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Abstract. The Signal Calculus is an asynchronous process calculus fea-
turing multicast communication. It relies on explicit modeling of the
communication structure of the network (communication flows), and on
handling sessions, even multi-party. The calculus is strongly motivated
by the practical needs of Service-Oriented Computing, and there exists a
Java implementation, called JSCL, with a graphical modeling framework.
To the aim of adding to SC (and JSCL) a verification environment, in this
work we introduce the abstract semantics of SC, based on bisimulation.
We show an example exploiting bisimilarity to prove the correctness of
an SC model with respects to a transactional isolation requirement.

Keywords. Service Oriented Architectures, Event Notification, Coor-
dination, Observational Equivalence

1 Introduction

The Service Oriented Architecture (SOA) [1] main challenge consists in the def-
inition of an architectural style where applications are built by composition of
distributed functionalities, called services, that can be accessed in a uniform and
platform independent manner, and communicate with each other by exchanging
messages. The Web Service (WS) platform has become the universally accepted
mechanism for implementing SOAs. The main contribution of this technology
relies on the adoption of XML (eXtensible Markup Language) that has opened a
new perspective for developers and service providers enabling language and plat-
form independence (a.k.a. interoperability). The Web Service core specifications
provide mechanisms for describing, publishing, retrieving and accessing services.

An open issue, in WS world, is the definition of a language for describing how
these services interact and to check if the related implementations adhere to the
specifications. In our previous works, we provided and implemented a middle-
ware, Java Signal Core Layer (JSCL), paired with a formal specification of the
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programming facilities that it offers. At the abstract level, the middleware takes
the form of the Signal Calculus (SC) [10,12,8], an high level language inspired by
the asynchronous 7-calculus [15] enriched with the concepts of component local-
ity and the needed primitives for dealing with Event Notification (EN) paradigm
[18] (namely, multicast channels, that also give rise to multi-party sessions).

The adoption of EN yields to model services in terms of reactive entities
that, autonomously, declare the set of events they are interested in and the
behavior that they perform upon their occurrence. The main advantages of EN
adoption rely on loosely coupling of services and on its flexibility. Specifically, EN
features high level coordination mechanisms that allow programmers/designers
to decouple components and rely entirely on event handling.

In this work we focus our attention on the verification of SC protocols. For this
purpose, we introduce an abstract semantics of SC networks, based on the notion
of bisimulation, which not only represents the behavior of sets of components
interacting with each other, but also that of isolated subsystems. Behavioral se-
mantics is important because it allows to distinguish isolated components that
behave differently when “plugged” into a network. Our semantics is inspired by
the m-calculus “direct HT bisimulation” [15]. Exploiting the notion of bisimula-
tion, SC systems can be verified against abstracted versions of their design.

In this paper, we outline the main features of our approach by considering
a simple, but illustrative case study, described in [24]. The case study is mod-
eled by taking into account the transactional requirements given at specification
level, proving that constraints on transactional isolation are maintained in the
involved components. The verification of the scenario is done by checking that
it is bisimilar to a “magic” property, i.e. an abstracted design that models prop-
erties of interest.

The paper is organized as follows. In Section 2 we review the main features
and the operational semantics of the SC process calculus. Section 3 presents
the abstract semantics of SCbased on a labeled transition system. Section 4
presents the case study, its abstract modeling and highlights how to exploit
the bisimulation relation to prove transactional isolation of networks. Section 5
yields some concluding remarks.

2 Background: the Signal Calculus

In this section, we introduce the signal calculus. This is a process calculus suit-
able to describe service coordination, adopting the event notification paradigm.
The communication mechanism is inspired by the asynchronous m-calculus. The
calculus is centered around the notion of component, written as a[B]% and rep-
resenting a service uniquely identified by a name a, the public address of the
service, having internal behavior B, interfaces R, called reactions, and outgoing
connections F, called flows.

We assume a countable set 7 of topic names (ranged over by 7), representing
the available signal types, and a countable set of component names, ranged over
by a, b, ¢, .... The notation @ indicates a set of component names.
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Components exchange messages, called signals, in the form of pairs of topics
T(@©7', where the first part is the signal type (which is, an unique name identifying
an event kind), and the second one is a session identifier. Session identifiers and
event kinds are freely interchangeable, and can be either freshly generated or
received as input by reactions. When an event is raised by a component, it
is notified to the components interested in handling it. Components are thus
modeled in terms of reactive agents which declare, and can dynamically alter,
the kind of events they are capable to handle.

Reactions describe available methods of a service in a given state. Their
syntax is given by the following grammar:

R == 0] () =B | RR

The input prefiz («) is either T©A7’ or 7@©7’, where 7’ is bound in T@M7’.
The lambda reaction T@MT' — B is triggered by signals having topic 7 in-
dependently from their session, and binds 7/ to the received session identifier.
Conversely, the check reaction 7(©7' — B reacts only to signals having topic 7
issued for the specific session 7/. Once a signal reaction takes place, the behavior
B will be executed in the component in parallel with the current internal behav-
ior. Reaction composition R|R allows a component to react to different kinds of
signal in different ways. The empty reaction 0 cannot respond to any signal.

Each component has a flow describing the choreography, from the point of
view of the component. Flows describe addressees of messages, for each topic 7.
Flow syntax is defined as follows:

F == 0| 7~d | FIF

where the empty flow 0 does not deliver any kind of signal, the single flow
T ~ @ delivers signals having topic 7 to the components specified in the set d.
Finally, new flows can be appended to component interfaces by using the parallel
composition construct F|F.

Now, we introduce the syntax of behaviors, the basic programs that each
service executes when a reaction is triggered by signals. Behaviors are described
by the following grammar:

B == out{(r©7').B (Signal emission)
| (v7)B (Topic restriction)
| rupd(R).B (Reaction update)
| fupd(F).B (Flow update)
| B|DB (Parallel)
| O (Empty behavior)

The out(r(©7’).B primitive spawns a signal of topic 7 having session 7/, and
then continues as B. A number of copies of the same message are created inside
the network, one for each component listed in the flow of the component, for
the topic 7. Topics can be freshly generated using topic restriction, a binder
that declares local topics; namely, the occurrences of 7 in (v7)B are bound. The
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calculus provides two primitives to allow a component to dynamically change
its interface: the reaction update rupd (R) .B’ and the flow update fupd(F').B’
The former installs a new reaction R in the interface part of components and
the latter appends F' to its flows. The empty and parallel constructs have the
obvious meaning.

Networks describe the component distribution and carry signals exchanged
among components. Network syntax is defined as follows:

N:u= 0 | a[B)% | N| N | (rOT)Qa | (vT)N

A network can be empty 0, a single component a[B]%, the parallel composition
of networks N || N’ or the restriction of a topic in a (sub)network. Networks
carry signals exchanged among components. The signal emission spawns into
the network, for each target component, an “envelope” (7(©7’')@Qa containing
the signal and the target component name a. Finally, the last production allows
to extend the scope of freshly generated topics over networks.

We assume that each service is identified by an unique name, and each name
identifies at most one service, as it is usual in service-oriented computing.

We define a network context as a network having an “hole” where another
network can be “plugged in”. Formally, contexts are the terms generated by the
grammar below, having only one occurrence of the symbol —

C:=0 | o[BI} | C|C | (r©Or)@a | (v7)C |-

The well formedness condition is also extended to contexts, so that a context
is considered valid for a network when their component names are disjoint. This
is formalized in the following definition.

Definition 1. A network is well formed if the names of the components it con-
tains are all different. We say that a context C[—] is a well formed context of a
network N if C[N] is well formed.

Free and bound names for networks, reactions, behaviors and flows are de-
fined by structural induction in the usual way. We summarize the main rules in
the following:

fn(r©1" — B) = fn(B)U{r, 7'} bn(r©1" — B) =bn(B)\ {7, 7'}
fn(r@©IM — B) fmB\{r}u{r'} bn(r@I — B)=b(B)U{r'}\ {r'}
fn((vr)B) = fn(B)\ {7} bn((v7)B) = bn(B) U{r}

fn((vr)N) = fn(B)\ {} bn((v7)N) = bn(B) U{r}

We define structural congruence over the syntax of the calculus as the small-
est congruence that satisfies the commutative monoidal laws for (R, |,0), (F,|,0),
(B, | ,0) and (N,]|,), a-conversion of bound names, and the rule s below. In
particular, notice that 7 is not in the scope of 7/ in T©A7" — B.
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N — N’
(npar)
N|M—N|M
a[B|f — a[B'|% N—N
- (par) ———— (new)
a[B | B1]¥ — a[B' | Bi|}, (vT)N — (v7) N

arupd (R').B]% — a[BIE™  (rupd) a[fupd(F').B)E — a[B|Ep (fupd)

(F)Jn': {bla ey bn}
a[out<T@T').B]§ — a[B]? | (r@©7"h@b; || ... || (r©r")@b,

(emit)
(r@7")Qa || a0]5°7 "FIR _ a[B)E  (check)

(r@7")Qa || a[0];* T F I L a[{r fm}y B T E IR (1am)

Fig. 1. Operational semantics

(v1)0=0 ((vt)B) | B'= (vr)(B | B'), if 7 ¢ fn(B’)
(vr)(wm")B = (v1')(v7)B (vr)(vm")N = (v7')(vT)N

(vr)0 = af0)} = 0 (wr)N) [| N' = (ur)(N | '), if 7 ¢ f(N")
Fi=F, Bi=By; R =R T¢ fn(R)U fn(F)U{a}
a[Bily! = a[BaJ? a[(v7) Bl = (v7)alB]f

2.1 Reaction Rules

We briefly recall the reduction semantics of SC [12]. This is defined using the
previously introduced structural congruence and the flow projection function
((F)]+), defined as

(T s 6)lT: a (T ~ C_L‘)»J,T’: (0)1/7": @ (F].‘FQ)lT: (Fl)l‘r U(F2)l‘r

This function takes a flow and a topic and yields the set of target component
names to which signals having topic 7 have to be delivered.

The reduction semantics of SC explains how components, at each step, com-
municate and update their interface. The reduction relation — is depicted in
Figure 1. We assume the set of rules to be augmented with structural congru-
ence, i.e., the following additional rule is used:

N=N N -M M=M

(struct)
N—-M
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Rules labeled rupd and fupd update, respectively, reactions and flows of a pro-
cess. Rule emit introduces in the network a new envelope for the event kind
T targeted to each subscribed component ((F)|.= {b1,...,b,}). Rules labeled
check and lam model activation of check reactions, that exactly match the ses-
sion identifier, and of lambda reactions, that receive a session identifier as argu-
ment. Rules npar, struct and new are usual in process calculi, while par allows
behaviors to be added in parallel into a component, preserving reactions. This
rule allows us to define the semantics only on components whose internal behav-
ior has no parallel operation, avoiding the need for separate rules. This happens
because synchronization of two internal behaviors of the same component is not
possible in our framework.

3 LTS Semantics

Here we present the behavioral semantics of networks, in terms of a labeled
transition system that represents not only the behavior of sets of components
that interact with each other, but also of isolated subsystems. Having an LTS
semantics is important because it allows to distinguish isolated components that
behaves differently when inserted into a network (e.g. a component with an
installed reaction, and the empty component).

The transition system is similar in spirit to work on the asynchronous 7-
calculus by Honda and Tokoro [15], and Amadio, Castellani and Sangiorgi [2].
The set of observable actions « is specified as follows:

axz=0 | (t©™Qa | (r©(7')Qa | 7@O©T'Qa | TOT'Q(a)

In our syntax, () models unobservable actions. (7(©7')@a is free (asynchronous)
output with event kind 7, session type 7" and addressee a. (7(©(7'))@Qa is bound
output, and 7©7'Qa is free input. 7©7'Q(a) represents the action of receiving
a message and storing it in parallel with the current process. This action is
observable in any system, thus including the empty network. This behavior is
the essence of asynchronous communication, and is similar to the transition rule
named ing in [2], which is used to define the so-called “directed HT bisimulation”,
derived, on its turn, from the rules given in [15]. All names in the actions are
free, with the exception of 7/ in bound output action. Finally we use n(a) to
denote the set of names occurred in the action a.

The labeled transition relation over networks is defined by the rules depicted
in Figure 2. We briefly comment on the semantics. The async rule allows any
system to perform an input, simply storing the received message for subsequent
usage. The out rule makes observable the output capability of a system with
pending messages. Rules struct, par, rupd, fupd, new and npar are very similar
to their counterparts in the unlabeled semantics. Rules check and lam model
the capability of a system to consume messages present on the network, the for-
mer strictly matching on the session identifier, and the latter receiving sessions
as input. In a similar fashion to the w-calculus, ext and bsync model sending
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N=N NIM M=M

” (struct)
N — M

[gyT: (fupd)

a[rupd (R') .B}? a[B]x a[fupd(F').BH? — a[Blp|p

()= {b1,...,bn}
a[out(r@#).B']? LR a[B']}I? | (r©r@b; || ... || (r©T")Qb,

(emit)

(out) (async)

@aq @ N T©T'Q(a

(r@r)@q %, ), N || (r@7')Qa

R =717 — B R =1@©M — B

- (check) - (lam)
alo]f'" TS o[BI alo]p" TE al () B

N3N 71¢n(e) JASACARALNG #7
- (new) - (ext)
(I/T)N — (VT)Nl (I/T,)N (r@©(r"))Qa N/

T@©T'Qa
-

N <T©(T >>@C" N/ M M/ 7_/ ¢ fn(M)
N| ML @ )N | M

(bsync)

N (r©OT')Qa N M T@©7' Qa

N|MLN | M

M/

(sync)

a[B} 2 o[B')% NS N bn(e) N fa(M) =0
R
F

7 (par p (npar)
w (Par) N|M3SN | M

Fig. 2. Behavioral semantics

a restricted name as an output message, and receiving it as a fresh name. Fi-
nally, rule sync allows communication by linking input reactions and output
capabilities of pending messages.

Rule labeled with (async), first given by Amadio, Castellani and Sangiorgi in
[2], is the essence of asynchronous communication. This rule allows any process
(even those that do not perform input) to store a message without consuming
it, so that one cannot directly observe when input actions actually happen. In
the definition of bisimulation below, only asynchronous input transitions (that
is, transitions obtained from the async rule) are kept in account, while “normal”
input is not considered. This allows two processes that only differ in the way
they interleave input with other actions to be considered bisimilar.
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Even though they are similar, the semantics of the asynchronous w-calculus
and that of SC differ in some key aspects. Namely, SC features dynamic multicast
channels due to the dynamic nature of flows. Hence, the addressee of a message
is not statically known. This is the reason why our calculus features the output
primitive, that using rule (out) spawns a certain number of messages in parallel,
while in the asynchronous m-calculus there is no such construct.

The notion of weak transition system is defined in the standard way:

N L N i NN
N =% N ifftN L 2% L N foralla 0
The following theorem establishes a link between the reduction relation and
the observational semantics.

Theorem 1. N — N’ if and only if N % N'.

Finally we provide the definition of SC-bisimulation (~g¢). This relation al-
lows to distinguish isolated subsystems (e.g. a component, or a partition of a
network) that behave differently when inserted into a network, even though, in
isolation, they cannot react.

Definition 2. ~g¢ is the largest symmetric relation on SC-terms such that if
N ~sc M, N % N, a # 7©@71'Qa, bn(a) N fa(M) = 0 implies that M =5 M’
and N’ ~go M.

The notion of weak SC bisimulation (/2sc) is obtained substituting in the above
definition the transition relation with the weak one.

Bisimulation allows one to check for properties that have to be satisfied
by the implementation of a system against its design expressed in a high-level
language. Sometimes the implementation is slightly modified in order to verify
a subset of the system requirements, e.g. by inserting the implementation in a
suitable controlled context or environment, where it can be formally shown that,
by construction, only properties of interest can lead to violation of the design.
We show an example of this technique in section 4, as an application of the
behavioral modeling framework we are developing.

Theorem 2. If N ~gc N’ then
N || (ri©7])Qay. .. || (7x©71)Qay, ~ s¢N' || (11©7])Qay. .. || (7.©71.)Qay

Proof. (outline) Since the rule async can be applied to any network and envelope,
the network N can perform a transition step labeled a = 7©7'Q(a), going to
N || (r©7')@a. The same rule can be applied to the network N’, that goes
to N’ || (t(©7")Qa. Since N and N’ are bisimilar, when they perform the same
transition a, they must go in bisimilar state: N || (r©71')Qa ~g¢ N’ || (r©7')Qa.
This proves that two bisimilar network remain bisimilar if composed with the
same envelope. This proof can be applied with any number of envelopes, proving
the theorem. O
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Theorem 3. For any context C, and any two networks N and N’, such that
N ~gc N', with C a well formed context of both networks (see Definition 1), it
holds that C(N) ~gc C(N').

4 The Car Repair Scenario

In this section we adopt the SC calculus to model the service coordination issues
of the SENSORIA car repair scenario [24], consisting of a car manufacturer
service offering assistance support to their customers.

4.1 The Sensoria scenario

A car manufacturer offers an assistance service to the customer once his/her car
breaks down. Once contacted, such system attempts to locate a garage, a tow
truck and a rental car service so that the car is towed to the garage and repaired
meanwhile the customer may continue his travel. Several services are involved
into the system and interact to reach a common goal. Their inter-dependencies
are summarized as follows:

— before any service lookup is made, the credit card is charged with a security
amount;

— before looking for a tow truck, a garage must be found as it poses additional
constraints to the candidate tow trucks;

— if finding a tow truck fails, the garage appointment must be revoked;

— if renting a car succeeds and finding either a tow truck or a garage appoint-
ment fails, the car rental must be redirected to the broken down car’s actual
location;

— if the car rental fails, it should not affect the tow truck and garage appoint-
ment.

This scenario can be described through a business process language. We use
the industry standard Business Process Modeling Language (BPMN [13]) to
graphically describe the scenario and the inter-dependencies among services. The
BPMN model of this scenario is presented in Figure 3. Notice that the model
exploits the transactional and compensation facilities of BPMN and that the car
rental service is a sub-transaction, since it does not affect other activities. We
briefly recall the graphical notation adopted in BPMN. A double-lined boundary
indicates that the sub-process is a transaction. The single-lined boxes represent
activities executed inside transactions and the activities linked through backward
arrows represent the related compensation activities that must be executed when
the process is rolling back. The blank circles represent the entry and exit points
of a transaction. Finally, the diamond containing the plus symbol represents the
joining of two activities. The full BMPN specification can be found in [13].
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Charge Order Garage Order
Credit Card Appointment Tow Truck
| I |
: Revoke : Cancel Garage ! Cancel
I Charge , Appointment : Tow Truck
-5« R R
Order
. .
I
. Redirect
| Rental Car
=

Fig. 3. Car repair scenario: the BPMN model

4.2 Modeling the Car Repair Scenario

Services involved into the Car Repair Scenario (CRS) scenario are described by
SC components. To specify the interactions among participants, we introduce the
following signal topics:

— 77 is used to propagate forward signals to inform components about the
completion of previous activities;

— 7, is used to propagate rollback signals to components. Such signals are
treated by executing the compensation activity and subsequently by propa-
gating, backwards, the signal to the other participants;

— Tp, is used to implement the join mechanism among parallel activities exe-
cuted inside the same workflow session.

— T,k is used internally by components to represent the successful termination
of an activity.

— Teze 18 used internally by components to represent an internal failure, for
example the throwing of an exception.

In SC, transactional components can be described as services reacting to both
7 and 7, notifications. At the reception of a 7 signal, the component executes
its main activity and installs the corresponding compensation reaction. At the
reception of a 7, signal, the previously installed compensation is executed. We
suppose that each invocation of the transactional workflow has a unique session
(in the following referred as 7). The consumer has to generate the session, that
will be delivered with each signal to identify the workflow instance. Notice that,
for a workflow session, the compensation activity must be executed only after
the successful execution of the main activity. A transactional component having
address a, a main activity A and a compensation C' is translated to an SC model
by the function T'C. The connections to other components are described by the
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sets next and prev containing the target components to which, respectively, 7¢
and 7, signals must be forwarded. The T'C' function is defined as follows:

Rrc(AC
(VTok) (VTEIC)Q[O]F;CC((a,ne)mt,prev)

TC(a, A, C, prev,next) =

where:

Frc(a,next,prev) = Tf ~= NeXt|Ty ~> Prev|Tepe ~ a|Tok ~> @

Rrc(A,C) = Tr@OAT — rupd (R,.s(C)) | A

Rres (C) = Tok©7— g Bok(c)|7—emc©7— - Bexc

B,k (C) £ rupd (R4 (C)) .out(ry©7).0

R (C) L 5.0r - C

B a { rupd (R,s2) .out(7;©7).0 subtransaction
ere out({r,.©r7).0 otherwise

Ry £ 7.©71 — out(r,.©7).0

Initially, the component has an installed reaction (Rp¢) for handling the for-
ward flow (77 notifications). Once the reaction is activated, it retrieves the signal
session, that identifies the workflow instance, and executes the main activity A.
The formalization of the activity A and of the compensation C' are out of our
scope; hereafter, we assume that:

1. if the main activity A successfully terminates, a signal 7, is internally raised,
to inform the component that the flow can continue

2. if the main activity A fails, a signal 7.;. is internally raised, informing the
component to start the backward flow

3. the last operation of the compensation C is the rising of a rollback signal

(out(r-©7).0).

Notice that the topics 7o, and Tez. are restricted to the local scope of component.
Concurrently with the activity A, the component installs the reactions, defined
by Ryes, to check the termination state of A (7o O Tege)-

If the activity A successes, it internally delivers a 7, signal and the behavior
B, is executed. It installs a check reaction (R,p1), that is used to wait for a
rollback notification from a successor component, and propagates the 7; signal to
the next components in the workflow (using out(r;©r).0). If, later, a 7, signal
for the session 7 is received, the compensation C is executed and the rollback
signal is propagated to previous stages (since we suppose that the last operation
of the compensation is out(7,.©7).0).

If the activity A fails, it internally delivers a 7., signal and the behavior
Be.. is executed. Notice that two implementation of the behavior are provided:
the first one is used if the component acts as an isolated sub-transaction (e.g.
car rental service), while the second one is used if the components acts as a
standard transactional activity. In the first case, the behavior propagates the 7¢
signal, since an error of the sub-transaction should not affect the computation
of the other components. Moreover the behavior installs a reaction for 7. that
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just propagate the backward flow. In the second case, the behavior simply starts
the backward flow, raising a rollback signal.

A sequential work-flow can simply be specified as a chain of transactional
components by properly setting their next and prev sets. To model the parallel
branch, we define the collector and emitter components as follows:

Emitter(a, prev, next, collector) =

a[O]Tf ©AT—rupd(r,©7T—rupd(r,©T—out(r,.©7).0).out(r, ©T).out(rs©7).0)
Tp~>next|T.~>prev|T,~>{collector}

Collector(a, prev, next) =

a[O]Tn©)\T—>TLlpd(Tf ©1—rupd(r;©7—rupd(r,©7T—out(r.©7).0.out(r;©7).0)))

Tf~snext|T.~prev

The emitter represents the entry point of the parallel branch. Essentially it
activates the forward flow of next components, representing the parallel activi-
ties, and synchronizes their backward flows. The synchronization mechanism is
implemented by sequentially installing two reactions for the topic 7, and the
session 7 (through rupd (7.©7 — rupd (7.©7 — ...))). After that the synchro-
nization mechanism has been installed, the emitter activates the forward flow
(out(r,©7).out(r;(©7).0). Notice that the component emits two signals: one
having topic 7y and the other one having topic 7,. The first signal is delivered
to the components representing the parallel activities. The other one is delivered
to the collector, informing it of the received session that will be later used by
it to implement its synchronization. When the synchronization of the backward
flow takes place, the emitter forwards the rollback signal (out(r,.©7).0) to the
prev components.

Similarly, the collector component is responsible to implement the synchro-
nization mechanism for the forward flows and to activate the backward flows of
the parallel components when a 7, signal is received. Notice that the collector
needs to be notified about the session 7 via a 7, signal. This is necessary since
there is not mutual exclusion among executed behaviors.

The car repair scenario can be modeled by the following SC network:

TC(card, ChargeCredit, RevokeCredit, {}, {garage}) ||
TC(garage, OrderGarage, CancelGarage, {card}, {e}) ||
Emitter(e, {garage}, {truck, car}, {c}) ||

TC(truck, OrderTowTruck, CancelTowTruck, {e, car},{c}) ||
TC/(car,OrderCar, RedirectCar,{e},{c}) |

Collector(c, {truck, car},{})

Notice that 7. events raised by the truck component are notified to the car
service, since an error occurred in the execution of a main activity must activate
the compensations of all other concurrent components. Instead the 7. events
raised by the car component are notified only to the emitter, since car is a sub
transaction.
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4.3 Checking sub-transaction isolation

As discussed above, the rental car service is an isolated sub-transaction, namely,
if the car rental fails, it should not affect the execution of the other components
in the network. Regardless of the implementation details of the main activity
and of the compensation, we model only the signal emissions that represent
their termination. Hence, the car service that fails (Care,.) and the other one
that successes (Car,y) are modeled as:

Carege = TC(car,out({T.,.©ts).0,out(r,.©7s).0,{e}, {c})
Cary, 2 TC(car,out{T,,©7s).0,out(r,.©).0, {e}, {c})

Now we prove the transaction isolation property of the car service by comparing
its model with a magic car service. This is a transactional component that per-
forms the ideal behavior: when it receives a 7y signal, it propagates the signal
to next components, while, when it receives a 7, signal, it propagates the signal
to prev components. Then, we check that, independently from the behavior ex-
ecuted internally by the car service, the whole transactional workflow performs
the same action of the one containing the magic service. Formally the workflow
containing the Carey. (or Car,g) must be bisimilar to the one containing the
magic car service. This service can be model as:
e & car[J QN0 im0 e @7 o000

skip.B £ fupd(0)

In the above process, the skip action is used for internal computation steps.
However, this is not a primitive of the calculus, but rather it is a derived oper-
ation, modeled by installation of an empty flow (hence, not altering the flow of
the component).

The process describes a set of possible magic properties, parametrized by the
number of skip actions. For the system to satisfy the required property, it is
sufficient that there exists a number of skip actions that lets the bisimulation
check succeed. We use the compositionality property of the bisimilarity (The-
orem 3) as a “substitution principle”: the statement Carop ~sc Carmagic (and
Carege ~sc Carmagic) ensures that the bisimulation result propagates to the
whole workflows.

5 Future Work

We have presented an LTS semantics for the SC process calculus. The obtained
abstract semantics, based on bisimulation, allows one to reason about behav-
ioral properties of SC networks. The SC-JSCL framework has been designed
to support the specification, the implementation and verification of coordination
policies for services oriented applications. Our main goal is to provide general fa-
cilities to implement high-level languages for service oriented architectures (e.g.
BPEL4WS [16], BPML [22],WS-CDL [23]). The strict interplay between SC
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and JSCL permits to drive and verify the implementation of such languages.
A number of approaches have been introduced to provide the formal founda-
tions of standards for service orchestrations and service choreographies. The
SC-JSCL framework differs from these approaches (COWS [17], Global Calcu-
lus [5], Areq [3] ORC [19], SCC [4], SOCK [14] to cite a few), since it focuses
on a lower level of abstraction, merging the theoretical formalization with the
implementation requirements. Indeed, the emphasis in SC-JSCL relies on the
notion of event notification that strictly fits to the loosely coupling nature of
services.

We foresee two development lines. In this work, bisimulation proofs have
been done by hand, while one would expect automated checkers to be used. The
fresh name generation construct of SC, even though giving it great expressive
power (in particular, for the possibility to handle new sessions), makes it dif-
ficult to define and implement finite state algorithms for bisimulation checking
and (in perspective) model checking. History-Dependent automata [20] are an
operational model where garbage-collection of unused names can be exploited
to obtain finite state models of systems featuring generation of fresh resources
[7]. As a possible future development, thus, it would be interesting to express
the semantics of SC using HD-automata, in order to be able to reuse work on
minimization and bisimulation checking algorithms for nominal calculi [9].

In [12], we introduced an algebraic structure over topics. This allows us to
implement more complex coordination logics directly encoded inside the signal
type. The definition of bisimulation in this case should make use of the algebraic
structure to obtain a suitable quantitative notion of bisimulation, allowing to
express properties of a system with respects to e.g. a range of security policies.
On the logical side, there is a close connection, which should be studied in detail,
with the quantitative/spatial logic over c-semirings defined in [6].

The SC/JSCL framework is equipped with a programming environment,
called JSCL4Eclipse [11], that allows one to graphically model JSCL networks
and to automatically generate the stub implementation. As a long term research
goal, we aim to integrate verification tools based on bisimulation and model
checking techniques within our development framework.

References

1. Marco Aiello, Mikio Aoyama, Francisco Curbera, and Mike P. Papazoglou, editors.
Service-Oriented Computing - ICSOC 2004, Second International Conference, New
York, NY, USA, November 15-19, 2004, Proceedings. ACM, 2004.

2. Roberto M. Amadio, Ilaria Castellani, and Davide Sangiorgi. On bisimulations for
the asynchronous pi-calculus. Theor. Comput. Sci., 195(2):291-324, 1998.

3. M. Bartoletti, P. Degano, G. Ferrari, and R. Zunino. Secure service orchestration.
In FOSAD, volume 4667 of Lecture Notes in Computer Science. Springer, 2007.

4. Michele Boreale, Roberto Bruni, Luis Caires, Rocco De Nicola, Ivan Lanese,
Michele Loreti, Francisco Martins, Ugo Montanari, Anténio Ravara, Davide San-
giorgi, Vasco Thudichum Vasconcelos, and Gianluigi Zavattaro. Scc: A service
centered calculus. In WS-FM, volume 4184 of Lecture Notes in Computer Science,
pages 38-57. Springer, 2006.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Checking correctness of transactional behaviors 15

Marco Carbone, Kohei Honda, and Nobuko Yoshida. Structured communication-
centred programming for web services. In ESOP 2007, volume 4421 of Lecture
Notes in Computer Science, pages 2—17. Springer, 2007.

Vincenzo Ciancia and Gian Luigi Ferrari. Co-Algebraic Models for Quantitative
Spatial Logics. In Quantitative Aspects of Programming Languages (QAPL’07),
2007.

Vincenzo Ciancia and Ugo Montanari. A name abstraction functor for named sets.
In Coalgebraic Methods in Computer Science 2008. to appear.

Gian Luigi Ferrari, Roberto Guanciale, and Daniele Strollo. Event based service
coordination over dynamic and heterogeneous networks. In Asit Dan and Winfried
Lamersdorf, editors, ICSOC, volume 4294 of Lecture Notes in Computer Science,
pages 453—458. Springer-Verlag, 2006.

Gian Luigi Ferrari, Ugo Montanari, and Emilio Tuosto. Coalgebraic minimization
of hd-automata for the pi-calculus using polymorphic types. Theor. Comput. Sci.,
331(2-3):325-365, 2005.

Gianluigi Ferrari, Roberto Guanciale, and Daniele Strollo. Jscl: A middleware for
service coordination. In Najm et al. [21], pages 46—60.

Gianluigi Ferrari, Roberto Guanciale, and Daniele Strollo. An Eclipse plugin for
designing and developing Web Service orchestrations in JSCL. Technical report,
2007.

GianLuigi Ferrari, Roberto Guanciale, Daniele Strollo, and Emilio Tuosto. Coor-
dination via types in an event-based framework. In John Derrick and Jiiri Vain,
editors, FORTE, volume 4574 of Lecture Notes in Computer Science, pages 66—80.
Springer, 2007.

Object Management Group. Business process modelling notation. Technical report.
http://www.bpmn.org.

Claudio Guidi, Roberto Lucchi, Roberto Gorrieri, Nadia Busi, and Gianluigi Za-
vattaro. A calculus for service oriented computing. In ICSOC, volume 4294 of
Lecture Notes in Computer Science, pages 327—-338. Springer, 2006.

Kohei Honda and Mario Tokoro. An object calculus for asynchronous communica-
tion. In Pierre America, editor, ECOOP, volume 512 of Lecture Notes in Computer
Science, pages 133-147. Springer, 1991.

IBM. Business Process Execution Language (BPEL). Technical report, 2005.
Alessandro Lapadula, Rosario Pugliese, and Francesco Tiezzi. A calculus for or-
chestration of web services. In ESOP, volume 4421 of Lecture Notes in Computer
Science, pages 33—47. Springer, 2007.

Ying Liu and Beth Plale. Survey of publish subscribe event systems. Technical
Report 574, Department of Computer Science, Indiana University.

Jayadev Misra. A programming model for the orchestration of web services. In
SEFM, pages 2-11. IEEE Computer Society, 2004.

Ugo Montanari and Marco Pistore. History Dependent Automata. Technical re-
port, Dipartimento di Informatica, Universita di Pisa, 1998. TR-11-98.

Elie Najm, Jean-Francois Pradat-Peyre, and Véronique Donzeau-Gouge, editors.
Formal Techniques for Networked and Distributed Systems - FORTE 2006, 26th
IFIP WG 6.1 International Conference, Paris, France, September 26-29, 2006.,
volume 4229 of Lecture Notes in Computer Science. Springer-Verlag, 2006.

. OMG. Business Process Modeling Language. http://www.bpmi.org, 2002.
. W3C. Web Services Choreography Description Language (v.1.0). Technical report.

Martin Wirsing, Allan Clark, Stephen Gilmore, Matthias M. Holzl, Alexander
Knapp, Nora Koch, and Andreas Schroeder. Semantic-based development of
service-oriented systems. In Najm et al. [21], pages 24-45.


http://www.bpmn.org
http://www.bpmi.org

	Checking correctness of transactional behaviors  
	Vincenzo Ciancia, Gian Luigi Ferrari, Roberto Guanciale and   Daniele Strollo

