NQSL - Formal Language and Tool Support for
Network Quality-of-Service Requirements

Christian Webel, Reinhard Gotzhein, and Joachim Nicolay

Department of Computer Sciences, University of Kaiserslautern, Kaiserslautern,
Germany, {webel, gotzhein, j nicola}@cs.uni-kl.de

Abstract. Network Quality-of-Service (QoS) is a central characteristic
of the design of modern communication systems. Before designing and
implementing communication systems, network QoS requirements and
QoS mappings have to be specified and analyzed. In this paper, we pro-
vide language and tool support for this purpose. To specify network QoS
requirements and QoS mappings, we define a formal description tech-
nique called NQSL, the Network QoS Specification Language. To support
the efficient handling of NQSL specifications, we present a tool chain con-
sisting of the Graphical NQSL Editor (GNE), the NQSL Analyzer (NA)
for QoS domain reduction, and the NQSL-to-SDL Compiler (NSC) for
the generation of SDL data and process types.

1 Introduction

The provision of network Quality-of-Service (network QoS) is one of the ma-
jor challenges in the development of future communication systems. Network
QoS comprises performance, reliability, guarantee, and scalability aspects on
different levels of abstraction, as well as mappings between these levels. During
requirements analysis, network QoS requirements are to be specified formally.
In particular, the relevant network QoS aspects of a system are to be identified
by defining QoS domains, QoS domains of adjacent levels are to be mapped,
and subsets of QoS domains are to be selected. During system design, a QoS
architecture has to be devised, QoS functionalities are to be identified, and QoS
mechanisms to realize these functionalities must be supplied. Since QoS function-
alities are placed on different system levels and have high interdependencies, and
since the QoS status of a networked system may be subject to frequent changes
both on application level and on resource level, the provision of network QoS is
a highly complex task that requires a cross-layer approach in all development
phases.

In previous work [1], we have introduced a formalization of network QoS. In
particular, we have formalized the notions of QoS domain, QoS scalability, QoS
mapping, and QoS requirements. Moreover, we have identified formal criteria to
reduce QoS domains for consistency and tractability, based on utility and cost.
In this paper, we build on and extend these results by providing language and
tool support. To specify network QoS requirements and QoS mappings, we de-
fine a formal description technique called NQSL, the Network QoS Specification

Language. To support the efficient handling of NQSL specifications, we present a
tool chain consisting of the Graphical NQSL Editor (GNE), the NQSL Analyzer
(NA), and the NQSL-to-SDL Compiler (NSC). These tools relieve the system
developer from several tedious and error-prone tasks, such as applying QoS map-
pings by hand or reducing QoS domains based on the definitions of utility and
cost functions. Both tasks are required to evaluate and assess QoS mappings and
the set of relevant QoS domain values on different levels of abstraction, and have
to be repeated after each modification of the QoS requirements specification.
The remaining part of this paper is organized as follows: In Section 2, we sur-
vey related work. In Section 3, we summarize our formalization of network QoS
requirements (cf. [1]). Section 4 introduces NQSL, the Network QoS Specifica-
tion Language. In Section 5, the NQSL tools GNE, NA, and NSC are presented.

Conclusions are drawn in Section 6.

2 Related Work

To cope with various requirements of system designs, user preferences, middle-
ware, hardware, networks, operating systems, and applications, several QoS spec-
ification techniques have been proposed (see 2] for a classification):

— QML (Quality Modelling Language) [3] is focused on the specification of
application layer QoS requirements. QoS requirements of lower layers, QoS
scaling, and QoS mappings are not addressed.

— CQML (Component Quality Modeling Language) [4] adopts some of the
fundamental concepts of QML, and also addresses dynamic QoS scaling. As
QML, it is focused on the application layer. Since CQML is widely used,
several tool kits exist, including front-end tools and parsers, e.g. [5].

— QDL (Quality Description Language) has been proposed as a part of the QuO
(Quality Objects) framework [6] that supports QoS on the CORBA object
layer. With QDL, it is possible to specify QoS requirements on application
layer and on resource layer, and to define QoS scaling.

— The Quality Assurance Language (QuAL) is part of the Quality of Service
Management Environment (QoSME) [7]. With QuAL, QoS requirements are
specified in a process-oriented way. QoS-A (Quality-of-Service Architecture)
[8] uses a parameter-based specification approach, including QoS adaptation
and QoS mappings.

In summary, it can be stated that previous formal treatments of QoS address
only some aspects of QoS requirement specification, focusing, for instance, on a
subset of abstraction layers, or leaving out QoS mappings. Our work comprises
the aforementioned issues and therefore provides a holistic, comprehensive for-
malization of network QoS requirements, across layers. Furthermore, we provide
QoS tools beyond front-end tools, in particular, an analysis tool and a compiler.

3 Formalization of Quality-of-Service

In previous work [1], we have introduced a formalization of network QoS. In
particular, we have formalized the notions of QoS domain, QoS scalability, QoS
mapping, and QoS requirements. In this paper, we build on and extend these
results. Therefore, we provide a survey of the formalization of network QoS in
this section.

3.1 Formalization of Network QoS Requirements

The need for formalization of network QoS requirements arises from the fact that
a precise description of network QoS between service user and service provider is
needed to police, control, and maintain the data flow a user emits to the commu-
nication system. Further on, the mechanisms realizing these functionalities need
a precise and well-defined description of QoS. Formalization of network QoS is
done by firstly identifying the QoS domain, and secondly by describing the QoS
scalability.

The QoS domain @ captures the QoS characteristics of a class of data flows,
i.e. performance, reliability, and guarantee and is therefore defined as QQ =
P x RxG, where P is the performance domain, R is the reliability domain, and G
is the guarantee domain. An element g = (p, r, g) of Q is called QoS domain value.
QoS performance describes efficiency aspects characterizing the required amount
of resources and the timeliness of the service. The relevant efficiency parameters
are included in the QoS performance domain P with P = Pyx...xP, =[], P;,
where Py, ..., P, are performance subdomains. The QoS reliability describes the
safety-of-operation aspects characterizing the fault behaviour (e.g., loss rate and
distribution, corruption rate and distribution, error burstiness) and is defined as
R = Loss x Period x Burstiness x Corruption, with Loss = N, Period = Ry,
Burstiness = Ry, and CorruptionRate = {cr € R |0 < ¢r < 100}. The QoS
guarantee describes the degree of commitment characterizing the binding char-
acter of the service. QoS guarantee is formalized by the QoS guarantee domain
as G = DoC x Stat x Prio, where Stat = {p € R|0 < p < 1}, Prio = IN, and
DoC = {bestEffort, enhancedBestEffort, statistical, deterministic}.

Varying communication resources require adaptive mechanisms to avoid net-
work overload, and to scale the application service. The QoS scalability S de-
scribes the control aspects characterizing the scope for dynamic adaptation of
the QoS aspects of a data flow (described by a QoS domain) to a certain granted
network QoS. The QoS scalability domain S is defined as S = Util x Cost x
Up x Down, where Util = {u|u: Q — [0,1]}, Cost = {c|c: @ — R4}, and
Up,Down € {z € Ry |0 <z < 1}. The elements of Util and Cost are called
utility functions and cost functions, respectively. A utility function determines
the usefulness of QoS domain values, a cost function ¢ expresses the amount of
needed resources, associating higher costs with scarcer resources. QoS domain
values with the same utility (cost) (~y()) are assigned to the same so-called

u(c)-equivalence class of Q: [7],() = {q € Qlq~u a:}

The QoS requirements qosReq define the set of valid QoS domain values and
a QoS scalability value, and are formally stated as a triple (¢min, qopt, s), Where
Gmin, Gopt € Q and s € S. The QoS domain values g, and gop: specify a set
Q' C Q of valid QoS domain values. To obtain @', a preorder <. induced by
the utility function is applied: Q" = {0 € Q| @min Su ¢ Su Qopt }-

For consistency and tractability, we stepwise reduce the QoS domain @. In a
first step, we define the reduced QoS domain Q" by selecting the best element
of each u-equivalence class of Q regarding ¢, and by considering values from Q'
only. Let m be the cardinality of Q/~., the quotient set of @ w.r.t. ~,, and
let [x]%, denote the ith element of Q/~, regarding <, (ith u-equivalence class).
Then, Q“ = {q1,...,qm} NQ", g =qelz]’|Vyelz],. ¢<cy, 1<i<m.
A further reduction induces a derived QoS domain Q"¢, discarding QoS domain
values with higher cost, but less utility, Q“¢ = {q € Q" |Yy € Q% .c(q) > c(y) =

u(q) > u(y)} .

3.2 Formal QoS Mappings

The mechanisms realizing QoS management tasks are typically embedded in the
communication system, prevalent across layers, hiding complex tasks from the
application. This leads to abstract QoS requirements on higher system layers,
whereas on lower system layers, the level of detail increases. To rigorously re-
late the different viewpoints on network QoS, a well-defined translation of the
requirements is needed, called QoS mapping. The QoS mapping can be decom-
posed into QoS domain mapping and QoS scalability mapping.

The QoS domain mapping dm : Q, — @ is a function from a (higher layer)
QoS domain @, to a (lower layer) QoS domain @;. The domain mapping dm may
be defined using the auxiliary functions dmp : Qp, — P, (performance mapping),
dmpg : Qn — Ry (reliability mapping) and dmg : Qn — G (guarantee mapping).
A detailed description of the three mapping subfunctions is given in [1]. In gen-
eral, the QoS mappings are neither injective nor surjective.

The QoS scalability mapping is needed to apply control aspects characterizing
the dynamic adaptation of QoS parameters on different system levels. A QoS
scalability mapping sm is a set of four mapping functions sm 1, smcost, sSMmup
and $M pown, translating the different scalability domains into each other [1].

4 The Network Quality-of-Service Specification Language

In this section, we introduce NQSL, the Network Quality-of-Service Specification
Language for the formal specification of QoS requirements. NQSL is directly
derived from the formalization of network QoS in [1], which we have outlined
in Section 3. It supports the specification of QoS domains and subdomains,
QoS scalability, QoS mappings, and QoS requirements. The syntax of NQSL
mainly adds keywords identifying concepts of network QoS, notation to specify

! For examples, see Section 5.2.

functions, and a set of basic data types. Due to this direct correspondance of
the formalization of network QoS, which uses basic mathematical notation, and
NQSL language elements, it is straightforward to associate a formal semantics
with NQSL specifications.

To give a flavour of NQSL, we briefly present the language elements for the
specification of QoS domains and subdomains. The complete definition of NQSL
can be found in [9]. The syntax of NQSL is defined in Extended BNF (EBNF), us-
ing the usual notational conventions: non-terminals are written in angle-brackets
<non-terminal>, terminals are enclosed by single quotes ’terminal’, produc-
tions are declared in the form <non-terminal> = expansion;, square brackets
enclose optional parts [optional], and alternatives are separated by |.

As stated in Section 3.1, a QoS domain captures the QoS characteristics of
a class of data flows, i.e. performance, reliability, and guarantee. A QoS domain
(see List. 1) is identified by its domain_name and defined by a domain_ body
consisting of declarations of performance, reliability, and guarantee domains. A
QoS subdomain is identified by a unique name and defined by a type, using
basic data types (Integer, Real, Enum), tuples of data types (Integer x Real),
or previously defined subdomains. Optionally, the domain of the data type can
be restricted to a set of possible values.

Listing 1. NQSL: QoS domain and subdomain definition (excerpt)

’QoSDomain’ <domain name> ’'{’ <domain body> '} ’;
<performance_domain> <reliability domain>
<guarantee domain>;

<qosdomain _decl>
<domain_body>

<performance domain> = ’Performance’ ’{’ <partdomain body> '} ’;
<reliability domain> = ’Reliability’ ’'{’ <partdomain_ body> ’}’;
<guarantee domain> = ’"Guarantee’ '{’ <partdomain body> '} ’;
<subdomain _decl> = ’Subdomain’ <subdomain_body >;

| ’Subdomain’ <identifier >;

'{’ <name_decl> <type_ decl> [<typedomain_decl>] ’}’;

’name’ 77 <identifier > ;7

"type’ 7:7 <datatype body> ’;7;
)

’domain’ 17 <typedomain body> ’;’;

<subdomain _body>
<name _decl>
<type_decl>
<typedomain _decl>

In Listing 2, an excerpt of the QoS domain Video is specified in NQSL.
The performance domain consists of three subdomains. The first subdomain
Resolution is defined as a tuple of integers, with the values restricted to the pairs
(320, 240), (480, 360), and (640,480). The subdomains Quality and FrameRate
have already been defined, and therefore are referenced.

Listing 2. NQSL specification: QoS domain Video (excerpt)
QoSDomain Video{

Performance{
Subdomain {
name: Resolution ;

type: (Integer, Integer);

domain: {(320,240),(480,360),(640,480)}; }
Subdomain Quality ;
Subdomain FrameRate;

Rgliability{ (...) }
Guarantee{ (...)

A QoS requirements specification is identified by a unique name and uses a
QoS domain defined beforehand. It consists of a set of QoS requirement profiles
qgosReq, which are subdivided into a description of minimum and optimum QoS
as well as scalability. Listing 3 gives an excerpt of the QoS requirement spec-
ification VideoTransmission. The specification consists of two QoS requirement
profiles Surveillance and Panorama. In the example, the scalability aspect is
shown, with utility and cost functions restricted to the performance domain. For
instance, utility is defined by refering to performance subdomains Resolution,
Quality, and FrameRate, with Resolution.1 denoting the first tuple element.
W.lo.g. we assume that the needed transmission rate on Hardware layer would
provide a good metric for the needed resources. The specification of optimum
QoS can be found below (see Fig. 4).

Listing 3. NQSL specification: QoS scalability of Video (excerpt)

specification VideoTransmission uses Video {
qosreq Surveillance {
minimum{ (...) }
optimum{ (...) }
scalability {
util = 0.1x((Resolution.1—-160)/480) + 0.1x(Quality /75) +
0.8 (FrameRate /25);

cost Hardware = TransmissionRate;
up = 0.2;
down = 0.1; }

}

qosreq Panorama { (...)}

}

To determine the costs of a video data flow configuration on application level
from the costs specified on hardware level, QoS domain mappings are used. In
Listing 4, two domain mappings are specified, mapping the QoS domain Video
to Hardware via Middleware. Note that for the subdomains reliability and guar-
antee, we assume identical mappings, therefore, no explicit QoS mappings are
provided.

Listing 4. NQSL specification: QoS domain mappings

domainmapping from Video to Middleware{
performance :
NoOfFrames=ceil ((160% Quality +3000)*(Resolution.1—160)/(160%x1420));
Period=1/FrameRate ;
reliability ;
guarantee; }
domainmapping from Middleware to Hardware{
performance :
TransmissionRate = NoOfFrames/Periodx1512;
reliability ;
guarantee; }

5 Tool Support for NQSL

In this section, we present our tool support for NQSL, consisting of the Graph-
ical NQSL Editor (GNE), the NQSL Analyzer (NA), and the NQSL-to-SDL
Compiler (NSC).

5.1 Graphical NQSL Editor

The Graphical NQSL Editor (GNE) is generated from a metamodel for network
QoS, and implemented as a plugin for Eclipse IDE, using the Eclipse Model-
ing Framework (EMF) [10] and the Graphical Modeling Framework (GMF) [11].
Starting point is the domain model defined as a metamodel that is described
in ECore, a UML-dialect and part of the Meta Object Facility (MOF) [12] that
is limited to class diagrams. Based on this metamodel, EMF generates a rudi-
mentary editor with basic functionalities such as creating or modifying objects.
In the next step, GMF is used to generate a more sophisticated editor. Based
on the Java classes generated by EMF and the domain model, GMF creates a
graphical editor that is much more comfortable and intuitive to use. To this,
the graphical definition model identifying graphical elements, e.g. figures, nodes,
links etc., and the tooling definition model specifying the palette, creation tools,
actions, etc. of the graphical elements are needed. These three models are bound
by the mapping definition model. Based on this model, the generation model is
obtained by a transformation step.

H NetworkQoS

*
0.% 1. source 0-
QoSRequirements SD i SMappil
B q belongs.to 1.1 H QoSDomain i1 E QoSMapping
= name = = name © name
0..* 1.1
target
E Subdomain 1.1
1% = name H PerformanceDomain
. = type
El Qosprofile = domain
= name = unit
1.1
1.1 0..% ElReliabilityDomain
— 1.1 11
H QoSScalability min opt
= up
. 1.1 E GuaranteeDomain = | QoSDomainMapping
H QoSvalue
1.1
; - uses
[UtilityFunction performanceMapping
= desc perforr.nar\.ce . reliabilityMapping
reliability E Domain guaranteeMapping
guarantee
1.1 0..%0..%0..% 0.4 0.% 0.
E CostFunction H ConcreteValue E MappingFunction
= desc = value = description
is_from maps_to

Fig. 1. Domain Model for the Graphical NQSL Editor

Starting point for the development of the graphical editor for NQSL is the
domain model in Fig. 1. This metamodel is based on the formalization of network
QoS surveyed in Section 3. The metamodel introduces a class NetworkQoS, which
encapsulates QoS requirements and QoS mappings. Additionally, QoS domains
and QoS subdomains are aggregated in this class; this way, a QoS subdomain
can be used in different QoS domains, which is modeled by references. A QoS re-
quirement specification is modeled by the class QoSRequirements, which in turn

consists of a set of QoS profiles capturing different application scenarios. The
relation between QoS requirements and QoS domain is modeled by a reference.
To simplify the implementation, the domains of QoS performance, QoS reliabil-
ity and QoS guarantee are collected in a superclass Domain. The QoSScalabiliy
is modelled as described in the formalization. QoS scalability consists of Utili-
tyFunction, CostFunction, and two thresholds up and down. The mappings for
performance, reliability and guarantee are collected in MappingFunction. The
QoS scalability mapping is not be explicitly modeled, as it is identical for all
QoS specifications.

Following the formalization of network QoS, the Graphical NQSL Editor
(GNE) consists of three parts: an editor for QoS domains and subdomains, an
editor for QoS mappings between QoS domains, and an editor for QoS require-
ments. Fig. 2 shows the user interface of the GNE domain editor. A QoS domain
is created by referencing previously built QoS subdomains. Notice that QoS
subdomains can be used in several QoS domains.

Help
$-0-Q- BEG- O 5 [‘
o EIB I A&~z B8 8 RS = ‘
) video.qos_dagram 14, *Video.qos_domain_dagram [=
4 o
mee -
QoS Domain QoS Subdomain Beae
Name: Video Name: Resolution =
Performance - _— Type: (Integer,Integer)
Resolution - Domain: {(320,240),(480,3...
Quality Unit: (px,px)
FrameRate ™~
P N IS
AN ~_ -
Reliability \\\ ~__ | QoS Subdomain
Loss N\ ~ Name: Quality
. AN -
Period \\\ Type: Integer
Burstiness AN Domain: {25,50,75}
Corruption N\ Unit: %
Guarantee N
DoC QoS Subdomain
Stat Name: FrameRate
Priority D
Type: Integer
Namain: 1 281 =]
Ll [0
o el

Fig. 2. GNE Domain Editor

The user interface of the GNE Mapping Editor is shown in Fig. 3. Two pre-
viously defined QoS domains Video and Middleware are related by specifying
the QoS mapping Video2Middleware. If QoS subdomains of source and target
domain are different, a customized mapping function has to be supplied. If some
QoS subdomains are identical, e.g. priority or loss, a default mapping is gener-
ated. In addition, the direction of the mapping can be controlled by relations
map from and map to.

joilhd B0 Q- BHG IO ES [§5eva
B ~ @3 % EHC
0 e cos_grom [) Wi cos_daman, doran () Wo.os nng ez 23 =5
- -
TrT—
s - - - £ &
% || QoS Domain > QoS Mapping QoS Domain , Zoom.
Name: Video Name: Video2Middleware = rame: Middieware | |21
Tamer T Tome: TICCONAI® | incosesmem
performance #Frames = ceil[(160*Quality +3000)* (Resolution.1-160)/160/1420] Performance T~ mepfion
Period = 1/FrameRate ~imoto
Resolution . . #Frames
i oss = Loss .
Quality Period = Period Period
FrameRate Burstiness = Burstiness
[Cortuption = Corruption Reliability
Reliability DoC= DoC Loss
Loss Stat = Stat Period
Period Priority = _ Priority Burstiness
Burstiness Corruption
Corruption
Guarantee
Guarantee DoC
DoC Stat
Stat Priority
Priority
sEeR

Fig. 3. GNE Mapping Editor

Finally, the GNE Requirements Editor is used to define QoS requirements,
consisting of a set of QoS profiles, on application level (see Fig. 4). First, a new
QoS requirements specification is created and associated with a QoS domain.
Then, QoS profiles can be added by specifying concrete minimum and optimum
Qo8S, and a QoS scalability value. In the example, the QoS requirements specifi-
cation VideoTransmission is associated with the QoS domain Video and consists
of the QoS profile Surveillance.

(€ Java - Video!Video.qos_diagram - Eclipse SOK

Flo [t Dogien Navigte Sech Froec Run Wndow b

$-0-Q-iBHEG-OF S
B 5 — o B ERE.
1d) video.qos_dagram (] Video.qos_doman_dagram) video.qos_mappng_dsgram =8
; —
ot &
B QoS Requirements s
Name: VideoTransmission . Dt
QoS Domain ~beongs
QoS Profile Name: Video
Name: Surveilance Performance
Optimal Value Resolution
Performance: Quality
Resolution: 640,480 (px,px) FrameRate
Quality: 75 % —
FrameRate: 20 Reliability
Reliability: Loss T
Loss: 2 packets Period
Period: 1's Burstiness
Burstiness: 1
Corruption: 0 % Corruption
Guarantee: Guarantee
DoC: enhancedBestEffort DoC
Stat: 90 % Stat
Priority: 10 a
Priority
Minimal Value
Performance:
< 0 »ﬂ
- sEHeR

Fig. 4. GNE Requirements Editor

For further processing, GNE supports the transformation of QoS domains,
QoS requirements, and QoS mappings from XMI [13], which is the default data
format, to NQSL. Since the data is available in a XML-based format, we used
XSLT [14] for this transformation.Figure 5 shows the transformation of subdo-
main Resolution to the corresponding NQSL description.

QoS Subdomain Subdomain {
Name: Resolution name: Resolution;
Type: (Integer,Integer) type: (Integer, Integer);
Domain: {(320,240),(480,360),(640,480)} domain: { (320, 240), (480,360), (640, 480)};
Unit: (px,px) }
(a) Subdomain Resolution (b) Result in NQSL

<xsl:for-each select="/qgos:NetworkQoSDescription/subdomains">
subdomain {
name: <xsl:value-of select="@name" />;
type: <xsl:value-of select="@type" />;
domain: <xsl:value-of select="Q@domain" />;
}
</xsl:for-each>

(¢) Transformation in XSLT

Fig. 5. Transformation Process

5.2 NSQL Analyzer

Based on the definition of QoS domains on all abstraction levels, QoS mappings
between them, and the QoS requirements on application level (see Section 5.1),
the NQSL Analyzer (NA) performs QoS domain reductions and derives QoS
requirements on communication level and on resource level. This relieves the
system developer from filling in QoS requirements on lower levels and checking
their consistency. Moreover, the analysis results provide feedback on QoS map-
pings, and support the assessment of utility and cost functions. Finally, they
serve as input for generating fragments of the system design, e.g. QoS data
structures and QoS scaling functionality based on QoS scaling tables.

To perform QoS domain reductions, the NQSL analyzer works in three steps,
which are performed subsequently on all abstraction levels and for each QoS
profile:

— In Step 1, the QoS domain is reduced to a set of u-equivalence class repre-
sentatives. Here, the NQSL analyzer determines the u-equivalence classes of
the QoS domain as induced by the utility function u of a QoS requirement
profile (see Section 3.1). For each equivalence class, the QoS domain value
with minimum cost according to the cost function c is kept as representative
for that class, i.e. all other QoS domain values of that class are discarded.
To limit memory needs of the system implementation later on, an upper

bound for the number of equivalence classes can be set. At this point, the
system developer obtains feedback about the distribution of the correspond-
ing utility values in the interval [0,1]. An example is given in Table 1. Note
that to keep the presentation concise, we consider a very small QoS domain,
comprising 9 values only (see Table 1(a)). A more realistic cardinality would
be in the order of 10? to 10°. Each QoS domain value consists of a tuple for
resolution and values denoting JPEG quality and frame rate. Furthermore,
the corresponding utilities and costs are shown. In the example, the utility
of each QoS value is defined by the user, whereas the costs are calculated by
means of the QoS performance mappings and cost function shown in List-
ings 3 and 4. Based on the utility, 5 equivalence classes [z], are obtained.
Selecting the QoS domain value with minimum cost in each equivalence class
leads to a reduced QoS domain Q“, as shown in Table 1(b).

Table 1. QoS Domain @ video

(a) QoS domain values qvigeo of QoS domain Q video

value utility cost[107] value utility cost[10”]
320,240),25,25) 0.1 175 [((480,360),75,25) 05 750
320,240),50,25) 0.1 275 1((640,480),25,25) 0.7 525
320,240),75,25) 0.3 375 |((640,480),50,25) 0.7 825
480,360),25,25) 0.3 350 |((640,480),75,25) 0.9 1125
480,360),50,25) 0.5 550

(b) equivalence partitioning into 5 classes and keeping cost-optimal QoS domain values

[x]u value cost[10°] [x]u value cost[10°]
01]. ((320,240),25,25) 175 [0.7]. ((640,480),25,25) 525
[0.3]. ((480,360),25,25) 350 0.9]., ((640,480),75,25) 1125
[0.5] ((480,360),50,25) 550

— In Step 2, the number of QoS domain values is further reduced by applying

the cost criterion (see also [1]). In general, it is possible that for QoS domain
values ¢ and ¢/, u(q) > u(q’), while ¢(q) < ¢(q¢’). If this is the case, the QoS
domain value ¢’ can be discarded, as it is associated with higher or equal
cost, but less utility. Discarding of QoS domain values is continued until for
all remaining QoS domain values ¢ and ¢’, u(q) > u(q") implies ¢(q) > ¢(¢').
In the example, the QoS domain value ((480, 360), 50, 25) is discarded since
((640,480), 25, 25) provides better utility at lower cost.

In Step 3, the QoS domain values are further reduced by keeping only those
QoS domain values that satisfy the QoS profiles of the QoS requirements, i.e.
Gmin and gope. First, the equivalence class representatives of g, and gopt are
determined. From these representatives, the utility interval corresponding to
the QoS requirements are obtained. Finally, all QoS domain values with a
utility outside this interval are discarded. The remaining QoS domain values
constitute entries of the QoS scaling table. In the example, we assume that

Table 2. Reduced Equivalence Classes

[x]u value cost[10%]] [x]u value cost[107]
[0.1]. ((320,240),25,25) 175 |[0.7]« ((640,480),25,25) 525
0.3]. ((480,360),25,25) 250 |[0.9]u ((640,480),75,25) 1125
16051 £(486,360),50:25) 556

we have only one QoS profile with gy, in [0.3],, and gope in [0.9],,. This leads
to the QoS scaling table shown in Tab. 3.

Table 3. QoS Scaling Table

[x]u value cost| [x]u value cost
[0-3]. ((480,360),25,25) 350 |[0.9], ((640,480),75,25) 1125
[0.7]. ((640,480),25,25) 525

Thus, for every QoS profile of a QoS requirements specification, a QoS scaling
table is generated. To derive QoS requirements on communication level and on
resource level, the NQSL analyzer applies the corresponding QoS mappings to
the set of QoS domain values remaining after QoS domain reduction. For each
layer, the QoS requirement specification is derived by determining the utility of
the resulting QoS domain values, and by selecting the QoS domain values with
minimum and optimum utility. In the example shown in Tab. 4, the QoS profile
is mapped to a corresponding QoS profile on middleware layer, described by the
number of data frames required for the transmission of one picture frame, and
the period between two picture frames, i.e. Q rriddicware = NoFrames x Period [s].
To obtain the corresponding QoS domain values on middleware layer, the QoS
mapping defined in Listing 3 has been applied. From these results, it follows
that the minimum and maximum QoS domain values on middleware layer are
(10,0.04) and (32,0.04), respectively.

Table 4. Results of QoS Mapping

application layer middleware layer
x]u value cost| [x]u value cost
[0.3]. ((480,360),25,25) 350 |[0.3]. (10, 0.04) 350
[0.7]. ((640,480),25,25) 525 [[0.7]. (15, 0.04) 525
[0.9]., ((640,480),75,25) 1125([0.9],, (32, 0.04) 1125

We have implemented the NQSL analyzer in Java. Currently, performance
and guarantee mappings are supported by the tool.

5.3 NQSL-to-SDL Compiler

After finalizing the QoS requirements specification in NQSL, the developer turns
to the specification of the system design. For the design, a QoS architecture has to
be devised, required QoS functionalities such as access tests, resource reservation,
traffic control, and scaling strategies are to be identified, and corresponding
mechanisms to realize these functionalities must be provided. Furthermore, it
has to be shown that the design satisfies the abstract QoS requirements.

Certainly, the design decisions that are to be taken here are far too complex
to be automated entirely. However, it is feasible to generate fragments of the de-
sign. To start with, we have developed the NQSL-to-SDL Compiler (NSC) that
translates QoS domains and QoS requirements specified in NQSL to correspond-
ing data type definitions and QoS scaling process types based on QoS domain
tables in SDL [15]. SDL, ITU-T’s Specification and Description Language, is a
formal design language for telecommunication systems that is widely used in
industry and academia, with commercial tool support including graphical edi-
tors, analyzers, simulators, and SDL-to-C compilers. Fig. 6(a) shows a screen
dump of the user interface of the NSC. As input, the tool accepts the NQSL
output of the Graphical NQSL Editor. One output of the NSC are layer specific
SDL packages, containing the according SDL data type definitions of the QoS
domain. The NSC has been integrated into Telelogic TAU [16], the SDL tool
suite of a commercial provider of SDL tools. It has been written in Java, using
JFlex [17] for lexical analysis and CUP [18] for parsing. For better usability, we
have integrated the NQSL Analyzer into the NSC user interface.

package VideoPkg

rganizer rw video.sdt

Ele Edt View Generats Tools Bookmarks MSCtoSDL Qos-Gen ConTrasT Help

BB

VideaPkgy
) videoscaler

[HardwarePkg

= MiddiewarePky

352 AppSpecific QSN
demL ; DeMUMW

forw : Forwardingh
sig : Signallinghtv

Convert a QoS Specification to SDL-GR

QoS Parser Log
Generating Package: HardwarsPhg

Imperting ka Orgarizer,
Dore,

Dore,

QoS
DEMUXVIW

[analyzer done: o errors and no warnings

W B mrETx

Generating Process Type YideoScaler Far Speciication VideaTelephony

G:|5DLVidec)Generated|QosSystem.ssy mported to Orgarizer. (0)

[

T T — —

o7 o GASDLY newtype Resolution_base struct [\
o=l - Euas s:;:’m"é m:g:?
o= 50U Wids0lNQ3Lideo,neel @ | | enaye | endnewtype;
— System Design o Ehi G Tabled syntype Resolution = Resolution_base
constants (. 320, 240), (. 480, 360 .),
[=3 QoSinterface . 640, 480 .)
Destination Directory for generated SDL GR. endsyntype;
= CommonDataTypes Gr\SDL ideolGenerated = | Emes | o
. [constants 25, 50, 75

ORI Firihed, The resul isin GSDLWideol Generakedi QoSS ystem pr FHEH LIS | aram2 Quality,
[] cossystem oot [+ :
onverting o 50L GR... aram3 FrameRate;
as1: AppSpeciicQoSMw | oone... entinowtype:

endsyntype;

syntype FrameRate = Integer
constants 1: 25
endsyntype;

newtype Video_P struct
param1 Resolution;

()

newtype Video struct
erformance Video_P;
reliability Video_R;
guarantee Video_G;
endnewtype;

)\
leoScaler

(a) User Interface integrated in Telelogic TAU

(b) Generated SDL data
types

Fig. 6. NQSL-to-SDL Compiler

For a given QoS domain, the NSC generates an SDL package, i.e. a library
that can be imported by SDL system specifications. The generated SDL package
contains SDL data type definitions of all problem-specific QoS subdomains of
the NQSL specification. QoS subdomains that are not problem-specific, such as
degree of commmitment or priority of the QoS guarantee domain, are collected
in the predefined SDL package CommonDataTypes, which s imported by every
other SDL package generated by the NSC.

QoS domains and subdomains are mapped to SDL syntypes or newtypes,
depending on their complexity. Fig. 6(b) shows the SDL data types gener-
ated for the QoS domain @ v;4e,, which are contained in the new SDL package
VideoPkg. For the QoS domain Q v;4eo, the SDL data type Video (see bottom
of Fig. 6(b)) is derived. This data type is structured into the performance data
type Video P, the reliability data type Video R, and the guarantee data type
Video G. The subdomains Resolution, Quality and FrameRate of the perfor-
mance domain Video P are also defined within this package; the subdomains
of the reliability and performance domain are imported from in the predefined
SDL package CommonDataTypes.

Starting point for the translation of a QoS requirements specification to SDL
is a reduced and optimized QoS domain as described in Sections 3.1 and 5.2.
For this reason, a preceding NQSL analyzer run is mandatory. For every QoS
requirements specification, an SDL scaling process type is automatically gen-
erated, consisting of a scaling algorithm and a scaling table. The scaling table
aggregates the reduced QoS domain tables containing the optimal QoS domain
values created for every QoS profile of a QoS requirements specification. The
scaling algorithm selects the currently best QoS domain value under a given
resource situation.

Figure 7 shows the process type VideoScaler generated by the NSC. The
scaling algorithm is realized by an operator scale defined on the SDL data type
VideoScalingTable. During the startup phase of the process, the tables for the
QoS profiles of a specification are initialised according the output of the NQSL
analyzer. If the resource situation changes as indicated by the input signal avail-
ableConnRes, the scaling operation is performed, and the user data flow config-
uration is updated. Further, the current application scenario can be chosen by
another input signal (not shown in the figure).

6 Conclusions and Future Work

In this paper, we have presented NQSL, the Network QoS Specification Lan-
guage, to formally specify network QoS. NQSL is derived from our previous
formalization of network QoS with specific emphasis of scalability and cross-
layer development. It provides language elements for specifying QoS domains,
QoS subdomains, and QoS mappings. Further, QoS requirements can be defined
by specifying QoS profiles, expressed by minimum and optimum QoS domain
values and a QoS scalability value that consists of utility function, cost function,
and two thresholds. To support the efficient handling of NQSL specifications, we

process type VideoScaler

newtype VideoSort struct
value Video; util Utility;
endnewtype;

newtype VideoTableEntry struct
index Cost; sort VideoSort;
endnewtype;

newtype VideoScalingTable
String(VideoTableEntry, empty)
operators
scale : VideoScalerTable, Cost —> Video_P;
operator scale
fpar t VideoScalingTable, ¢ Cost
returns result Video_P {
dcl i Integer;
for (i := 1, i <=length(t), i + 1) {
if (t(i)!index > c) break;
result := t(i)!sort!value!performance;

}
endnewtype;

initialize Qos:
scaling table |

J

wait2scale

-
(rmeee)

o)

val := (. (. (. 480, 360 .), 25, 25 .), (...) .);
s:=(.val,0.3.);

te := (. 350000.0, s .);

append(st, te);

()

scalingTable('Surveillance’) := st;

wait2scale

-=q
changed connectioni
resources

availableConnRes
(c)

scale to currently 1
available resources
H

T vapr =
scale(st, ¢)

N]
parametrize useri

setQoSParameter

(valP)

data flow

newtype ScalingTable
Array(Charstring, VideoScalingTable)
endnewtype;

update traffic
parameters of other
QoS mechanisms

curUserFlowCfg

(valP)

D
>

[*declaration of local variables */

_ 1l

éé'alingTahle ScalingTable;

]

Fig. 7. Generated Process Type VideoScaler (excerpt)

have presented a tool chain consisting of the Graphical NQSL Editor (GNE),
the NQSL Analyzer (NA), and the NQSL-to-SDL Compiler (NSC).

The work presented in this paper solves a number of problems of practical rel-
evance. First, it is very important that network QoS requirements be specified
formally. While there are several languages reported in the literature already,
NQSL goes one step further by supporting the specification of network QoS re-
quirements on all system layers, by including QoS scalability, and by supporting
QoS mappings. Second, for practical usage, tool support is mandatory. Here,
our tool chain supports editing, analyzing, and transforming NQSL specifica-
tions, relieving the system developer from several tedious and error-prone tasks,
such as applying QoS mappings by hand or reducing QoS domains based on the
definitions of utility and cost functions. To further increase usability, the SDL
generator has been integrated into Telelogic SDL Suite. We are currently not
aware of QoS tools with comparable functionality.

Our future work aims at extensions of our tool chain for QoS system devel-
opment, and at SDL system designs satisfying formally specified network QoS
requirements. The next step will be the extension of the NQSL-to-SDL compiler
by architectural QoS concepts. Thereby, it will be possible to automatically gen-
erate a complete SDL system structure with QoS functionalities. Another step is
the formal definition of a distributed resource management and scalability model
for multiple data flows. This model will use the derived QoS profiles across layers
to provide and manage QoS for different user data flows in a correct and efficient
manner.

Acknowledgments. The work presented in this paper was in part carried out
in the BelAml (Bilateral German-Hungarian Research Collaboration on Ambient
Intelligence Systems) project, funded by German Federal Ministry of Education
and Research (BMBF), Fraunhofer-Gesellschaft and the Ministry for Science,
Education, Research and Culture (MWWFK) of Rheinland-Pfalz.

References

10.

11.

12.

13.

14.

15.

16.

17.
18.

Webel, C., Gotzhein, R.: Formalization of Network Quality-of-Service Require-
ments. In: Formal Techniques for Networked and Distributed Systems - FORTE
2007. Lecture Notes in Computer Science (LNCS) 4574, Springer (2007) 309-324

. Jin, J., Nahrstedt, K.: QoS Specification Languages for Distributed Multimedia

Applications: A Survey and Taxonomy. IEEE MultiMedia 11(3) (2004) 74-87
Frglund, S., Koistinen, J.: QML: A Language for Quality of Service Specification.
Technical Report HPL-98-10, pp. 63., Software Technology Laboratory, Hewlett-
Packard Company (1998)

J. @. Aagedal: Quality of Service Support in Development of Distributed Systems.
PhD thesis, University of Oslo, Oslo, Norway (2001)

Rottger, S., Zschaler, S.: Tool support for refinement of non-functional specifica-
tions. Software and Systems Modelling journal (SoSyM) 6(2) (June 2007)
Vanegas, R., Zinky, J.A.| Loyall, J.P., Karr, D., Schantz, R.E., Bakken, D.E.: QuO’s
Runtime Support for Quality of Service in Distributed Objects. In: Proceedings
of the IFIP International Conference on Distributed Systems Platforms and Open
Distributed Processing (Middleware’98), The Lake District, UK (1998) 207-222
Florissi, P.G.S.: QoSME: QoS Management Environment. PhD thesis, Columbia
University (1996)

Campbell., A.T.: A Quality of Service Architecture. PhD thesis, Computing De-
partment, Lancaster University (1996)

Webel, C.: NQSL - A Specification Language for Network Quality of Service.
Technical Report 368/07, Department of Computer Science, University of Kaiser-
slautern (2007)

Eclipse Foundation: Eclipse Modeling Framework Project (EMF).
http://www.eclipse.org/modeling /emf/ (2007)

Eclipse Foundation: = The Eclipse Graphical Modeling Framework (GMF).
http://www.eclipse.org/gmf/ (2007)

Object Management Group, Inc.: Meta Object Facility (MOF) Specification.
http://www.omg.org/mof/ (2000)

Object Management Group, Inc.: Xml metadata interchange (xmi) specification.
http://www.omg.org/technology /documents/formal /xmi.htm (2007)

World Wide Web Consortium: XSL Transformations (XSLT). W3C Recommen-
dation. http://www.w3.org/TR/xslt (1999)

International Telecommunications Union: Specification and Description Language
(SDL). ITU-T Recommendation Z.100 (August 2002)

Telelogic AB: Telelogic SDL Suite and TTCN Suite.
http://www.telelogic.com /products/tau/sdl/index.cfm (2007)

JFlex: JFlex - The Fast Scanner Generator for Java. http://jflex.de/ (2007)
CUP: CUP - LALR Parser Generator in Java.
http://www2.cs.tum.edu/projects/cup,/ (2006)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

