A Specification Framework for Earth-friendly Logistics

Ichiro Satoh

National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
E-mail: ichiro@nii.ac.jp

Abstract. This paper describes the use of a formal approach to logistics manage-
ment systems to reduce the environmental impact of logistics operations. Trucks
play an essential role as carriers in modern logistics services, but collectively they
emit a huge quantity of carbon dioxide. To reduce fossil fuel consumption and
carbon dioxide emissions resulting from transport, we must enhance the trans-
port efficiency of trucks. The milk-run approach is one of the most effective and
popular solutions to this problem. However, it tends to be too complicated to
implement in a logistics management system. The framework described in this
paper provides a language for specifying the routes of trucks and an order rela-
tion as a route selection mechanism. The former is formulated as process calculus
and the latter selects suitable trucks according to their routes. This paper also de-
scribes a prototype implementation of the framework as a distributed logistics
management system based on the use of RFID tags.

1 Introduction

Most transport logistics operations involve huge numbers of trucks, with each truck con-
suming large quantities of fossil fuel and discharging a large quantity of carbon dioxide
(COy) into the atmosphere. To reduce fossil-fuel consumption and CO5 emissions from
transport, we need to enhance the efficiency of trucks. The milk-run approach, which
is one of the most efficient and popular ways of improving truck-load ratios, refers to
a means of transportation in which a single truck cycles around multiple suppliers to
collect or deliver freight. The name is derived from the milk-runs carried out by farm-
ers collecting milk from dairy cows spread out over pastures. For example, suppose five
suppliers, e.g., dairy farmers, send their products to the processing plant every week-
day. Using the milk-run approach, one truck calls at each of the suppliers on a daily
basis before delivering the collected milk to the customer’s plant. In a more traditional
approach, e.g., the Just-In-Time approach, all suppliers have their own trucks and send
one truckload per day to the customer (Figure 1).

Recently, a variety of industries, e.g., food and automobile manufacturers, in addi-
tion to the dairy industry, have attempted to use the milk-run approach to reduce the
environmental impact of their logistics operations. However, in the milk-run approach,
they have to provide multiple trucks using varied routes to satisfy the needs of customers
and cater for the requirements of the products. Therefore, the customers and suppliers
are confronted by another problem: they need to design truck routes and select suitable
trucks with routes that satisfy their requirements.

Dairy
farmar's
00" truck

Dairy N Dairy
farmar's 5 ' factory's '
@ truck ° @ truck
00
Dairy Dairy factory e
farmar's o
truck
@ Legacy approach @ Milk-run approach
00 ° (three trucks) (one truck)
Dairy farmar Dairy farmar

Fig.1. Legacy approach vs. Milk-run approach.

This paper proposes a novel framework for specifying truck routes and selecting
appropriate trucks. The framework introduces a specification language that describes
truck routes and a mechanism for selecting suitable milk-run trucks. Since the language
is formulated based on an extended process calculus for specifying and reasoning on the
routes of trucks, we can determine whether a truck can visit various points, e.g., farmers
and manufacturers, along its route to collect or deliver items. The mechanism enables
collection/delivery points to select trucks according to the truck route because the route
a truck takes is critical in determining its efficiency. The framework was inspired by
our experience of real logistics systems. We implemented a prototype of the framework
in a distributed logistics management system. We believe that this framework provides
a novel and practical application of process calculi in the real world. However, we
leave the theoretical aspects of the framework to our future papers because this paper
addresses a fundamental platform for managing a milk-run logistics operation.

This paper is organized as follows: Section 2 presents the basic ideas behind the
framework. Section 3 defines a process calculus for specifying the routes of trucks for a
milk-run logistics-operation, and Section 4 presents an order relation over terms of the
languages as a mechanism for selecting routes. Section 5 describes a prototype imple-
mentation of the framework and a typical application scenario and Section 6 includes a
survey of related work. Section 7 discusses our future work and Section 8 has conclud-
ing remarks.

Factory A Product
| \ l
E m=a B
C

-\

|

Fig.2. Five factories with dependencies

2 Background

This paper describes a formal method for specifying the routes of trucks and selecting
appropriate trucks to support milk-run operations in transport logistics.

2.1 Example Scenario

Before discussing the framework proposed in this paper, we describe our basic example
scenario. Figure 2 shows five factories, A, B, C, D, and E, that have the following
dependencies:

Factory A manufactures products and ships the products to factories B and C.
Factory B manufactures products and ships the products to factory D.
Factory C manufactures products and ships the products to factory D.
Factory D manufactures products and ships the products to factory E.

We assume that a truck has sufficient carrying capacity. It starts at factory A and may
visit factory A again. Figure 3 shows four trucks carrying out milk-runs on different
routes. The first, second, and third trucks can satisfy the above requirements but the
fourth cannot. The third is less efficient than the first and second on their rounds. The
framework proposed in this paper was inspired by our real experiences. Although the
milk-run approach is effective in reducing the amount of CO, emitted by trucks, its
management tends to be complicated, which is one of the most significant barriers pre-
venting wider adoption of the approach in real logistics.

2.2 Requirements

This paper assumes that one or more trucks involved in milk-run logistics operations
call at multiple points along their routes. Customers and suppliers have to decide which
truck and which route will best satisfy their requirements, and this decision is not an
easy one. The framework must therefore satisfy the following demands of real logistics
systems.

— One or more trucks are available for a milk-run, but their routes may be different.
Therefore, points, i.e., suppliers and customers, need to select appropriate trucks
according to truck routes. This framework therefore needs to provide a mechanism
for selecting truck routes.

— Trucks may be shared by multiple suppliers and customers, so that they collect
products at one or more source points and deliver the products at one or more
destination points on their way. The trucks need to visit the source points before
they visit the destination points. The framework therefore needs to specify the order
in which trucks call at various points.

— The routes taken by trucks may also affect product quality. For example, foods
should be transported by the shortest route possible to keep their freshness, and per-
ishable foodstuffs should be picked up later than preservable foodstuffs and taken
to a food processor or consumer.

Truck 1 Truck 2
[| [|
00 o0

Jore

Truck 3 Truck 4
|| | |
00 o0
((
: ol : ol
B

Fig.3. Four trucks for milk-run operation

— Some products may be collected/delivered at points by trucks without any need
for a specific order of arrival at collection/delivery points. That is, the order of the
movement of trucks between points does not affect the efficiency of the trucks’
operations. Suppliers or customers should select a truck according to the number
of movements between the points that the trucks visit.

— Truck routes tend to be regular and static, although they may be changed weekly
or monthly. Nevertheless, trucks may bypass some points or take shortcuts with-
out stopping at specified points if they have no freight to deliver to the points or
products to pick up.

— Pallets or boxes that contain multiple products are considered as transport units in
many current logistics systems, rather than as individual products. These types of
containers may have multiple destinations and the receivers may take only some of
the products in the container when it arrives at their point.

— In real logistics systems, most points, i.e., suppliers and customers, involve small
to medium enterprises or individual operators. They do not want to invest in any
additional equipment to support milk-run logistics.

— Current logistics management systems rely heavily on barcodes or RFID tags at-
tached to products or containers. The framework should therefore be compatible

with existing infrastructure and equipment for reading barcodes or tags. However,
two-dimensional barcodes or RFID tags do not hold a large amount of data, e.g., up
to 128 bytes.! The time required to read data from an RFID tag tends to be propor-
tional to the size of the data. The length of route specification should be compact.

2.3 Basic Approach

Truck routes and the requirements of suppliers and customers are various and com-
plex. The selection of trucks for milk-run operations is critical for industrial efficiency
and for minimizing carbon dioxide emissions. Careful consideration must be given to
selecting suitable trucks with routes that satisfy the requirements of customers and sup-
pliers. Therefore, we need a formal method to solve this problem. To satisfy the above
requirements, the framework has two parts.

— It provides a specification language for describing and analyzing truck routes. The
language is aimed at specifying only the routes of trucks formulated as an extended
process calculus with the expressiveness of truck routes between collection/delivery
points.

— It framework defines an algebraic order relation over the terms of the language. The
relation is defined based on the notion of bisimulation and compares possible truck
routes and the routes required by its specifications. This allows us to accurately
determine whether the former satisfies the latter.

Note that the order relation is not intended to generate the most efficient route. Thus,
the computational complexity for this relation is not large. Since our goal is to develop
a suitable mechanism for selecting trucks for milk-run logistics operations, this paper
does not limit the types of products that the trucks carry.

2.4 Remarks

The framework does not assume any particular logistics system and the specifica-

tions of all trucks are independent of any particular logistics service.

— The current implementation does not support any real-time constraints. However,
the timing of a truck’s arrival at various points tends to depend on external factors,
e.g., traffic congestion and the cost of the shipment, in real logistics systems. The
milk-run approach is, by its nature, suitable for earth-friendly logistics systems, but
not for just-in-time ones.

— The framework is not intended to provide route optimization because truck routes
tend to be designed according to external factors.

— Some readers may think that simple executable languages, such as Lisp and Prolog,

should be used to specify routes, but it is difficult to verify whether or not routes

written in such languages will satisfy the requirements of customers and suppli-
ers because these languages have many primitives that are not used in describing
routes.

' The amount of data held by barcodes and RFID tags depends on individual systems.

3 Specification Language for Milk-Run Truck Routes

This section defines a language for specifying and reasoning about truck routes. The
language consists of two classes. The first is designed to specify truck routes and the
second is designed to specify the routes required by products or customers.

Definition 1 The set £ of expressions of the language, ranged over by E, F1, Eo, . ..
is defined recursively by the following abstract syntax:

E:=0 | / | FEi; Es | FEi+E>
| FE1#FEs | FEi1 % Ey | Fi & By | E*

where L is the set of location names ranged over by ¢, /1, /{5, ..., and where points
correspond to the locations of suppliers and customers. We often omit 0. We describe a
subset language of £ as S, when eliminating By # Es, E1 % Fo, F1 & E5,and E* from
E.Let S, 51,95, ...beelements of S. 0

This framework assumes that each truck has its own route written in S and that its driver
visits points along the route, i.e., intuitively, the meaning of the terms is as follows:

— 0 represents a terminated route.

— { represents that a truck moves to a point called ¢.

— FEj; E5 denotes the sequential composition of two routes 7 and Fs. If the route
of F; terminates, then the route of E> follows that of F .

— Ej+FE5 represents the route of a truck according to either £y or Es, where the
selection is done by the truck.

— E1#F5 means that a truck itself can go through either F; or Fs.

— F1%FE> means that a truck can follow either F/; before E or E5 before Fq on its
route.

— FE;&FE5 means that two routes, F; and Eo, may be executed asynchronously.

— E* is a transitive closure of £ and means that a truck may move along F an
arbitrary number of times.

where in E+F5 the truck can select the E; (or E5) route when the E route is avail-
able. For example, if the F; route is available and the F5 route is congested, the truck
goes through the E; route. F1#FE> means that a truck can go through either £ or Es.
E1%E5, F1&Fs, and E* are used to specify possible routes. For example, F1#Fo
permits the truck to go through one of the F; or E5 routes.

To accurately express such routes, we need to define a specification language based
on a process calculus approach such as CCS [6]. The semantics of the language are
defined by the following labeled transition rules:

Definition 2 The language is a labeled transition system (£, £ U {7} { ==C & x
Elae EU{r}}) is defined as the induction rules below:

- B -5 R, E -5 R B, 5 B
%0 E1;E2LE£;E2 E1+E2LE1 E1+E2L>E§

B -5 B B, % B
Ei& By~ E, 8By Fr&FE: —— Ei 8 E)

B Ef - - -
Ev; By > E{ ;B2 E\#E. - FE FE\#E;—>E; E1%FE - FE ;B>

_ Jola By > Ej

E1%FEy > FEy; E1 F1+Ey, S E\+FEy FEi+Ey— E1+F)

B - Ej By 5 Ej

E\ & E; - E}| & E3

E1 & Ey — E & F

where 0 ; F is treated as being syntactically equal to E. E* is recursively defined as
0#(FE ; E*).We often abbreviate By — --- — FE,, to Eg(—)"E,,. 0

In Definition 2, the ¢-transition defines the semantics of a trucks movement. For ex-
ample E —*, B’ means that the truck moves to a point named ¢ and then behaves as

E’. Also, if there are two possible transitions F N Fiand F L, FE5 for a truck,
the processing by the truck chooses one of the destinations, ¢1 or /5. In contrast, the
T-transition corresponds to a non-deterministic choice of a truck’s routes .

Readers may think that the above operational semantics could be more compact.
However, the aim is to design a system that can be easily implemented because the
purpose of the framework is not to provide just a theoretical foundation for determining
truck-route logistics, but a practical mechanism for selecting suitable trucks for milk-
run operations. The language does not needs recursive or loop notations, because each
truck does not continue to run for 24 hours everyday.

We show several basic examples of the language as shown in Figure 4.

— Route specification,a ; b ; ¢ ; d,in S is interpreted as follows:

aib;c;d—Sb;c;d
b
—c;d
. d
d
—

The first diagram in Figure 4 illustrates the above derivation.
— Next, we show an example of a specification in £. This is a route requirement.

a;(b#c);d;e#
where # corresponds to a combination of two required routes so that trucks are

required to follow both routes as shown in the third diagram in Figure 4. That is, a
truck needs to call at point @ and then at either b or c. Next, it calls at d and then e.

d c
a;(btc);dse

d c
a;(b%c);d;e a;((b;c)&d)se

Fig.4. Examples of specification.

— We show another route requirement specification, a ; (b%c¢) ; d; e, in E. It has
two derivations as follows:

a;(bsc);jdie—(bsc);d;e
~bs;es;die or c3;bid;e

where % means that trucks can take either one of the two routes before they take
the other. The second diagram in Figure 4 shows possible routes that could satisfy
this requirement specification.

—a;((b;c)&d); ein& is an example of &.

a;((bje)ad) ;e ((bjc)ad) ;e
i>(c&d);e

where & corresponds to asynchronous reduction. Thus, this permits a truck to move
to d while moving along c ; b. As shown in the fourth diagram in Figure 4, the

following two derivations are possible in addition to the above derivation.

a;((bje)ad) ;e ((b;jc)ad) ;e
LR (cad) ;e
L ;e
—e
or

a;((bic)sd) ;e——((b;c)ad);e
LR (b;c);e
Lie ;e
e

— The first requirement presented in the previous section is described as specification

(a; (b%c)) & d* & e*. We show one of the possible derivations from the specifi-
cation as follows:

(a; (b%c)) & d* & e* 2 (b%c)) & d* & e
s dr s e*
We can also have another derivation from the specification as follows:
(a;(b%c)) & d*&e* 5 (b%c)) & d* &e*
> bsd*&e*

where F & d* means that the truck can visit d more than zero times while it moves
along F.

(@; (b2c)sad*se* < (a; (b%c) & (0#d; d*) s e*

L% (a; (b%c))&(d; d*) & e*
i>(a; (b%c))& d* & e*

To describe routes in a compact notation, we define several macro notations for spec-
ifying the typical routes of trucks in a logistics operation. We describe a list of point

names as [(1, la, ..., 0], where {1,0s,..., £, € L. Let[] be an empty list, car(X)
be the top element of list X, i.e., {1, and cdr(X) be the remaining list of X except for
the top element, i.e., [(2, ..., £,]. Each point list is often written as $(H) in terms of

the language, where H is the name of a list, to avoid confusion between the name of a
point and the name of the list. These macros do not extend the language because they
are mapped into £.

Cycle($(X)) def car($(X)) ; Cycle(cdr($(X)))
Cyele([]) = 0

Star($(X)[0) % (car($(X)) ; €) ; Star(cdr($(X))|0)
Star([J|0) % o

Figure 5 illustrates Cycle and Star notations. Let ¢ be an element of £ and X be a
list of node names in £. For example, Cycle($(DAIRY-FARMERS)) allows a truck
to travel around the points specified in the DATIRY- FARMERS list consisting of the
names of dairy farmers that produce milk; and f is a processing plant for dairy prod-
ucts. Star($(DAIRY-FARMERS)| f) corresponds to a star-shaped route, which allows a
truck to go back and forth between the destinations specified in the DAIRY-FARMERS
list and a given base point, e.g., a dairy factory, specified as f as the order of the
list. To illustrate the transition defined in Definition 2, we show the transition of Star
(3(DAIRY-FARMERS)|f) in $(DAIRY-FARMERS) = [a, b, ¢, d], where a, b, ¢, and d
are the locations of dairy farmers as follows:

Star($(DAIRY-FARMERS)|f) is Star([a,b,c,d]|f)
déf (a H f) H Star([b, C, d]|f)
2 f; Star([b, c,d]|f)
EEAN Star([b, ¢, d]| f)
“ (b £) 5 Star((e.d) f)
N I i Star([e, d]|f)
LR Star([c,d]|f)

@
(op
D
o

d c d c
Cycle([a,b,c,d,e]) Star([a,b,c,d,e]|f)

Fig.5. Cycle and Star macros for routes

4 Order Relation for Route Selection

This section defines an order relation for selecting trucks according to their routes based
on the concept of bisimulation [6]. The relation is suitable for selecting a truck for a
milk-run operation with a route that satisfies the requirements of suppliers and cus-
tomers.

Definition 3 A binary relation R" (R C (€ x 8) x N) is an n-route prebisimulation,
where A is the set of natural numbers, if whenever (E,S) € R™ where n > 0, then,
the following holds for all £ € L or .

i) if E — E’ then there is an S’ such that S —— S’ and (E',S") e R*1

ii) E(—)* E' and (E', S) € R"

iii) if S — S then there exist E', E” such that E (——)*E’ — E" and (E', ') €
Rnfl

where E J,, S if there exist some n-route prebisimulations such that (E, S) € R™. We
call the 3, n-route order. We often abbreviate J,, to . 0

The informal meaning of F 3, S is that .S is included in one of the permissible routes
specified in E and n corresponds to the number of movements of a truck that can satisfy
E. We show several basic properties of the order relation below. Let us look at some
basic examples.

- (a%b%c);ddyc;a;b;d
where the left-hand-side requires a truck to carry products to three points, a, b, and ¢
in an indefinite order and then return to point d; the right-hand-side requires a truck
to carry products to three points, ¢, a, and b, sequentially. When the left-hand-side
ischangedtoa ; b ; c; d,the relation is still preserved, but when the left-hand-side
becomesa;d;b;d;c;dora;b; d,the relation is not preserved.

- ((a;b;e)&d*);dJga;d;b;d;ce;d
where the left-hand-side allows a truck to drop in at point d an arbitrary number of
times on route @ ; b ; c and then finish its movement at point d. The right-hand-side
is a star-shaped route between three destinations, a, b, ¢, and point d satisfies the
left-hand-side.

—((a;b)sac*)#((b;c)&a*) Jza;zb;c
where ((a ; b) & ¢*)and ((b; ¢) & a*) on the left-hand-side are the required routes
of two products, respectively. The first product is collected from point a and is then
delivered to point b. The second product is collected from point b and is then deliv-
ered to point c. Both products permit trucks to visit ¢ or a more then zero times. #
on the left-hand-side means that trucks must satisfy both required routes. a ; b ; ¢
can satisfy the requirement specified on the left-hand-side. b ; ¢ ; a ; b still satisfies
the left-hand-side, but the number of truck movements is greater than the a ; b ; c.

S Implementation

This section describes a prototype implementation of our framework and a preliminary
experiment using an RFID tag system. The experiment was constructed as a distributed
logistics management system consisting of six supplier points in addition to a customer
point with a route-selection server. Figure 6 shows the basic structure of the system.
The server was responsible for receiving route requirements from suppliers and cus-
tomers through a network and selecting suitable trucks with routes that satisfied these
requirements.

5.1 Route selection algorithm

Here, let us explain the selection algorithm used for the current implementation, which
we tried to make as faithful to Definition 3 as possible. The server maintains its own

RFID tag reader

Box with RFID tag Q _e

Client (supplier a) : l

Recommended
truck identifier

Data in tag
(required route)

RFID tag reader

Route o o
Box with RFID tag Q ® Data in tag Route Route > Route
(required route) Selection Specification <«
_ >
ﬂ Engine Database O O
Client (supplier b)

Recommended

truck identifier .
Route selection server Route

Recommended O O
truck identifier

Data in tag
(required route)

SR
Client (supplier c) ﬂ

Fig. 6. Basic structure of logistics management system

repository database containing the routes of trucks. To reduce the cost of the selec-
tion algorithm, the possible routes written in £ are transformed into tree structures
before they are stored in the database. These are called transition trees or
derivation trees in the literature on process calculus [6]. Each tree is derived
from a route in £ according to Definition 2 and consists of arcs corresponding to ¢-
transitions or 7-transitions in the route. When a route selection server receives a re-
quired route from suppliers or customers, it extracts the required route written in S and
then transforms the route into a transition tree. It next determines whether or not the
trees derived from the routes stored in the database system can satisfy the tree derived
from the required route by matching the two trees according to the definition of the
order relation (,, C £ x S) as in the following.

(1) If each node in one of the two trees has arcs corresponding to ¢-transitions, then
the corresponding node in the other tree can have the same arcs, and the sub-nodes
derived through the matching arcs of the two trees can still satisfy either (1) or (2).

(2) If each node in the tree derived from the required route has one or more arcs corre-
sponding to T-transitions, then at least one of the nodes derived through the arcs and
the corresponding node in the tree derived from the truck’s route can still satisfy
(1) or (2).

(3) If neither (1) nor (2) is satisfied, the route selection server backtracks from the
current nodes in the two trees and tries to apply (1) or (2) to their two backtracked
nodes.

Figure 7 illustrates the matching of two transition trees in the above algorithm. If one
or more truck routes in the database satisfy the required route, it selects the truck with
the least number of truck movement between points, which is n of C,, in Definition
3. Although the cost of selecting a route is dependent on the number of trucks and the
length of their routes, the system can handle each of the routes presented in this paper
within a few milliseconds.

Non-deterministic operators, e.g., # and %, tend to cause the exposition of a num-
ber of sub-trees in transition trees. Nevertheless, our algorithm can easily restrain the
number of sub-trees resulting from non-deterministic operators because the expansion
rules of expressions, i.e., the operational semantics of the language, distinguish be-
tween derivations resulting from deterministic operators and those resulting from non-
deterministic operators. Readers may wonder why E* operator creates an infinite num-
ber of sub-trees, but the current implementation interprets the operator in a lazy evalu-
ation manner.

a Ala
(b; (ctd))#d b; (c+d)
T T
"2 b
b; (c+d) d l

Fig.7. Matching transition trees in route-order relation algorithm.

5.2 Route specification in RFID tags

The current implementation assumes that the routes required for products or pallets are
stored in RFID tags attached to the products or pallets because they may have their own
delivery requirements. The current implementation supported three commercial passive
RFID tags systems: OMRON V700 RFID system (125 kHz), Phillips i-Code system
(13.56 MHz), and Texas Instruments Tag-It systems (13.56 MHz). The first system
provides each tag with 240 bytes, the second with 112 bytes, and the third with 32
bytes. We were able to maintain each of the example routes presented in these papers
in the first and second tag systems, where the length of the identifier for each point was
4 bytes. Tags in the third system may not be able to store route specifications internally,
but can maintain references to route specifications stored in a database server.

5.3 Early Experience

Our prototype implementation assumes that each client-side system at a supplier or
customer point has more than one RFID tag reader. The reader periodically or explicitly
tries to detect the presence of tags within its coverage area. Figure 8 shows a 13.56-
MHz-based RFID tag reader embedded with a WiFi network interface scanning a tag
attached to a pallet in a warehouse The tag specifies the route required to deliver the

Fig.8. RFID tag reader scans route specification from tag

pallet. When it reads the data from a tag, it sends the route stored in the tag to the route-
selection server via WiFi and waits for a response from the server. When it receives a
truck identifier from the server, it displays the identifier on its screen.

The current implementation of the algorithm was not optimized for performance.
Nevertheless, we describe the basic performance of the implementation. The cost of
reading the route specification in a tag depends on the length of the specification, e.g.
the cost of reading a specification with a length of less than 40 bytes is within 0.2 sec.
When the routes of five trucks were registered in the server running on a computer (Intel
Core 2 Duo 2 GHz and Windows XP), the cost of selecting a truck after the reader had
detected a tag, including the cost of communication between the server and client via a
TCP/IP session, was less than 1.2 sec. Client-side systems for suppliers and customers
can be operated using only RFID readers, which connect to a server through either
wired or wireless networks. This means they do not need any special equipment to use
the logistics management system. This is important because in milk-run logistics, most
suppliers are small to medium enterprises that do not want to have to invest in additional
equipment for milk-run logistics.

6 Related Work

There have been many attempts to use process calculi, e.g., as formal methods for var-
ious business enterprise processes. Several researchers have used process calculi, e.g.,
m-calculus, as business-process modeling languages, such as BPEL, [13,4,8,12]. 7-
calculus has been used as a formal composition language for software composition and
Web service composition, e.g., Orc [7] and SCC [1]. Process calculi are theoretically
sound and support bisimulation analysis and model checking. They are also gaining in-
creasing acceptance as a support tool in industry. However, there have been no process-
calculus-based formal methods for logistics, in particular for improving the transport
efficiency of trucks.

Several papers have explored formal models for specifying and reasoning about
mobile agents, e.g., Mobile UNITY [5], Ambient calculus [2], and Join-calculus [3].
Ambient calculus [2] allows mobile agents (called ambients in the calculus) to contain
other agents and to move with all inner ambients. The calculus must always model the
mobility of agents as navigation along a hierarchy of agents, whereas the itineraries

of real mobile agents may be more complicated. Join-calculus [3] also introduces the
notion of named locations that form a tree. The mobility of an agent is modeled as a
transformation of sub-trees from one part of the tree to another. The author presented a
formal method for using mobile agents in network management systems [11]. However,
this method was aimed only at mobile agents and assumed the notion of two-layer
mobile agents.

7 Future Work

This section discusses further issues that need to be resolved. This paper assumes that
trucks are independent, but coordination of multiple trucks is often necessary to ensure
efficient transportation. In future research, we are interested in developing a mechanism
for dividing single routes into multiple sub-routes and assigning these subtasks to one
or more trucks. The order relation proposed in this paper can select truck routes ac-
cording to the number of movements between points as well as the order in which the
trucks visit each point. The amount of CO2 emissions resulting from transport depends
on the distance covered by trucks. We need to introduce the notion of distance into
the framework. Although the milk-run approach is useful for non-just-in-time logistics,
we are interesting in extending the framework by incorporating the ability to reason
about time constraints. The language itself is general. We developed a methodology for
testing software for mobile terminals that can be carried between networks and recon-
nected to current networks [9]. We plan to use the language as a control language for
testing software in the methodology. As mentioned previously, the goal of the proposed
framework is to establish both a theoretical and practical foundation for earth-friendly
logistics. In fact, we have already started some large-scale experiments with logistics
and warehouse companies in collaboration with the Ministry of Land, Infrastructure
and Transport in Japan, to demonstrate the effectiveness of the proposed framework.
The author is a member of the ISO/IEC standardization committee (SC31) for RFID
tags and barcodes and supported several logistic services, including milk-run based lo-
gistic operations. We believe the the language can provide a foundation for tags and
barcodes for earth-friendly logistic systems.

8 Conclusion

We presented a formal method for improving transport efficiency, using the example
of milk-run logistics, to reduce the environmental impacts of transport operations. The
method was formulated based on a process calculus-based language and an order re-
lation over two terms corresponding to truck routes and the required routes in the lan-
guage. The language can specify truck routes for milk-run operations and the required
routes for shipping. The relation can be used to accurately determine whether a truck
route satisfies the requirements of customers and suppliers. A prototype implementa-
tion system based on the framework was constructed using Java language and RFID tag
systems and applied to our experimental distributed logistics management system.

References

1.

12.

13.

M. Boreale, R. Bruni, L. Caires, R. De Nicola, I. Lanese, M. Loreti, F. Martins, U. Montanari,
A. Ravara, D. Sangiorgi, V. T. Vasconcelos, and G. Zavattaro, SCC: a Service Centered
Calculus, Proceedings of Web Services and Formal Methods, LNCS Vol.4184, pp.38-57,
Springer, September 2006.

. L. Cardelli and A. D. Gordon, Mobile Ambients, Proceedings of Foundations of Software

Science and Computational Structures, LNCS, Vol. 1378, pp. 140-155, 1998.

. C. Fournet, G. Gonthier, J. Levy, L. Marnaget, and D. Remy, A Calculus of Mobile Agents,

Proceedings of CONCUR’96, LNCS, Vol. 1119, pp.406-421, Springer, 1996.

. M. Mazzara and R. Lucchi. A pi-calculus based semantics for WS-BPEL. Journal of Logic

and Algebraic Programming, vol.70, no.1, pp.96-118, 2006.

. PJ.McCann, and G.-C. Roman, Compositional Programming Abstractions for Mobile Com-

puting, IEEE Transaction on Software Engineering, Vol. 24, No.2, 1998.

. R. Milner, Communication and Concurrency, Prentice Hall, 1989.
. J.Misra and W. R. Cook, Computation orchestration: A basis for wide-area computing, Jour-

nal of Software and Systems Modeling, 2006. (A preliminary version of this paper appeared
in the Lecture Notes for NATO summer school, August 2004)

. F. Puhlmann and M. Weske, Using the Pi-Calculus for Formalizing Workow Patterns, Pro-

ceedings of the International Conference on Business Process Management, pp.153-168,
2005

. L. Satoh, A Testing Framework for Mobile Computing Software, IEEE Transactions on Soft-

ware Engineering, vol. 29, no. 12, pp.1112-1121, December 2003.

. L. Satoh, A Location Model for Pervasive Computing Environments, Proceedings of IEEE

3rd International Conference on Pervasive Computing and Communications (PerCom’05),
pp-215-224, IEEE Computer Society, March 2005.

. L. Satoh, Building and Selecting Mobile Agents for Network Management, Journal of Net-

work and Systems Management, vol.14, no.1, pp.147-169, Springer, 2006.

H. Smith, Business Process Management-The Third Wave: Business Process Modeling Lan-
guage (BPML) and Its Pi-Calculus Foundations, Information and Software Technology 45,
No. 15, 1065-1069, 2003.

K. Xu, Y. Liu, J. Zhu, and C. Wu, Pi-Calculus Based Bi-transformation of State-Driven
Model and Flow-Driven Model, International Journal of Business Process Integration and
Management, 2006.

