
A Hierarchy of Equivalences for Probabilistic
Processes �

Manuel Núñez and Luis Llana

Dept. Sistemas Informáticos y Computación
Facultad de Informática

Universidad Complutense de Madrid, 28040 Madrid, Spain
e-mail: {mn,llana}@sip.ucm.es

Abstract. We study several process equivalences on a probabilistic pro-
cess algebra. First, we define an operational semantics. Afterwards we
introduce the notion of passing a test with a probability. We consider
three families of tests according to the intended behavior of an external
observer: Reactive (sequential tests), generative (branching tests), and
limited generative (equitable branching tests). For each of these fami-
lies we define three predicates over processes and tests (may-pass, must-
pass, passp) which induce three equivalences. Finally, we relate these
nine equivalences and provide either alternative characterizations or fully
abstract denotational semantics. These semantic frameworks cover from
simple traces to probabilistic acceptance trees.

1 Introduction

Process algebras [16, 24, 1, 25, 2] are an adequate mechanism to formally specify
and analyze networked and distributed systems. The process algebra literature
includes numerous semantic models. These semantic frameworks are used to
describe the behavior of processes as well as to define relations on them. Testing
semantics [7, 15] represents one of these semantic frameworks. Intuitively, two
processes are testing equivalent if they have the same responses for all the tests
belonging to a certain set. Depending on how these responses are analyzed,
several testing semantics can be defined: May, must, refusal, fair, etc. We consider
that this semantic framework is very suitable because it is easy to understand
and allows us to give different equivalences just by modifying the idea of what
a test is or when a test is successfully passed.

Once the basic frameworks were studied, research in process algebras has
tried to close the gap between formal models and real systems. Thus, features
which were initially abstracted have been introduced later. This is the case of
probabilistic information. In particular, if we concentrate only on probabilistic
testing, regardless whether the underlying model is a process algebra or another
� This research was partially supported by the Spanish MEC project WEST/FAST

TIN2006-15578-C02-01 and the Marie Curie project MRTN-CT-2003-
505121/TAROT.

formalism, several semantics have been defined. This area of research was very
active in the previous decade (we can mention [5, 35, 18, 30, 29, 33, 26, 12, 21, 6,
31]). Moreover, there also exists recent work on the topic (see, for example [19,
3, 28, 34, 4, 8]). Despite the myriad of papers on the subject, there is a lack of
papers comparing several testing approaches under the same umbrella. In fact,
most work in this direction is limited to compare a may and a must variants in
a given probabilistic setting. That is, we miss a classification in the probabilistic
setting similar to the ones provided in [9, 10] for nonprobabilistic processes. This
paper represents a first step towards such a complete study.

In this paper we study different testing semantics for the probabilistic process
algebra PPA defined in [30, 28]. This process algebra has two choice operators
(external and internal), which are extended with a probability. In addition, it
allows the definition of recursive behaviors. The study of the different semantics
is performed in a testing framework. We propose three families of tests according
to the capabilities of an external observer:

– In the reactive model [22] the environment can offer only one action at a
given time. Intuitively, an entity interacting with a system can press only
one button at a given time.

– In the generative model [11] the environment can offer more than an action
and with different probabilities. So, more than one button can be pressed at
a given time and they can be pressed with different strengths.

– In the limited generative model [29] the environment can offer several actions
at a given time, but the probabilities associated with these actions are the
same. So, more than one button can be pressed at a given time, but they have
to be pressed with the same strength.

For each of the above families of tests we consider three different definitions
of successfully passing a test:

– P may-pass T if the probability with which P passes T is greater than zero.
– P muss-pass T if the probability with which P passes T is equal to one.
– P passp T if the probability with which P passes T is equal to p.

The combination of these two ideas (the different families of tests and the
different interpretations of successfully passing a test) induce nine equivalence
relations. In order to provide real usefulness to these equivalences, we relate them
and provide either alternative characterizations or fully abstract denotational
semantics.

We will show that the may interpretation coincides in the three families of
tests. We define a fully abstract denotational semantics, based on traces, for the
induced equivalence. For the must-reactive interpretation, we show that a fully
abstract denotational semantics cannot be defined by using the usual least fix-
point techniques. Thus, we give an alternative characterization based on must
traces. The must interpretation coincides for the generative and limited gener-
ative models, and we give an alternative characterization based on acceptance
sets [15]. We show that the reactive testing equivalence is not a congruence and

≈R
must

�≈LG
must

= ≈G
must

� � �
≈R � ≈LG � ≈G

� � �
≈R

may
= ≈LG

may
= ≈G

may

Fig. 1. Hierarchy of testing equivalences for PPA.

we define an alternative characterization based on probabilistic traces. For the
generative model we have a fully abstract denotational semantics based on prob-
abilistic acceptance trees [28]. Finally, we provide an alternative characterization,
based on a set of essential tests, for the limited generative model. In Figure 1
we show how the different equivalences studied in this paper are related.

As a derived result, our testing equivalences appropriately deal with unfair
divergences caused by unguarded recursive definitions in the context of an inter-
nal choice. In fact, our results about fairness can be compared with those in [27,
32], while they are not so similar to those in [14] where fairness is only consid-
ered in the context of parallel compositions. A study on the relation between
probabilistic testing and fairness can be found in [31].

In terms of related work, our reactive and generative models follow the same
intuitive ideas as those in [11], but we do not need to give different operational
semantics for each of the models. We have just an operational semantics and
the differences between the models come from the considered families of tests.
The model described in [35], and other testing frameworks based on it, can be
compared to our generative point of view. They define a probabilistic process
algebra with two choice operators but, unlike PPA, the external choice does not
have an associated probability. This fact simplifies the operational semantics but
complicates the definition of a testing semantics: A process passes a test with
a set of probabilities. They adapt the notions of may and must equivalences by
computing the infimum and supremum of sets of probabilities. For these equiv-
alences, compositional characterizations are defined in [18] and characterized as
simulations in [19]. We think that these characterizations are so complicated
because of the absence of probabilities in external choices. In contrast, our op-
erational semantics is slightly harder, because we have to deal with probabilities
in the scope of the external choice, but testing equivalences are simpler and
more intuitive. Thus, the alternative characterizations for the may and must
interpretations are clearer and more similar to the nonprobabilistic model.

In [20, 17, 23] several equivalence relations for probabilistic processes are given
by adapting nonprobabilistic relations to the probabilistic setting. In spite of
being interesting, they relate probabilistic equivalence relations which are not in

a common framework. We address our work in a rather different way: We begin
by settling a testing framework, then we define natural semantic equivalences in
this framework, and, finally, we provide alternative characterizations for these
equivalences and relate them.

The rest of the paper is organized as follows. Section 2 presents the syntax,
operational and testing semantics for PPA. In Sections 3, 4, and 5 we study
testing semantics and alternative characterizations for the reactive, generative,
and limited generative models, respectively. Finally, in Section 6 we present our
conclusions.

2 An Overwiew of PPA

In this section, we briefly review the basic concepts of our probabilistic process
algebra: Syntax, operational semantics and testing semantics. This process alge-
bra was used in [28], so more details can be found there (in particular, intuitive
explanations of the operational semantics rules and the intended meaning of the
rules defining the interaction between a process and a test). In addition, in this
section we also define the interaction between a process and a test and adapt
the must and may equivalences to our probabilistic framework.

2.1 Syntax and Operational Semantics of PPA

Definition 1 Given a finite set of actions Act and a set of identifiers Id, the set
of PPA processes is defined by the following BNF expression:

P ::= Nil | Ω | X | a;P | P ⊕p P | P +p P | recX.P

where p ∈ (0, 1), a ∈ Act, and X ∈ Id. ��

From now on, except as noted, we only consider closed processes, that is
processes without free occurrences of variables. In this process algebra, Nil is a
deadlocked process, Ω is a divergent process, a;P denotes the action a prefix-
ing the process P , P ⊕p Q denotes an internal choice between P and Q with
associated probability p, P +p Q is an external choice between P and Q with
associated probability p, and recX.P is used to define recursive processes. We
can extend the external choice operator to an n-ary one.

Definition 2 Let P1, . . . , Pn be processes and p1, . . . , pn > 0 such that
∑

pi =
1. We define the generalized external choice as:

1.
∑1

i=1[1] P = P .
2.

∑n
i=1[pi] Pi = P1 +p1 (

∑n−1
i=1 [pi+1

1−p1
] Pi+1). ��

Next we give a syntactic definition for the stability of a process. It expresses
that a process does not have unguarded internal choices, or equivalently that
a process will not be able to (immediately) perform an internal transition. We
also define a function live computing whether a stable process is operationally
equivalent to Nil.

(PRE)
a;P

a−→1P
(INT1)

P⊕pQ>−→pP
(INT2)

P⊕pQ>−→1−pQ

(EXT1)
P>−→qP ′ ∧ stable(Q)

P+pQ>−→qP ′+pQ
(EXT2)

Q>−→qQ′ ∧ stable(P)

P+pQ>−→qP+pQ′

(EXT3)
P>−→q1P ′ ∧ Q>−→q2Q′

P+pQ>−→q1·q2P ′+pQ′

(EXT4)
P

a−→qP ′ ∧ stable(Q)

P+pQ
a−→p·q̂P ′ (EXT5)

Q
a−→qQ′ ∧ stable(P)

P+pQ
a−→(1−p)·q̂Q′

(REC) rec X.P>−→1P{rec X.P/X} (DIV)
Ω>−→1Ω

where q̂ = q
p·live(P)+(1−p)·live(Q)

.

Fig. 2. Operational Semantics of PPA.

Definition 3 We define the predicate stable(P) over PPA processes as:

– stable(Nil) = stable(a;P) = true
– stable(Ω) = stable(X) = stable(P1 ⊕p P2) = stable(recX.P) = false
– stable(P1 +p P2) = stable(P1) ∧ stable(P2)

We define the function live(P) over PPA processes as:

– live(Nil) = 0
– live(a;P) = 1
– live(P1 +p P2) = max(live(P1), live(P2)) ��

Even though the function live(_) is not defined for unstable processes, this
fact does not represent a problem since we will apply it only to stable processes.
The set of rules that define the operational semantics is given in Figure 2. There
are two types of transitions. The intuitive meaning of a transition P

a−→p Q
(external transitions) is that if the environment offers all the actions in Act then
the probability with which P performs a and then behaves as Q is equal to p;
the meaning of P >−→p Q (internal transitions) is that the process P evolves
to Q with probability p without interaction with the environment.

For the sake of simplicity, we use multisets of transitions in order to get sets
of transitions. So, if a transition can be derived in several ways, each derivation
generates a different instance of this transition. For example, let us consider the
process P = a + 1

2
a, where trailing occurrences of Nil have been omitted. If we

were not careful, we would have the transition P
a−→ 1

2
Nil only once, while we

should have this transition twice. This problem is similar for the ⊕p operator. So,
if a transition can be derived in several ways, we consider that each derivation
generates a different instance. In particular, when we define the testing semantics
we will consider multisets of computations as well. We will use the delimiters {|
and |} to denote multisets.

As shown in [28], this operational semantics separates between internal and
external transitions. So, a process can perform an external transition only if this
process is stable (that is, it cannot perform internal transitions).

P >−→p P ′ ∧ T⊕ = 0

P | T �−→p P ′ | T

T >−→p T ′ ∧ P⊕ = 0

P | T �−→p P | T ′
P >−→p P ′ ∧ T >−→q T ′

P | T �−→p·q P ′ | T ′

P
a−→p P ′ ∧ T

a−→q T ′

P | T �−→r1 P ′ | T ′
T

ω−→p T ′ ∧ P⊕ = 0

P | T
ω�−→r2 Nil

where r1 =
f

P,T
1 (p)·fP,T

2 (q)

μ(P,T)
and r2 =

f
P,T
2 (p)

μ(P,T)
.

fP,T
1 (p)= p∑

a {| r | ∃P ′,T ′,p′: P
a−→rP ′∧T

a−→p′T ′ |}
fP,T
2 (q)= q∑

a {| r | ∃P ′,T ′,p′: T
a−→rT ′∧P

a−→p′P ′ |}+
∑ {| r | ∃T ′: T

ω−→rT ′ |}
μ(P, T) =

∑
a {| fP,T

1 (p) · fP,T
2 (q) | ∃P ′, T ′ : P

a−→p P ′ ∧ T
a−→q T ′ |}

+
∑

{| fP,T
2 (p) | ∃T ′ : T

ω−→p T ′ |}

Fig. 3. Rules for the parallel composition.

Lemma 1 Let P be a process. If there exist p and P ′ such that P >−→p P ′

then there do not exist q, a, P ′′ such that P
a−→q P ′′. Equivalently, if there

exist p, a, P ′ such that P
a−→p P ′ then there do not exist q and P ′′ such that

P >−→q P ′′.

2.2 Testing Semantics

As usual, tests are processes where the alphabet Act is extended with a new
action ω indicating successful termination. The operational semantics of tests is
the same as that of processes (considering ω as an ordinary action). The rules
defining the interaction between a process and a test (modelled by their parallel
composition) are given in Figure 3. In these rules we use a normalization fac-
tor μ(P, T) similar to that in [6]. In addition, we also use two prenormalization
factors (fP,T

1 and fP,T
2) in order to distribute the probability associated with

those actions which cannot be performed by both sides of the parallel composi-
tion among the actions which can be performed by both sides. This represents a
small change with respect to the definition given in [28], but it does not change
the induced testing equivalence (even though it changes the probability with
which processes pass tests).

Example 1 Let P = (a;Nil) + 1
4

(b;Nil) and T = (a;Nil) + 1
2

ω. If we would not
use prenormalization factors we would have P passes the test T with a probability
1
5 =

1
4 · 12

1
4 ·

1
2+ 1

2
while using prenormalization factors we obtain a probability of

1
2 =

1
2

1
2+ 1

2
. This is a more intuitive result because the action b should not subtract

probability from a.

Definition 4 Let P be a process and T be a test. A computation is a maximal
sequence of transitions of the form

C = P | T 	−→p1 P1 | T1 	−→p2 · · ·Pn−1 | Tn−1
?	−→pn

R

where ? denotes either an empty label or the special action ω. A sequence is said
to be maximal when there do not exist p > 0 and R′ such that R

?	−→p R′.
When the last transition is of the form Pn−1 | Tn−1

ω	−→pn
Nil we say that

the computation is successful. We denote by C̃ the set of successful computations
from C. The probability of a successful computation S, denoted by Pr(S), is
inductively defined as

Pr(Nil) = 1 (i.e. T has succeeded)
Pr(P | T

∗	−→p C) = p · Pr(C)

We write P may-pass T if
∑

S∈C̃ Pr(S) > 0. We write P muss-pass T if∑
S∈C̃ Pr(S) = 1. We write P passp T if

∑
S∈C̃ Pr(S) = p. ��

In the previous definition, by maximal we mean that it cannot be extended,
that is, from the reached point on, the composition of process and test cannot
perform any action. Given a family of tests we can define the corresponding
notions of testing, may, and must equivalences with respect to this family.

Definition 5 Given a family of probabilistic tests T and two processes P and Q
we say:

– P and Q are probabilistic testing equivalent with respect to T , denoted by
P ≈T Q, iff for all T ∈ T we have P passp T ⇐⇒ Q passp T .

– P and Q are probabilistic may-testing equivalent with respect to T , denoted
by P ≈T

may Q, iff for all T ∈ T we have P may-pass T ⇐⇒ Q may-pass T .
– P and Q are probabilistic must-testing equivalent with respect to T , denoted

by P ≈T
must Q, iff for all T ∈ T we have P muss-pass T ⇐⇒ Q muss-pass T .

��

As shown in [28], the set of tests can be reduced by considering tests without
internal choices and without nondeterminism caused by prefixing by the same
action in an external choice.

Lemma 2 Let P be a process, T and T ′ be tests, and a ∈ Act. We have:

1. P passq (T ⊕p T ′) iff P passq1 T ∧ P passq2 T ′ ∧ p · q1 + (1 − p) · q2 = q

2. P passq (a;T) +p (a;T ′) iff P passq a; (T ⊕p T ′)

3 The Reactive Model

In the reactive model the environment can offer only one action each time, that
is, only one button can be pressed at a given time. In a testing framework, this
interpretation gives rise to tests being just traces finishing with the acceptance
action ω.

Definition 6 (Reactive Tests) The set of reactive tests, denoted by R, is
defined by the BNF expression T = ω | a;T . ��

3.1 Alternative Characterization for ≈R

The next example shows that ≈R, that is, the test equivalence induced by con-
sidering R as set of tests, is not a congruence. So, we cannot define a fully
abstract (compositional) denotational semantics for this equivalence.

Example 2 Consider P = (a; c)+ 1
2
b and P ′ = (a; c)+ 1

3
b. Obviously, P ≈R P ′,

but if we consider Q = a; b, we have P + 1
2

Q �≈R P ′ + 1
2

Q. For example, if
T = a; b;ω then we have P + 1

2
Q pass 2

3
T while P ′ + 1

2
Q pass 3

4
T .

However, the rest of the operators are congruent for ≈R.

Proposition 1 Let P and P ′ be processes such that P ≈R P ′. Then,

– For all action a ∈ Act we have a;P ≈R a;P ′.
– For all process Q and probability p ∈ (0, 1) we have P ⊕p Q ≈R P ′⊕p Q and

Q ⊕p P ≈R Q ⊕p P ′.

Let P (X) and P ′(X) be two terms with the free occurrence of the identifier X
(that is, processes but with a free variable). If for all process Q we have P (Q) ≈R

P ′(Q) then recX.P ≈R recX.P ′.

We will define an alternative characterization of this equivalence based on
the operational behavior of processes, considering probabilistic traces. First we
extend −→ to sequences of actions and >−→ to sequences of internal transitions.

Definition 7 Let P and P ′ be processes. We write P >−→∗
p P ′ if this transition

can be derived from the following rules:

P >−→∗
1 P if stable(P)

P >−→∗
p P ′ if ∃q, q′, Q : P >−→q Q >−→∗

q′ P ′ ∧ p = q · q′

We write P
s−→p P ′ if this transition can be derived from the following rules:

P
ε−→p P ′ if P >−→∗

p P ′

P
〈a〉◦s′
−→ p P ′ if ∃P1, P2, p1, p2, p3 : P >−→∗

p1
P1 ∧ P1

a−→p2 P2 ∧ P2
s′
−→p3 P ′

where p = p1 · p2∑
P ′ {| q | P1

a−→qP ′ |} · p3 and s ◦ s′ denotes the concatenation of s

and s′. We write P
s−→0 P ′ if P

s−→p P ′ cannot be derived from the previous
rules. ��

Let us note that if P >−→∗
p P ′ then P ′ must be stable. So, >−→∗ is not exactly

the reflexive and transitive closure of >−→. Let us also note that the value p
appearing in P

s−→p P ′ indicates the product of the probabilities associated with
the nondeterministic choices involved in the execution of the sequence s. This
nondeterminism can be produced by internal transitions but also by external
transitions labelled with the same action. As in the case of >−→ and −→, we must
consider the possible repetitions of generalized transitions of the form P

s−→p P ′

and P >−→∗
p P ′.

Definition 8 Let P be a process. We define the set of probabilistic traces of P
as ptraces(P) = {(s, p) | p =

∑
P ′ {| q | P s−→q P ′ |} ∧ p > 0}. Given a trace s,

we define the function prob(P, s) as p if (s, p) ∈ ptraces(P) and as 0, otherwise.
��

Lemma 3 Let P be a process. We have prob(P, s) = p iff P passp s̃, where s̃
denotes the reactive test conformed by the actions of the sequence s finishing
with ω.

Theorem 1 Let P and P ′ be processes. We have P ≈R P ′ iff ptraces(P) =
ptraces(P ′).

3.2 The must Reactive Equivalence

The next example shows that we cannot define a fully abstract denotational
semantics using the usual least fixpoint technique. Instead, we will define an
alternative characterization from the probabilistic traces of a process.

Example 3 Let Q = recX.P (X), where P (X) = (a;Nil) ⊕p X. We have that
Q ≈R

must a;Nil. However, Ω is fixpoint of the equation X = P (X) because Ω ≈R
must

(a;Nil)⊕p Ω. Obviously, Ω is the least fixpoint. So, if we define the semantics of
a recursive process with the usual technique we do not obtain the desired results.

Definition 9 Let P be a process. We define the set of must probabilistic traces
of P as must-traces(P) = {s | (s, 1) ∈ ptraces(P)}. ��

That is, given a process, we consider its probabilistic traces which have 1
as associated probability. The induced equivalence coincides with ≈R

must as it is
stated in the next result.

Theorem 2 Let P, P ′ be processes. We have P ≈R
must P ′ iff must-traces(P) =

must-traces(P ′).

3.3 The may Reactive Equivalence

Following a similar reasoning to that used for the must reactive equivalence, we
can define an alternative characterization for ≈R

may, considering the traces of a
process and forgetting the probabilistic information.

Definition 10 Let P be a process. We define the set of may probabilistic traces
of P as may-traces(P) = {s | (s, p) ∈ ptraces(P)}. ��

Theorem 3 Let P and P ′ be processes. We have P ≈R
may P ′ iff may-traces(P) =

may-traces(P ′).

But in this equivalence we can go further because a fully abstract denotational
semantics for ≈R

may can be given in terms of traces. The semantic domain, denoted
by TRAAct, will be the sets of traces. We denote by R,R1, . . . the elements
of TRAAct and by [[P]]Rmay the semantics of process P .

Definition 11 Let R1, R2 ∈ TRAAct. We write R1 �TRA R2 if for all s ∈ Act∗

we have s ∈ R1 implies s ∈ R2. We write R1 =TRA R2 if for all s ∈ Act∗ we have
s ∈ R1 iff s ∈ R2. ��

Lemma 4 (TRAAct,�TRA) is a cpo.

Nil only has the empty trace. So, [[Nil]]Rmay = {ε}. Ω can execute no trace
because the only transition which Ω can perform is Ω >−→1 Ω. So, this process
cannot be stable. Thus, [[Ω]]Rmay = ∅.

For all a ∈ Act we define the semantic function a;_ :: TRAAct −→ TRAAct.
The element a;R ∈ TRAAct has the same traces as R but prefixed by the action
a. So, a;R = {(a◦s) |s ∈ R}∪{ε}. We add the empty trace because the syntactic
process associated with this semantic process is stable.

For all p ∈ (0, 1) the functions ⊕p :: TRAAct ×TRAAct −→ TRAAct return
the union of the corresponding sets of traces. That is, R1 ⊕p R2 = R1 ∪ R2.

In the case of the external choice we must consider if any of the processes
is equivalent to Ω. For all p ∈ (0, 1) the function +p :: TRAAct × TRAAct −→
TRAAct is defined as

R1 +p R2 =
{

∅ if R1 =TRA ∅ ∨ R2 =TRA ∅
R1 ∪ R2 otherwise

Proposition 2 For all a ∈ Act the semantic function a;_ is continuous. For all
p ∈ (0, 1) the semantic functions ⊕p and +p are continuous.

As usual when defining a denotational semantics, the meaning of recursive
expressions recX.P (X) is given by the limit of its finite approximations

P0 = Ω,P1 = P (Ω), . . . , Pn = Pn(Ω)

Since all the operators of the language are continuous, this limit is the least
fixpoint of the equation X = P (X). That is, [[recX. P (X)]]Rmay = �∞

n=0[[Pn]]Rmay.

Lemma 5 Let P be a process. We have s ∈ [[P]]Rmay iff P may-pass s̃, where s̃
denotes the reactive test conformed by the actions of the sequence s finishing
with ω.

Theorem 4 Let P, P ′ be processes. We have [[P]]Rmay =TRA [[P ′]]Rmay iff P ≈R
may P ′.

Let us remark that a fully abstract denotational semantics can be easily de-
fined, from this one, for ≈R (reactive testing equivalence) if we consider the
subset of PPA without external choices. It is enough to modify the semantic
functions adding a probability equal to 1 to the empty trace, taking into ac-
count the probability associated with the traces of R, when defining a;R, and
considering the probability associated with internal choices (see [28]).

As a concluding remark, we have that may and must reactive equivalences do
not imply reactive equivalence (obviously, reactive equivalence implies may and
must equivalences). For example, let us consider P = a ⊕ 1

3
b and Q = a ⊕ 1

2
b,

where trailing occurrences of Nil have been removed. We have P ≈R
may Q and

P ≈R
must Q but P �≈R Q, because, for example, P pass 1

3
a;ω while Q pass 1

2
a;ω.

Finally, let us mention that reactive equivalences are in general too weak.
For example, they cannot distinguish between a +p b and a +q b. Also, these
equivalences identify processes which will be divergent in the next step. For
example, reactive equivalences identify the processes a;Ω and b;Ω (and both
are equivalent to Nil).

4 The Generative Model

In the generative model the environment can offer several actions each time, and
with different probabilities. That is, several buttons can be pressed at the same
time and with different strengths. So, in this model the family of tests, denoted
by G, is the whole set of probabilistic tests. Nevertheless, the set of tests can
be reduced by applying Lemma 2 and by considering that recursive tests do not
increase the distinguishing power of tests.

For the generative testing equivalence (≈G) a fully abstract denotational se-
mantics was defined in [28] and extensively studied. This denotational semantics
is based on the notion of probabilistic acceptance trees which are a natural ex-
tension of acceptance trees [13]. These trees have two kinds of nodes: Internal
and external. The root is an internal node. Arcs outgoing from internal nodes
are labelled with different states (sets of pairs 〈action, probability〉 where the
actions are different, and if the state is not empty then the probabilities sum
up to one), with an associated probability. The sum of these probabilities is less
than or equal to 1, and the difference between one and this sum denotes the
probability of divergence at this point. These arcs go to external nodes. The
arcs outgoing from external nodes are labelled with the actions belonging to the
state labelling the ingoing arc. For any action in that state, there is a (unique)
arc labelled with this action. These arcs go to internal nodes. An example is
shown in Figure 4.

There are two important differences with respect to nonprobabilistic ac-
ceptance trees (of course, out of probabilities). First, there can be more than
one state with the same actions. For example, a process may have the states:
{(a, 1

3), (b, 2
3)} and {(a, 1

4), (b, 3
4)}. Second, the continuations after the same ac-

tion are not joined. So the process (a;P)⊕p ((a;P ′) +q (b;Q)) is not necessarily
equivalent to the process (a; (P ⊕q′ P ′)) ⊕p ((a; (P ⊕q′′ P ′)) +q (b;Q)).

Due to lack of space, we do not present the semantic functions corresponding
to the syntactic operators (they can be found in [28]) and we just repeat the
final result.

Theorem 5 Let P, P ′ be processes. We have P ≈G P ′ iff [[P]]G = [[P ′]]G .

⊕
�����

��������

[13]{(a, 1
4), (b, 3

4)} [13]{(a, 3
4), (b, 1

4)}
[13] {(a, 1)}

+ ++

�
�

�
�

a b �
�

�
�

a ba

⊕⊕ ⊕ ⊕ ⊕

+

⊕

[1] {(d, 1)}

d

+

⊕

[1]{(c, 1)}

c

+

⊕

[1]{(d, 1)}

d

+

[1] ∅

Generative probabilistic acceptance tree of P

• {a}, {a, b}

�� ��
◦∅, {c}, {d} •

�� ��
◦◦

c d

a b

Probabilistic-must
generative
acceptance sets of P

Fig. 4. Semantics of P = (a; d; Ω) ⊕ 1
3

(((a; c; Ω) + 1
4

b; Ω) ⊕ 1
2

((a;Nil) + 3
4

b; d; Ω)).

Even though we have increased the set of tests, this fact does not influence
the may interpretation, that is, as in the nonprobabilistic case, it is enough to
consider sequential tests to characterize a may equivalence. Thus, if two processes
are may reactive equivalent, they will be may generative equivalent. This is so
because if one process passes a generative test with a probability greater than
zero then each successful computation generates a sequential test conformed
by the actions taking part in the computation. Because they are may reactive
equivalent, this computation is also successful for the other process, and so it
passes the generative test with a probability greater than 0.

Theorem 6 Let P and P ′ be processes. We have P ≈R
may P ′ iff P ≈G

may P ′.

4.1 The must Generative Equivalence

Using a similar argument to that of Example 3, we cannot define a fully abstract
denotational semantics using the usual least fixpoint techniques for this equiv-
alence. Instead, we will define an alternative characterization, in the same way
that for the nonprobabilistic case, based on acceptance sets [7, 15].

Definition 12 Given a stable process P , the set of actions that can be (imme-
diately) performed by P is given by S(P) = {a | ∃P ′, p : P

a−→p P ′}. Given a

process P and a sequence of actions s ∈ Act∗, we define the acceptance sets of
P after s as:

A(P, s) =

{
∅ if

∑
Q {| p | P s−→p Q |} < 1

{S(P ′) | ∃P ′, p : P
s−→p P ′ ∧ p > 0} otherwise

��
The previous definition needs some explanation. In order to compute the

acceptance sets of a process after a sequence s, first we compute the processes
to which the process may evolve by performing the generalized external tran-
sition corresponding to s. If the sum of the probabilities associated with these
transitions is less than one, then there exists a computation reaching a divergent
process. In this case, as in the nonprobabilistic case, we consider that from this
point on the process is divergent, and we return ∅ as acceptance set.1 For exam-
ple, let us consider P = (a;Ω) + 1

2
(a; b;Nil). We have

∑
{| p | P 〈a〉−→p Q |} = 1

2

because we only can derive P
〈a〉−→ 1

2
b;Nil (we cannot derive P

〈a〉−→ 1
2

Ω because Ω

is not stable). Thus, A(P, 〈a〉) = ∅ (as in the nonprobabilistic case, this process
is must equivalent to a;Ω). If the sum of these probabilities is equal to 1 then
we compute the acceptance sets as in the nonprobabilistic setting (an example
is shown in Figure 4).

Let us note that, as in the must-reactive case, this alternative characterization
considers unfair divergences caused by unguarded recursive definitions in internal
choices. For example, let P = recX.(a;Nil) ⊕ 1

3
X. We have

P >−→∗
1
3

a;Nil, P >−→∗
2
9

a;Nil, P >−→∗
4
27

a;Nil . . .

and the probabilities associated with these transitions sum up to 1 since we have
1
3

∑∞
i=0(1 − 1

3)i = 1. So, A(P, ε) = {{a}} and then P is equivalent to a;Nil.
Next, we define an equivalence relation which coincides with ≈G

must.

Definition 13 Let A and B be acceptance sets. We write A � B if for every
A ∈ A there exists B ∈ B such that B ⊆ A, and for every B ∈ B there exists
A ∈ A such that A ⊆ B.

Let P and P ′ be processes. We write P =must P ′ if for all s ∈ Act∗ we have
A(P, s) � A(P ′, s). ��
Theorem 7 Let P and P ′ be processes. We have P ≈G

must P ′ iff P =must P ′.

5 The Limited Generative Model

In the limited generative model we consider deterministic2 tests and such that
there is an equitable distribution of probabilities among the offered actions at
1 Let us remark that A(P, s) = ∅ is not the same as A(P, s) = {∅}. The former

corresponds to a divergent process (i.e. equivalent to Ω) while the latter corresponds
to a deadlocked process (i.e. equivalent to Nil).

2 This is not a real constraint because, by Lemma 2, nondeterministic tests do not
increase the distinguishing power.

a given time. This means that several buttons can be simultaneously pressed but
all of them with the same strength.

Definition 14 The set of limited generative tests, denoted by LG, is defined by
the BNF expression T = Nil |

∑n
i=1[

1
n]bi;Ti, where bi ∈ Act ∪ ω are different

actions. ��
The may interpretation in this model coincides with that of the reactive

model. In the case of the must interpretation, we have that ≈LG
must coincides with

≈G
must. Intuitively, if a process passes a test with probability 1 it does not matter

the possible distribution of probabilities among the offered actions.

Theorem 8 Let P and P ′ be processes. We have P ≈LG
may P ′ iff P ≈G

may P ′. We
have P ≈LG

must P ′ iff P ≈G
must P ′.

In [29], an alternative characterization based on limited probabilistic barbs
was given for the limited generative testing equivalence (≈LG), for a probabilistic
version of LOTOS. These results can be adapted to our framework. First, we
precisely define the new set of tests.

Definition 15 The set of limited probabilistic barbs, denoted by LPB, is defined
by the BNF expression: T = ω |

∑n
i=1[

1
n]bi;Ri, where bi ∈ Act ∪ ω are different

actions, and Ri = Nil for all 1 ≤ i < n while Rn = T .
We write P ≈LGB P ′ if for all T ∈ LGB we have P passp T iff P ′ passp T . ��
That is, a limited probabilistic barb is a limited probabilistic test such that

at most only one of the offered actions at each time has a continuation (the
rest of actions are prefixing the process Nil). This family of tests has the same
distinguishing power as the whole family, as it is stated in the next result.

Theorem 9 Let P and P ′ be processes. We have P ≈LG P ′ iff P ≈LGB P ′.

But this alternative characterization is not suitable to be extended to a de-
notational semantics. A fully abstract denotational semantics could be given for
this equivalence by modifying the probabilistic acceptance trees model, but the
definitions are too involved since several states must be joined into one. For
example, we have (a + 1

4
b) ⊕ 1

2
(a + 3

4
b) ≈LG a + 1

2
b (Nil’s have been omitted),

while these two processes are not equivalent in the generative model (the test
T = (a;ω) + 1

3
(b;Nil) distinguishes them).

6 Conclusion

In this paper we have proposed a number of testing equivalences on PPA. Since
we use a testing framework, the definitions of these equivalences are very natural
and easy to understand. Testing equivalences are intuitive but they are not
suitable for a practical use since they are based on the behavior of a process with
respect to an infinite set of tests. So, we have given alternative characterizations
and fully abstract denotational semantics. The hierarchy we have settled brings
up both useful information about different probabilistic testing equivalences and
relationships between denotational models.

References

1. J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge Tracts in Com-
puter Science 18. Cambridge University Press, 1990.

2. J.A. Bergstra, A. Ponse, and S.A. Smolka, editors. Handbook of Process Algebra.
North Holland, 2001.

3. D. Cazorla, F. Cuartero, V. Valero, F.L. Pelayo, and J.J. Pardo. Algebraic theory
of probabilistic and non-deterministic processes. Journal of Logic and Algebraic
Programming, 55(1–2):57–103, 2003.

4. L. Cheung, M. Stoelinga, and F. Vaandrager. A testing scenario for probabilistic
processes. Journal of the ACM, 54(6):Article 29, 2007.

5. I. Christoff. Testing equivalences and fully abstract models for probabilistic pro-
cesses. In 1st Int. Conf. on Concurrency Theory, CONCUR’90, LNCS 458, pages
126–140. Springer, 1990.

6. R. Cleaveland, Z. Dayar, S.A. Smolka, and S. Yuen. Testing preorders for proba-
bilistic processes. Information and Computation, 154(2):93–148, 1999.

7. R. de Nicola and M.C.B. Hennessy. Testing equivalences for processes. Theoretical
Computer Science, 34:83–133, 1984.

8. Y. Deng, R. van Glabbeek, M. Hennessy, C. Morgan, and C. Zhang. Characterising
testing preorders for finite probabilistic processes. In 22nd Annual IEEE Sympo-
sium on Logic in Computer Science, LICS 2007, pages 313–325. IEEE Computer
Society Press, 2007.

9. R. van Glabbeek. The linear time-branching time spectrum II. The semantics of
sequential processes with silent moves. In 4th Int. Conf. on Concurrency Theory,
CONCUR’93, LNCS 715, pages 66–81. Springer, 1993.

10. R. van Glabbeek. The linear time-branching time spectrum I. The semantics of
concrete, sequential processes. In J.A. Bergstra, A. Ponse, and S.A. Smolka, editors,
Handbook of process algebra, chapter 1. North Holland, 2001.

11. R. van Glabbeek, S.A. Smolka, and B. Steffen. Reactive, generative and stratified
models of probabilistic processes. Information and Computation, 121(1):59–80,
1995.

12. C. Gregorio and M. Núñez. Denotational semantics for probabilistic refusal testing.
In PROBMIV’98, Electronic Notes in Theoretical Computer Science 22. Elsevier,
1999.

13. M. Hennessy. Acceptance trees. Journal of the ACM, 32(4):896–928, 1985.
14. M. Hennessy. An algebraic theory of fair asynchronous communicating processes.

Theoretical Computer Science, 49:121–143, 1987.
15. M. Hennessy. Algebraic Theory of Processes. MIT Press, 1988.
16. C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
17. D.T. Huynh and L. Tian. On some equivalence relations for probabilistic processes.

Fundamenta Informaticae, 17:211–234, 1992.
18. B. Jonsson and W. Yi. Compositional testing preorders for probabilistic processes.

In 10th IEEE Symposium on Logic In Computer Science, pages 431–443. IEEE
Computer Society Press, 1995.

19. B. Jonsson and W. Yi. Testing preorders for probabilistic processes can be char-
acterized by simulations. Theoretical Computer Science, 282:33–51, 2002.

20. C.-C. Jou and S.A. Smolka. Equivalences, congruences and complete axio-
matizations for probabilistic processes. In 1st Int. Conf. on Concurrency Theory,
CONCUR’90, LNCS 458, pages 367–383. Springer, 1990.

21. M. Kwiatkowska and G.J. Norman. A testing equivalence for reactive probabilistic
processes. In EXPRESS’98, Electronic Notes in Theoretical Computer Science 16.
Elsevier, 1998.

22. K. Larsen and A. Skou. Bisimulation through probabilistic testing. Information
and Computation, 94(1):1–28, 1991.

23. N. López and M. Núñez. An overview of probabilistic process algebras and their
equivalences. In Validation of Stochastic Systems, LNCS 2925, pages 89–123.
Springer, 2004.

24. R. Milner. Communication and Concurrency. Prentice Hall, 1989.
25. R. Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge Uni-

versity Press, 1999.
26. K. Narayan Kumar, R. Cleaveland, and S.A. Smolka. Infinite probabilistic and

nonprobabilistic testing. In 18th Conf. on Foundations of Software Technology and
Theoretical Computer Science, FSTTCS’98, LNCS 1530, pages 209–220. Springer,
1998.

27. V. Natarajan and R. Cleaveland. Divergence and fair testing. In 22nd Int. Collo-
quium on Automata, Languages and Programming, ICALP’95, LNCS 944, pages
648–659. Springer, 1995.

28. M. Núñez. Algebraic theory of probabilistic processes. Journal of Logic and Alge-
braic Programming, 56(1–2):117–177, 2003.

29. M. Núñez and D. de Frutos. Testing semantics for probabilistic LOTOS. In 8th
IFIP WG6.1 Int. Conf. on Formal Description Techniques, FORTE’95, pages 365–
380. Chapman & Hall, 1995.

30. M. Núñez, D. de Frutos, and L. Llana. Acceptance trees for probabilistic processes.
In 6th Int. Conf. on Concurrency Theory, CONCUR’95, LNCS 962, pages 249–263.
Springer, 1995.

31. M. Núñez and D. Rupérez. Fair testing through probabilistic testing. In For-
mal Description Techniques for Distributed Systems and Communication Protocols
(XII), and Protocol Specification, Testing, and Verification (XIX), pages 135–150.
Kluwer Academic Publishers, 1999.

32. A. Rensink and W. Vogler. Fair testing. Information and Computation, 205(2):125–
198, 2007.

33. R. Segala. Testing probabilistic automata. In 7th Int. Conf. on Concurrency
Theory, CONCUR’96, LNCS 1119, pages 299–314. Springer, 1996.

34. M. Stoelinga and F. Vaandrager. A testing scenario for probabilistic automata.
In 30th Int. Colloquium on Automata, Languages and Programming, ICALP’03,
LNCS 2719, pages 464–477. Springer, 2003.

35. W. Yi and K.G. Larsen. Testing probabilistic and nondeterministic processes. In
12th IFIP/WG6.1 Int. Symposium on Protocol Specification, Testing and Verifica-
tion, PSTV’92, pages 47–61. North Holland, 1992.

