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Abstract: Network-based fuzz testing has become an effective mechanism to ensure 

the security and reliability of communication protocol systems. However, fuzz test-

ing is still conducted in an ad-hoc manner with considerable manual effort, which is 

mainly due to the unavailability of protocol model. In this paper we present our on-

going work of developing an automated and measurable protocol fuzz testing ap-

proach that uses a formally synthesized approximate formal protocol specification to 

guide the testing process. We adopt the Finite State Machine protocol model and 

study two formal methods for protocol synthesis: an active black-box checking algo-

rithm that has provable optimality and a passive trace minimization algorithm that is 

less accurate but much more efficient. We also present our preliminary results of us-

ing this method to implementations of the MSN instant messaging protocol: MSN 

clients Gaim (pidgin) and aMSN. Our testing reveals some serious reliability and se-

curity flaws by automatically crashing both of them.  
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1 Motivation 

Network-based fuzz testing is a very effective approach to improve the security and 

reliability of protocol system implementations [7, 9]. It works by mutating the normal 

traffic at the ingress interface of a component in order to reveal unwanted behavior 

such as crashing or confidentiality violation [3]. Identifying such flaws is extremely 

important since they might be exploited by malicious parties to launch attacks. On the 

other hand, it has been reported that for today’s complicated system these flaws are 

ubiquitous due to incorrect assumptions on the input data. However, unlike software 

fuzz testing where white-box approach [4, 5] is widely used, protocol fuzz testing is 

usually conducted in an ad-hoc manner with input selected either randomly or manu-

ally [5]. With such restrictions it is very difficult to measure the comprehensiveness of 

testing and the level of test automation is low. With knowledge of the protocol mes-

sage format, some preliminary systematic approaches such as message type covering 

become feasible. However they are in general inaccurate for various reasons. For 

example, messages of same type could serve very different roles in a protocol session 

and therefore should be distinguished in testing.  

In this work we propose an automated solution to improve the quality and measur-

ability of black-box fuzz testing using a formal protocol specification synthesis ap-

proach. The key idea is to obtain an approximate formal model of the component 

under test and use it to automatically guide test selection for better fault coverage. 

Such model is based on presumed knowledge of protocol messages [2] while its pri-

mary function is to describe the states and transitions in a session. Note that formal 



specifications are usually not available in practice for real protocol systems. Construc-

tion of such a specification model endows significant guidance to systematic black-

box testing which is otherwise impossible. Specifically, we can design test sequences 

to achieve formally defined fault coverage criteria with regard to the specification, and 

meanwhile to intelligently choose mutated inputs based on special context in the mod-

el. Note that the specification synthesis problem we study has fundamental difference 

with the protocol design and implementation synthesis problems extensively studied in 

the literature, which aim at using formal models to  facilitate developing error-free 

protocol instead of recovering the specification for given implementation. 

In this paper we discuss two alternative formal methods for Finite State Machine 

(FSM) based specification synthesis which we applied in fuzz testing of real world 

network applications. Our experiments show that this approach is promising in auto-

matic discovery of new bugs in protocol implementations of real internet applications. 

2 Formal Protocol Synthesis 

We adopt a variant of classic Communicating Extended Finite State Machine 

(CEFSM) to model a communication protocol. The behavior of each protocol princi-

pal is described by a deterministic EFSM that has state variables and input/output 

message parameters with symbolic value domain. The detailed modeling is in [8, 11]. 

In this work we focus on one principal and use its reachability graph (an FSM) repre-

sentation. An FSM is a 5-tuple <S,s0, I, O, fnext, foutput>, where S and s0 are state (con-

figuration in EFSM) set and initial state, I and O are input and output alphabet, fnext : S 

× I→S is the transition function and foutput : S × I→O is the output function. Both fnext 

and foutput might be partial function. We call an FSM a tree FSM if its state transition 

graph is a tree. A trace of FSM is a sequence of input/output pairs, tr = 

{<I1,O1>,<I2,O2>,…,<Ik,Ok>}, and a test case is simply a sequence of inputs. 

    Given a black box protocol component implementation B, our objective is to syn-

thesize a deterministic FSM model Mx that later guides our fuzz testing algorithm. Mx 

should ideally be an abstraction of all observed behavior of B, and its input (output) 

alphabet Ix is a subset of B’s input alphabet IB. The ultimate goal of testing then is to 

find a sequence of any length L: {<Ik,Ok>, 0≤k≤L, Ik⊆ IB, Ok⊆OB} that will lead B to 

an observable failure state. Below we discuss two approaches to construct Mx – an 

active learning algorithm and a passive machine minimization algorithm. 

 

2.1 FSM Learning Algorithm 

Since the tester has full control of the input and output of B, an obvious way to get its 

model is through active learning. Following the theoretical insights of [1,10] on auto-

mata learning, we design the following procedure. An estimation model B
*
 of the 

implementation B is maintained and initialized as an FSM with an initial state only. B
*
 

is updated as more traces are discovered according to the supervised FSM learning 

algorithm L*
fsm (based on Angluin’s L* algorithm with details omitted due to space 

limit; see [1]). A conformance test generator serves the role of “teacher” in learning 

process that provides traces as counter-example – showing the difference between B
*
 

and B. The counter-example is used to prepare for the next estimation that becomes 

supposedly more accurate: containing more input types or more states.  



    This iterative process starts with a small subset of input alphabet and terminates 

when the teacher is not able to find any counter-examples to help learning. We can 

prove this strategy is always “promising” in the following sense: if B contains N states 

and P inputs, at most (N+P) guesses will be made before we get Mx=B
*
=B. The cost 

of this process is determined by both the strategy used by the teacher and the L
*
fsm 

learning algorithm itself. We could prove that it takes O(P
*
·N

*2
) to update B

*
 with P

*
 

inputs and N* states, and the total cost of learning B in worst case is 

O(T·P2
·N2+T·P·N3) where T denotes the cost of calculating the counter-example at 

each round. In practice due to this high cost we usually stop after several iterations 

with an approximate model. 

 

2.2 Partial FSM Minimization Algorithm 

We also study an alternative that requires more observation but potentially less com-

putation. The idea is to first gather a large number of traces from B by passive moni-

toring, compute a tree FSM, and minimize it. Given a set of traces, the synthesis of 

tree FSM is quite straightforward. Starting with empty FSM we add one trace at a 

time. We find the longest prefix of a trace that is already in the current FSM, pre-

sumably ending at state s, then create a new branch from s with the rest of the trace. 

One practical issue in this step is handling session related fields. We want to identify 

data fields in an input/output message whose value does not affect the state transition 

of this session and therefore could be symbolized. Typical examples of such fields 

include username, nonce and session ID. Identification of these fields reduces the 

redundancy of the tree FSM; however it is nontrivial and sometimes requires manual 

effort. In our on-going work we are investigating efficient and automated solutions. 

    After the tree FSM is constructed, we want to minimize the number of states by 

merging compatible sets. Minimization problem for partial FSM is a well studied NP-

hard problem and many heuristic solutions have been proposed [6]. A simple optimis-

tic algorithm is Bierman’s algorithm also described in [6]: first a set of constraints of 

merging is calculated dictating which pair of states can be merged and which two pairs 

must be both merged or both unmerged; after that new state IDs are given to the states 

and whenever a constraint is violated the assignment is modified. The complexity of 

this algorithm in worst case is obviously exponential but we can modify it by limiting 

backtracking to get a polynomial suboptimal algorithm. As an extreme case, we might 

choose not to backtrack at all (i.e. always assign new state ID) to achieve linear time. 

3 Fuzz Testing Strategy 

Once we have synthesized the approximate protocol specification Mx, it is used to 

guide fuzz testing experiments. Coverage metrics can be formally defined to measure 

the comprehensiveness of a set of tests. Let I0I1…IL be a sequence in Mx, and a fuzz 

testing sequence has the general form of I0I1…Ik ffuzz(Ik+1…IL), where the prefix of 

length k is a leading sequence that takes B to a certain state and the rest is the result of 

applying a fuzz function ffuzz:I
*
→IB

*
 to the original postfix. Let us consider a special 

function that modifies the format of last input message only, and we want to test this 

function for all transitions in Mx. Given a set of K test sequences {SEQi = PREFIXi 

f(LASTi)| 0≤i≤K,PREFIXi∈I
+
, LASTi∈I}, the formula below computes its transition 



coverage as the number of transitions covered by the last input of a message divided 

by the total transitions in Mx. 
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Other metrics could be similarly developed corresponding to popular fuzz functions 

on input sequence such as repetition, stealing, replay and pre-play. The actual test 

generator should be designed to give preference to sequences that increase the metric. 

4 Experiments and Evaluation 

We have implemented both of the synthesis strategies as well as several typical fuzz 

functions and applied them to evaluate two popular alternatives of MSN instant mes-

saging clients Gaim (pidgin) and aMSN. In order to take over the I/O of the client we 

developed a proxy through which the client is connected to the server (shown in Fig-

ure 1). We also implement a simple encoder and decoder for MSN protocol messages. 

The goal of fuzz testing is to find input sequences that will crash the client process (a 

behavior that is definitely unwanted). We synthesize a model for the login phase of 

MSN protocol containing around 50 states and 70 transitions. Several typical fuzz 

functions on single transition are manually developed, after which testing is done 

automatically toward 100% transition coverage for each function. 

 

Table 1. Testing two MSN 

Clients with synthesized model  

Size of tree FSM 450 

#states/#transitions 

of synthesized FSM 

50/

70 

Fuzz functions used 5 

Bugs found in Gaim 3 

Fig.1. An MSN Client  Fuzz Testing Tool  

As summarized by Table 1, we found many previously unknown bugs of both cli-

ents and we are continuously uncovering more. Our fuzz functions fall into two cate-

gories: (1) changing the data field of a message to form an invalid input from IB-IMx; 

and (2) changing the message type to form an undefined transition with respect to the 

current state. Below we report instances of bugs from each category. 

• Invalid Status Code: ILN message type is used for buddy presence notification; 

the syntax of the command is “ILN TrID status_code Account Display ClientID” 

where the status_code field is used to indicate the presence of a contact such as avail-

able, busy, or away. MSN protocol gives a list of legitimate status codes but if we 

change it to an invalid value, aMSN crashes immediately after receiving the message. 

• Elimination of E-Mail Address Field: a simple fuzz function that eliminates 

every field from an input message that is in the form of an email address (used as 

account name) will cause both Gaim and aMSN to crash. 

• Skipping Contact List Message: in order to obtain the buddy list of a user, a 

sequence of messages is exchanged between the server and client including an LST 



message to download the contact list followed by a sequence of ILN messages to ob-

tain presence information. We found that if the LST message is skipped (i.e. dropped); 

aMSN will crash when receiving the ILN message. 

• Random Message Type Mutation: we could simply modify the input message 

type to a random message type that is undefined in the current state. For instance, 

when we change CVR or VER message (both used to negotiate protocol version) to 

LST type, both clients will crash. A variant of this operation is random message type 

swapping of two adjacent transitions, and aMSN crashes when this is applied to LST 

and UBX messages. 

5 Conclusion 

We investigate the proposed fuzz testing approach that has shown great potential and 

practicality. A key problem to tackle is how to improve the quality of the synthesized 

specification. For instance, our current tool does not recover the dependency relation-

ship among message fields, which gives valuable insights regarding what input might 

be destructive. Toward this goal analysis for both control plane and data plane of the 

protocol traces are to be integrated. On the other hand, we envision that formal proto-

col synthesis techniques could be useful in other domains, such as protocol reverse 

engineering [2] and network testbed development [12]. 
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