
Detecting Communication Protocol Security Flaws by

Formal Fuzz Testing and Machine Learning

Guoqiang Shu, Yating Hsu and David Lee

Department of Computer Science and Engineering, the Ohio State University

Columbus, OH 43210, USA
{shug,hsuya,lee}@cse.ohio-state.edu

Abstract: Network-based fuzz testing has become an effective mechanism to ensure

the security and reliability of communication protocol systems. However, fuzz test-

ing is still conducted in an ad-hoc manner with considerable manual effort, which is

mainly due to the unavailability of protocol model. In this paper we present our on-

going work of developing an automated and measurable protocol fuzz testing ap-

proach that uses a formally synthesized approximate formal protocol specification to

guide the testing process. We adopt the Finite State Machine protocol model and

study two formal methods for protocol synthesis: an active black-box checking algo-

rithm that has provable optimality and a passive trace minimization algorithm that is

less accurate but much more efficient. We also present our preliminary results of us-

ing this method to implementations of the MSN instant messaging protocol: MSN

clients Gaim (pidgin) and aMSN. Our testing reveals some serious reliability and se-

curity flaws by automatically crashing both of them.

Keywords: Fuzz testing, Security Testing, Protocol Synthesis.

1 Motivation

Network-based fuzz testing is a very effective approach to improve the security and

reliability of protocol system implementations [7, 9]. It works by mutating the normal

traffic at the ingress interface of a component in order to reveal unwanted behavior

such as crashing or confidentiality violation [3]. Identifying such flaws is extremely

important since they might be exploited by malicious parties to launch attacks. On the

other hand, it has been reported that for today’s complicated system these flaws are

ubiquitous due to incorrect assumptions on the input data. However, unlike software

fuzz testing where white-box approach [4, 5] is widely used, protocol fuzz testing is

usually conducted in an ad-hoc manner with input selected either randomly or manu-

ally [5]. With such restrictions it is very difficult to measure the comprehensiveness of

testing and the level of test automation is low. With knowledge of the protocol mes-

sage format, some preliminary systematic approaches such as message type covering

become feasible. However they are in general inaccurate for various reasons. For

example, messages of same type could serve very different roles in a protocol session

and therefore should be distinguished in testing.

In this work we propose an automated solution to improve the quality and measur-

ability of black-box fuzz testing using a formal protocol specification synthesis ap-

proach. The key idea is to obtain an approximate formal model of the component

under test and use it to automatically guide test selection for better fault coverage.

Such model is based on presumed knowledge of protocol messages [2] while its pri-

mary function is to describe the states and transitions in a session. Note that formal

specifications are usually not available in practice for real protocol systems. Construc-

tion of such a specification model endows significant guidance to systematic black-

box testing which is otherwise impossible. Specifically, we can design test sequences

to achieve formally defined fault coverage criteria with regard to the specification, and

meanwhile to intelligently choose mutated inputs based on special context in the mod-

el. Note that the specification synthesis problem we study has fundamental difference

with the protocol design and implementation synthesis problems extensively studied in

the literature, which aim at using formal models to facilitate developing error-free

protocol instead of recovering the specification for given implementation.

In this paper we discuss two alternative formal methods for Finite State Machine

(FSM) based specification synthesis which we applied in fuzz testing of real world

network applications. Our experiments show that this approach is promising in auto-

matic discovery of new bugs in protocol implementations of real internet applications.

2 Formal Protocol Synthesis

We adopt a variant of classic Communicating Extended Finite State Machine

(CEFSM) to model a communication protocol. The behavior of each protocol princi-

pal is described by a deterministic EFSM that has state variables and input/output

message parameters with symbolic value domain. The detailed modeling is in [8, 11].

In this work we focus on one principal and use its reachability graph (an FSM) repre-

sentation. An FSM is a 5-tuple <S,s0, I, O, fnext, foutput>, where S and s0 are state (con-

figuration in EFSM) set and initial state, I and O are input and output alphabet, fnext : S

× I→S is the transition function and foutput : S × I→O is the output function. Both fnext

and foutput might be partial function. We call an FSM a tree FSM if its state transition

graph is a tree. A trace of FSM is a sequence of input/output pairs, tr =

{<I1,O1>,<I2,O2>,…,<Ik,Ok>}, and a test case is simply a sequence of inputs.

 Given a black box protocol component implementation B, our objective is to syn-

thesize a deterministic FSM model Mx that later guides our fuzz testing algorithm. Mx

should ideally be an abstraction of all observed behavior of B, and its input (output)

alphabet Ix is a subset of B’s input alphabet IB. The ultimate goal of testing then is to

find a sequence of any length L: {<Ik,Ok>, 0≤k≤L, Ik⊆ IB, Ok⊆OB} that will lead B to

an observable failure state. Below we discuss two approaches to construct Mx – an

active learning algorithm and a passive machine minimization algorithm.

2.1 FSM Learning Algorithm

Since the tester has full control of the input and output of B, an obvious way to get its

model is through active learning. Following the theoretical insights of [1,10] on auto-

mata learning, we design the following procedure. An estimation model B
*
 of the

implementation B is maintained and initialized as an FSM with an initial state only. B
*

is updated as more traces are discovered according to the supervised FSM learning

algorithm L*
fsm (based on Angluin’s L* algorithm with details omitted due to space

limit; see [1]). A conformance test generator serves the role of “teacher” in learning

process that provides traces as counter-example – showing the difference between B
*

and B. The counter-example is used to prepare for the next estimation that becomes

supposedly more accurate: containing more input types or more states.

 This iterative process starts with a small subset of input alphabet and terminates

when the teacher is not able to find any counter-examples to help learning. We can

prove this strategy is always “promising” in the following sense: if B contains N states

and P inputs, at most (N+P) guesses will be made before we get Mx=B
*
=B. The cost

of this process is determined by both the strategy used by the teacher and the L
*
fsm

learning algorithm itself. We could prove that it takes O(P
*
·N

*2
) to update B

*
 with P

*

inputs and N* states, and the total cost of learning B in worst case is

O(T·P2
·N2+T·P·N3) where T denotes the cost of calculating the counter-example at

each round. In practice due to this high cost we usually stop after several iterations

with an approximate model.

2.2 Partial FSM Minimization Algorithm

We also study an alternative that requires more observation but potentially less com-

putation. The idea is to first gather a large number of traces from B by passive moni-

toring, compute a tree FSM, and minimize it. Given a set of traces, the synthesis of

tree FSM is quite straightforward. Starting with empty FSM we add one trace at a

time. We find the longest prefix of a trace that is already in the current FSM, pre-

sumably ending at state s, then create a new branch from s with the rest of the trace.

One practical issue in this step is handling session related fields. We want to identify

data fields in an input/output message whose value does not affect the state transition

of this session and therefore could be symbolized. Typical examples of such fields

include username, nonce and session ID. Identification of these fields reduces the

redundancy of the tree FSM; however it is nontrivial and sometimes requires manual

effort. In our on-going work we are investigating efficient and automated solutions.

 After the tree FSM is constructed, we want to minimize the number of states by

merging compatible sets. Minimization problem for partial FSM is a well studied NP-

hard problem and many heuristic solutions have been proposed [6]. A simple optimis-

tic algorithm is Bierman’s algorithm also described in [6]: first a set of constraints of

merging is calculated dictating which pair of states can be merged and which two pairs

must be both merged or both unmerged; after that new state IDs are given to the states

and whenever a constraint is violated the assignment is modified. The complexity of

this algorithm in worst case is obviously exponential but we can modify it by limiting

backtracking to get a polynomial suboptimal algorithm. As an extreme case, we might

choose not to backtrack at all (i.e. always assign new state ID) to achieve linear time.

3 Fuzz Testing Strategy

Once we have synthesized the approximate protocol specification Mx, it is used to

guide fuzz testing experiments. Coverage metrics can be formally defined to measure

the comprehensiveness of a set of tests. Let I0I1…IL be a sequence in Mx, and a fuzz

testing sequence has the general form of I0I1…Ik ffuzz(Ik+1…IL), where the prefix of

length k is a leading sequence that takes B to a certain state and the rest is the result of

applying a fuzz function ffuzz:I
*
→IB

*
 to the original postfix. Let us consider a special

function that modifies the format of last input message only, and we want to test this

function for all transitions in Mx. Given a set of K test sequences {SEQi = PREFIXi

f(LASTi)| 0≤i≤K,PREFIXi∈I
+
, LASTi∈I}, the formula below computes its transition

coverage as the number of transitions covered by the last input of a message divided

by the total transitions in Mx.

},,),(|,{

}0,),'(),('|,'{
_

0

IiSsisfis

KiLASTsfPREFIXsfsLASTs
CoverageTR

next

inextinexti

∈∈↓><

≤≤↓∧=><
=

Other metrics could be similarly developed corresponding to popular fuzz functions

on input sequence such as repetition, stealing, replay and pre-play. The actual test

generator should be designed to give preference to sequences that increase the metric.

4 Experiments and Evaluation

We have implemented both of the synthesis strategies as well as several typical fuzz

functions and applied them to evaluate two popular alternatives of MSN instant mes-

saging clients Gaim (pidgin) and aMSN. In order to take over the I/O of the client we

developed a proxy through which the client is connected to the server (shown in Fig-

ure 1). We also implement a simple encoder and decoder for MSN protocol messages.

The goal of fuzz testing is to find input sequences that will crash the client process (a

behavior that is definitely unwanted). We synthesize a model for the login phase of

MSN protocol containing around 50 states and 70 transitions. Several typical fuzz

functions on single transition are manually developed, after which testing is done

automatically toward 100% transition coverage for each function.

Table 1. Testing two MSN

Clients with synthesized model

Size of tree FSM 450

#states/#transitions

of synthesized FSM

50/

70

Fuzz functions used 5

Bugs found in Gaim 3

Fig.1. An MSN Client Fuzz Testing Tool

As summarized by Table 1, we found many previously unknown bugs of both cli-

ents and we are continuously uncovering more. Our fuzz functions fall into two cate-

gories: (1) changing the data field of a message to form an invalid input from IB-IMx;

and (2) changing the message type to form an undefined transition with respect to the

current state. Below we report instances of bugs from each category.

• Invalid Status Code: ILN message type is used for buddy presence notification;

the syntax of the command is “ILN TrID status_code Account Display ClientID”

where the status_code field is used to indicate the presence of a contact such as avail-

able, busy, or away. MSN protocol gives a list of legitimate status codes but if we

change it to an invalid value, aMSN crashes immediately after receiving the message.

• Elimination of E-Mail Address Field: a simple fuzz function that eliminates

every field from an input message that is in the form of an email address (used as

account name) will cause both Gaim and aMSN to crash.

• Skipping Contact List Message: in order to obtain the buddy list of a user, a

sequence of messages is exchanged between the server and client including an LST

message to download the contact list followed by a sequence of ILN messages to ob-

tain presence information. We found that if the LST message is skipped (i.e. dropped);

aMSN will crash when receiving the ILN message.

• Random Message Type Mutation: we could simply modify the input message

type to a random message type that is undefined in the current state. For instance,

when we change CVR or VER message (both used to negotiate protocol version) to

LST type, both clients will crash. A variant of this operation is random message type

swapping of two adjacent transitions, and aMSN crashes when this is applied to LST

and UBX messages.

5 Conclusion

We investigate the proposed fuzz testing approach that has shown great potential and

practicality. A key problem to tackle is how to improve the quality of the synthesized

specification. For instance, our current tool does not recover the dependency relation-

ship among message fields, which gives valuable insights regarding what input might

be destructive. Toward this goal analysis for both control plane and data plane of the

protocol traces are to be integrated. On the other hand, we envision that formal proto-

col synthesis techniques could be useful in other domains, such as protocol reverse

engineering [2] and network testbed development [12].

References

1. D. Angulin. Learning regular sets from queries and counterexamples. Information and

Computation, 75, pages 87-106, 1987.

2. W. Cui, J. Kannan and H. Wang. Discoverer: Automatic Protocol Reverse Engineering

from Network Traces. The 16th USENIX Security Symposium, 2007.

3. D. Dolev and A. Yao. On the security of public-key protocols. IEEE Transaction on Infor-

mation Theory 29, pages 198-208, 1983.

4. P. Godefroid, N. Klarlund, and K. Sen. DART: Directed Automated Random Testing. In

Proceedings of PLDI'2005 (ACM SIGPLAN 2005 Conference on Programming Language

Design and Implementation), pages 213--223, 2005.

5. P. Godefroid, M. Y. Levin, and D. Molnar. Automated Whitebox Fuzz Testing. Technical

Report MS-TR-2007-58, Microsoft, May 2007.

6. S. Gören and F. J. Ferguson. On state reduction of incompletely specified finite state ma-

chines. Computers and Electrical Engineering, Vol. 33(1), pages 58-69, 2007

7. M. Howard. Inside the Windows Security Push. IEEE Security & Privacy, pages 57-61,

2003.

8. D. Lee and M. Yannakakis. Principles and methods of testing finite state machines - A

survey. In Proceedings of the IEEE, pages 1090–1123, 1996.

9. P. Oehlert. Violating Assumptions with Fuzzing. IEEE Security & Privacy, pages 58-62,

2005.

10. D. Peled, M. Y. Vardi, M. Yannakakis. Black-box checking, In Proceedings of IFIP

FORTE/PSTV, 1999.

11. G. Shu and D. Lee. Testing Security Properties of protocol implementations – a machine

learning based approach. In Proceedings of IEEE ICDCS 2007

12. L. Wang, C. Ellis, W. Yin and D. D. Luong. Hercules: An Environment for Large-Scale

Enterprise Infrastructure Testing. in Proceedings of the Workshop on Advances and Inno-

vations in Systems Testing, 2007

