra.accessCS() and intra.releaseCS() / inter.accessCS() which enforce the
coordinated release of the CS and the grant allowance of each level. These two
transitions have been split to ease the reading of the model but they are
filled with the same patterns to clearly identify them.

A coordinator request sending can be viewed as a forward from one level to
the other. So the transition firing is enforced by the reception of an inter or intra
request. We need to materialize this information inside the inter and intra algo-
rithms for the coordinators to exploit them. Thus, in the figure 1 pseudo-code,
we need to add a pendingRequest() function [line 27] to the standard A.P.I.. To
abstract this reification we have added a new state called pendingReq at the inter
and intra clouded P.N. border-side. The marking of the place inter.pendingReq

(resp. intra.pendingReq) represents the registration of a request coming from the
inter (resp. intra) layer.

The inter (resp. intra) critical section coordinated release is enforced by the
real access (and thus the grant authorization) to the intra (resp. inter) section.
Abstracting this behavior must be done by a cross-synchronization between the
accessCS() action of one layer with the releaseCS() on the other - like on the
figure 2(b). On figure 4, the inter.accessCS() / intra.releaseCS() [lines 9 and
11] and intra.releaseCS() / inter.accessCS() are the same immediate transi-
tion ( ) and represents this desired synchronization. So does the split transition
intra.accessCS() / inter.releaseCS() ( ) [lines 16 and 18].
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To finalize our model, we specify the initial global marking of the system. To
achieve this, we define the following sets:

C : the finite set of all clusters
Cc′ = {c ∈ C|c 6= c′}: the finite set of all clusters minus the cluster element c′.
Ac : the finite set of all processes of a single cluster c.
A∗

c = {i ∈ Ac|i 6= 0} : the finite set of all application processes of a single cluster
c. The application processes are the set of all processes i of the cluster c minus
the coordinator process (with index i = 0).

Under the hypothesis where M(p) represents the marking of the place p, the
initialisation is performed by the following markings:

– all the application nodes are not requesting the CS, thus are in the NO REQ

state.
M(NO REQ) =

∑

c∈C

∑

i∈A∗

c

〈i, c〉

– the coordinator c′ is in the CS state) w.r.t. the inter algorithm but in the
NO REQ state w.r.t. the intra algorithm.

M(intra.NO REQ) = 〈0, c′〉 and M(inter.CS) = M(inter.grant) = 〈c′〉

– all other coordinators are in CS state w.r.t. the intra algorithm and are in the
NO REQ state w.r.t. the inter algorithm.

M(inter.NO REQ) =
∑

c∈C
c
′

〈c〉 and M(intra.CS) = M(intra.grant) =
∑

c∈C
c
′

〈0, c′〉

5 Fundamental properties

The mutual exclusion paradigm was first introduced and informally defined by
Dijkstra in 1965 [5]. This article has defined the bases of the mutual exclusion prob-
lem and was successively refined into more formal definitions [11]. Defining mutual
exclusion is to define a set of properties that must be asserted by all algorithms of
this paradigm. These properties are:

Well-formedness: all the processes must respect the classical automaton of mu-
tual exclusion, as described in figure 2(a).

Mutual Exclusion: at any time, there is at most one process in the CS state
(figure 2(a))

Progress: if there is at least one process in the REQ state and there is no process
in the CS state, then eventually one process will enter in the REQ state.

Following the Lamport [10] taxonomy, the first two properties can be classified
in the safety class properties. The last one can be put in the liveness class properties.
However, the Progress liveness property does not guarantee for a process to access
the CS. Rather, it is a global notion of liveness. So to avoid any starvation for
a particular process, a mutual exclusion algorithm must verify a complementary
property:

Weak fairness: if one process is in the REQ state and if the mutual exclusion
section execution time is finite, then the process will eventually access to the
CS state.
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This weak fairness property implies the progress property because the individual
liveness implies the system wide liveness. But as many applications can not afford
to rely on the progress alone, many articles do not even consider progress and
instead use the weak fairness property. In the remaining of this paper, we consider
these two properties distinctively and we explicit which one is used.

5.1 Formal expression of properties

The aforementioned properties can all be expressed using the Linear Temporal
Logic (LTL). We begin by defining some atomic propositions that will help us to
translate mutual exclusion properties into LTL.

– P1 : the process i of the cluster c does not require the CS nor is in CS
(M(NO REQ) > 〈i, c〉).

– P2 : the process i of cluster c requests an access to the CS (M(REQ) > 〈i, c〉).
– P3 : the process i of the cluster c is in CS (M(CS) > 〈i, c〉).
– P4 : the process i of the cluster c is NOT in CS (M(CS) < 〈i, c〉).
– P5 : the number of application processes in CS is less or equal than 1 (#(CS) 6

1).
– P6 : there is no application process in CS (no one is in place CS). (#(CS) = 0).
– P7 : there is a exactly one application process in CS (#(CS) = 1).
– P8 : there is at least one application process which request an access to the CS

(#(REQ) > 1).

Then the properties can be written down as follows:

Well-formedness: if a process marks the place NO REQ (resp. REQ, CS), it
will not be able to mark the place CS (resp. NO REQ, REQ) without having
previously marked the place REQ (resp. CS, NO REQ).

F1 : G(P1 ⇒ F (!P3 U P2))∧G(P2 ⇒ F (!P1 U P3))∧G(P3 ⇒ F (!P2 U P1))

Mutual Exclusion: there is always at most one application process in the CS

state.
F2 : G(P5)

Progression: always, if there is at least one application process requesting the CS
(i.e., a token 〈i, c〉 marks the place REQ) and if there is no process in CS, then
an application process will be able to access the CS (i.e., it will mark the place
CS).

F3 : G((P8 ∧ P6) ⇒ F (P7))

Weak fairness: one application node will always be able to access the CS after
having requesting it.

F4 : G(P2 ⇒ F (P3))

6 Simplified models for mutual exclusion algorithms

To check the previously defined properties on our composed mutual exclusion
algorithm we need to instantiate the inter and intra clouded nets. Two methods
would have been possible. The first one consists in replacing each clouded net by
a H.L.P.N. reflecting the exact behavior of some well known mutual exclusion
algorithms like [22], [16] or [14]. However, this level of details is only useful for
quantitative studies and to evaluate the effect of each algorithm on our composition
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for, for instance, the “mean delay transmission time” or “the mean number of
exchanged requests”, etc. The second method consists in simply modelling the
properties they assert. The aim is then to check if our composition approach upholds
the properties of the algorithms it uses.

In this paper, we have chosen the second approach which enables us a prelim-
inary qualitative study of our solution. It is a necessary step prior any real quan-
titative study. Thus, we propose two H.L.P.N. models which verify the properties
described in section 5. The figure 5(a) H.L.P.N. abstracts the validity, mutual ex-
clusion and progress properties whereas figure 5(b) H.L.P.N. abstracts the validity,
mutual exclusion, progress and weak fairness.

grantRequest

grant

pending
request

x

"r"

S

"r"

x

algo

x

x

latency

getGrant

(a) Abstraction not asserting
Weak Fairness

grantRequest

grant

pending
request

x

"r"

S

"r"

x

FIFO

next

free

n

x,n
x,k k

x,k-1 k-1
x,1

1

(b) Abstraction asserting Weak Fairness

Fig. 5. Mutual Exclusion algorithm abstraction nets.

Consider figure 5(a), we observe the presence of the places grantRequest,
pendingReq and grant at the border-side of figure 4. We also have a place algo

which materializes the request treatment. The transition latency stands for the re-
quest reception event. Trivially, everyone can check we do not consider the request
transmission method: it can be a simple message emission like in Suzuki-Kasami
[22] or a sequence of them like in Martin algorithm [14]. As the network travel-
ling time and the registering treatment time are undetermined, the transition is
temporized (white filled ). The CS access is modeled by the getGrant tran-
sition. The exclusive access is ensured by the inhibitor arc on the place grant.
The progress property on the registered requests (place algo) is provided by the
immediate transition getGrant (black filled ( ) .

To continue the description of the figure 5(a), lets notice that places algo and
pendingRequest do not have the same color domains. This is due to the fact that
our composition algorithm only need to know if there is any request that must
be treated but do not need to know which is the requesting process. So, when
the transition latency is fired by a token 〈x〉, the pendingReq place is, at the
same time, marked by a constant “r”(to notice the reception of the request by the
algorithm). So, the requesting process identity remains unknown to the coordinator.
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To conclude, this H.L.P.N. does not guarantee weak fairness: some tokens in place
algo can potentially never pass through the transition getGrant. They can be
perpetually overtaken by new incoming requests.

Now, the figure 5(b) enhances the previous H.L.P.N. by substituting to the
place algo a model of a fair request queue (in fact, it is a simple FIFO queue of
size n). The queue is modelled by two places. The first one is the place FIFO

marked with colored token 〈x, k〉 . When a request of process x, comes in, it is
associated to a position k starting with the last position (index n). The second one
is the place free which is initially marked by all available positions - i.e., all the k

colors. When a request marks the place FIFO, its position will progress by firing
the immediate transition next. But a request x with position k can only fire the
transition free if the k−1 position is available (i.e., only if its predecessor was able
to progress). Thus all request are treated in their arrival order and the weak fairness
property is asserted for all the registered requests - i.e., all requests that have fired
the transition latency. However, asserting this property for all sent requests (i.e.,
for every token marking the grantRequest) is another problem. It requires the
modelling of an additional hypothesis. Actually, all mutual exclusion algorithms
make this following minimum hypothesis about their communication channels: we
never lost the same message twice. So to say, a message sent an infinity number
of times will be received an infinity number of times. This property is called the
”fair lossy channel” property. The integration of this hypothesis can be done in two
ways: the first one is to make the transition latency firing “fair”. This materializes
the fact that each request will be registered by the mutual exclusion algorithm.
For each -infinite- execution of our model, if the transition latency is firable then
it will eventually be fired. The second way is to take this constraint directly in the
properties. We modify the properties in order to exclude all the scenarios where
at least one specific x marking the place grantRequest do not fire the latency

transition on the whole execution.
The second solution has been chosen because H.L.P.N in their classical definition

do not enable us to set a transition as “fair‘”. Thus, we have rewritten the property
F4 and we use the following atomic propositions to do it:

– P9 : an intra request of the process i′ of the cluster c′ has not been treated
- i.e., it was sent but not registered by the used mutual exclusion algorithm
(M(intra.grantRequest) > 〈i′, c′〉).

– P10 : an inter request of the cluster c′′ coordinator has not been treated -
i.e., it was sent but not registered by the used mutual exclusion algorithm
(M(inter.grantRequest) > 〈c′′〉).

Hence, the weak fairness property must be modified as follows:

weak fairness: always, if a process i of the cluster c request for the CS then,
either in the future, it will have the CS, or at least one message for the process
i′ of the cluster c′ will be treated, or at least one message of the coordinator of
the cluster c′′ will be treated.

F4 = G(P2 ⇒ (F (P3) ∨ FG(P9) ∨ FG(P10))

7 Model checking

The classical method to verify a model (i.e., model-checking [23]) against LTL
properties relies on automata theory. Within this approach, all possible executions
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of the studied application are produced and synchronized with the automaton
representing the executions invalidating the desired property. If the resulting au-
tomaton is “not empty” then the property is not satisfied by the model. Here “not
empty” means that the language recognized by the automaton is not reduced to
the empty word.

The main problem of this approach is the excessive size of the generated au-
tomata. Actually, This size can be exponentially greater than the syntactic descrip-
tion of the model and the property (the well-known state space explosion problem).
The explosion is essentially due to the concurrency of the system actions and thus
the synchronisation of its elements. Many approaches were developed to overcome
this problem. Their aims either are to drastically reduce the representation of the
generated automata or to substitute context-equivalent smaller automata. One of
these last such solutions is based on the observation that concurrent systems are
composed of identical behaviors (up to a permutation). The factorisation of the rep-
resentation of such similar behaviors leads to the construction of smaller automata
which can be efficiently used for model checking [1].

Our composition approach is highly symmetric. In fact, we have identified and
used symmetries at all levels: the application process of the same cluster behave
the same and so do the coordinators process. Hence, we have kept and used them
in all our modeling process. Moreover, by use of the rigorous syntax of SWN these
symmetries are efficiently represented and exploited for an automatic construction
of a reduced automaton representing the system executions [4, 1]. These ends up
by the verification of our properties.

The tool we used to generate the reduced automaton of our model is the well
know and widely used GreatSPN2. It was connected to the Spot3 model-checker
tool. The verification is done in two steps. Firstly, we verified the mutual exclu-
sion algorithm models (figure 5) by plugging them into the (abstract) model of
the application process (figure 3). Secondly we have plugged the model of mutual
exclusion algorithm (figure 5) in the abstract model of figure 4. Trivially, the first
part was checked and the properties F1 to F3 were verified on the model of figure
5(a) and the properties F1 to F4 were verified on the model of figure 5(b).

For the second part, and the most important, the results show that all proper-
ties are preserved: when the used algorithm verify validity, mutual exclusion and
progress for the intra and inter levels our solution validate the same properties.
When the used intra and inter algorithms verify the validity, mutual exclusion,
progress and weak fairness properties (F1 to F4) our algorithm does the same way
whichever the topology we choose.

To give an idea on the complexity of the model-checking accordingly to a chosen
deployment topology, we highlight in table 1 some of the obtained results. Here we
represent the number of visited states for the verification of each of the described
properties, when using the model of 5(b) to instantiate the composition approach
model.

Six topologies noted ”xc./ya.” are reported into it. In our notation, x is the
number of clusters (that is why it is postfixed by c) and y is the number of applica-
tion processes by cluster (that is why it is postfixed by a). So, we have checked six
topologies: three with 6 application processes gathered into 1, 2 and 3 clusters and

2 http://www.di.unito.it/ greatspn/
3 http://spot.lip6.fr/
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P
P

P
P

P
P

PP
Propr.

Topo. 6 process 8 process
6 a. 2 c. 3 a. 3 c. 2 a. 8 a. 2 c. 4 a. 4 c. 2 a.

F1 1438 70823 145455 2888 619362 1793654
F2 218 9988 20205 391 74817 212666
F3 318 14548 30662 569 108295 320577
F4 785 36844 76018 1716 345375 708019

Table 1. Model-checking over different topologies

three with 8 application processes gathered into 1, 2 and 4 clusters. The topology
noted “ya.” is the plain algorithm used as complexity reference which is low com-
paring to our composition. Increasing the number of clusters generate more states
because of the synchronizations implied by our composition.

8 Conclusion

This paper exposes a new algorithm to easily compose existing mutual exclusion
algorithms in order to achieve better scalability on grids. This solution enable us to
optimize the grant authorization time without a lost of the basic mutual exclusion
properties. It is also totally transparent for applications.

To check the consistency of our solution, we have isolated mutual exclusion al-
gorithm common A.P.I. We have modelled this generic A.P.I. into H.L.P.N. We take
good advantages of this defined interface to compositionally put together our mod-
elling. Based on these A.P.I., we were able to plug in mutual exclusion algorithm
abstractions that assert the classical mutual exclusion paradigm properties. This
simplification, sufficient for this first qualitative study, make possible to model-
check our composition algorithm against the same properties. Concerning these
properties, we have done their LTL conversion and integrated an underlying cru-
cial hypothesis called ”fair lossy channel” required by almost all mutual exclusion
algorithms.

During the whole modelling process and verification, we always kept in mind
the inner symmetries of our solution. After exhibiting them in our algorithm, we
has exploited them to best model our solution and maximize the simplification the
LTL properties. At last, the conservation of these symmetries was exploited in the
model-checking by using specific algorithms.

This study has numerous research perspectives. The fine P.N. modelling of
existing -classical- mutual exclusion algorithms like Suzuki and Kasami [22], Naimi-
Tréhel [16] or Martin[14] could lead to numerical quantitative study of the influence
of our solution with respect to the application processes. We will be able to calculate
performance indices accordingly to the composed plain algorithms.
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